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Combinators for parsing expressions

STEVE HILL
University of Kent, Canterbury, UK

Abstract

This paper describes a scheme for constructing parsers based on the top-down combinator
approach. In particular, it describes a set of combinators for parsing expressions described by
ambiguous grammars with precedence and associativity rules. The new combinators embody
the mechanical grammar manipulations typically employed to remove left-recursion and
hence help to avoid the possibility of a non-terminating parser. A number of approaches to
the problem are described—the most elegant and efficient method is based on continuation
passing. As a practical demonstration, a parser for the expression part of the C programming
language is presented. The expression combinators are general, and may be constructed from
any suitable set of top-down combinators. A comparison with parser generators shows that
the combinator approach is most applicable for rapid development.

Capsule Review

Designing libraries of higher-order functions (or combinators) to solve special programming
problems is an important style of functional programming. Examples of such libraries include
those for building parsers, pretty printers and graphical user interfaces. Hill's paper extends
the parsing library. The extension is a small set of derived combinators tailored to building
parsers for expression-like grammars. The new combinators encapsulate the tedious and
error-prone grammar transformations that are required to take account of precedence and
associativity rules. The new combinators are well-chosen, and developed in a stepwise manner
which makes them easy to understand and use. A particularly nice aspect of the method is
that precedence levels don't have to be named (or numbered); rather, a special combinator
to handle precedences is introduced.

On the plus side, combinator parsers are typically easy to build and modify, and one has the
full power of a functional language available to program semantic actions and extend the basic
library of combinators. On the minus side, it is well-known that combinator parsers can be slow
compared to automatically generated table-driven parsers. For many research applications,
however, the performance will be adequate. In such situations Hill's new combinators will be
a welcome and long-overdue addition to the parsing library, considerably reducing the time
and effort required to obtain a working parser.

1 Introduction

This paper describes a set of high-level combinators for the construction of parsers
for ambiguous expression grammars which are disambiguated by the use of associa-
tivity and precedence rules. The expression components of most modern program-
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ming languages fall into this category. The principal advantages of the approach
are:

• conciseness and transparency of expression,
• mechanical grammar manipulation is avoided,
• a rapid development cycle,
• parser non-termination is avoided, and
• acceptable efficiency.

There are two main approaches to the construction of parsers from a (possibly
annotated) grammar. The first method, as exemplified by systems such as yacc
(Johnson, 1978; Aho et al., 1986), its early functional implementation (Peyton Jones,
1985) and the more recent Happy (Gill and Marlow, 1995) and Ratatosk (Mogensen,
1993), derives a table-driven automaton from a grammar, whose execution is steered
by the input tokens. Parsers developed in this way are efficient. However, construction
of a parser can be a lengthy many-stage process. First the grammar is written, then
the parser generator processes the grammar to produce a module which can then
be executed or included in a larger system. Errors in the grammar source file often
do not become apparent until the end of this process, so many design iterations are
quite common.

The second approach, and the one adopted here, is to build parsers from a set of
directly executable combinators. The set of combinators usually includes the basic
grammar constructs such as alternation and concatenation, and may be extended
with derived combinators for repetition and multi-way choice. Depending on the
requirements of the grammar, different implementations of the combinators may be
chosen. The most common implementations use lists of results to represent parsers
which may fail or succeed with a number of different results (Wadler, 1985). Parsers
built using this style of combinator provide backtracking, and may be used to
construct parsers from ambiguous grammars.

The functions in this paper are described with reference to the combinators
described in Hutton (1992). Many authors have discussed or implemented similar
sets, for example, Fairbairn (1986), Burge (1975) and Augustsson (1994). However,
the choice of a particular set is not important to this work. The approach is
general and other combinators sets may be used with equal facility. However, the
resulting parsers may accept different languages according to the specific grammar
and amount of backtracking provided by the combinators.

Combinator parsers have a number of weaknesses. In particular, they cannot
handle grammars which contain left-recursion. However, it is possible to re-arrange
a grammar to eliminate the left-recursion, whilst still accepting the same language.
Unfortunately, clarity can be lost during translation, and since the manipulations
are often done by hand, incorrect grammars can easily result. The combinators
described here, embody the necessary grammar manipulations and hence provide a
more secure method for building parsers whilst retaining the clarity of the original
grammar. Another weakness of many combinator sets is their efficiency, which is
discussed further in section 7.
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Their significant advantage is that parsers described in this style are directly
executable. This allows for a rapid turn-around from specifying the grammar to
producing a working parser. It suggests that combinator-based parsers are best
suited for early development and rapid prototyping where their performance is
acceptable.

2 Background

The signature of the combinator set described in Hutton (1992) is given in figure 1.
All code in this article is written in Gofer (Jones, 1991). This has necessitated some
function renaming to avoid clashes with keywords and the standard prelude.

Hutton implements a parser as a function from a list of input tokens to a list
of possible parses. A parse is a pair consisting of the remnant of the input and a
result value constructed by the parser. The values produced by the parser might be
parse trees, but in general can be of any type. It is possible to decorate parsers with
semantic actions to process these results.

Parsers can be combined sequentially: pi 'seq' p2 denotes a parser which
accepts parses from pi followed by parses from p2 (usually written as juxtaposition
in BNF), or by using an alternation: pi ' a l t ' p2 denotes a parser which accepts
parses from both pi and p2 (usually denoted by | in BNF). There are some useful
variants on seq which discard the values from one or other of the parsers. They are
used when it is only of interest if a parser has succeeded and not what the result
is, for example when parsing a keyword. Related to these is the return combinator
which applies a parser replacing the result value with the specified new value.

There are a number of basic parsers. The fa i l parser always fails and is the unit
for the a l t operator. The succeed parser succeeds immediately without consuming
any input and returns a specified value. The satisfy and l i t e r a l combinators
succeed if the next token satisfies a predicate or is equal to a particular value
respectively. In both cases, the matched token is returned.

The derived combinator, many, repeatedly applies a parser until it fails returning a
list of result values and corresponds to the * operator in BNF. The using combinator
applies a function (i.e. a semantic action) to the value part of the parse. It consumes
no input. The anyof combinator applies a function to a list of values to produce a
list of parsers. These parsers are then combined using alternation. For example:

abc = anyof literal ['a', 'b', 'c']

is a parser that accepts either ' a ' , ' b ' or ' c ' which we could have written in a

long-winded fashion as :

abc = l i t e r a l ' a ' ' a l t ' ( l i t e r a l ' b ' ' a l t ' l i t e r a l ' c ' )
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2.1 Example parser

This section demonstrates the construction of a parser, using Hutton's combinators,
for a fragment of a simple programming language. The grammar is as follows:

expr :
type :
decl :
assn :
line :
prog :

.—
:= ...
:= var :
:= var :
:= decl
:= line'

: type
= expr
assn

The conversion of this grammar to an executable parser is straightforward. Each
rule is implemented as a function of type Parser tok t ree where tok is the type of
objects returned by the lexical stage, and t ree is the type of object generated by the
rule. Writing the parsers is mechanical, and follows the grammar closely. Semantic
actions are added via the using combinator which in this case just serves to build
the parse tree. The parser is thus:

data Expr = . . .
data Type = . . .
data Line = Assign [Char] Expr | Declare [Char] Type
type Prog = [Line]

parse_decl = ((parse_var is_name 'seqx' l i t e r a l " : :")
' seq ' parse_type) 'using' mk_decl
where
mk_decl (n, t ) = Declare n t

parse_assign = ( (sa t i s fy is_name 'seqx' l i t e r a l ":=")
' seq ' parse_expr) 'using' mk_assign
where
mk_assign (n, e) = Assign n e

parse_line = parse_decl ' a l t ' parse_assign

parse_prog = many parse_line

3 The grammar of expressions

Often the most complex part of the grammar for a programming language deals
with expressions. Expressions in most programming languages are built from a
number of infix binary and prefix (and sometimes postfix) unary operators. To resolve
ambiguity, each operator is typically assigned a precedence and an associativity. The
expression x © y <8> z can be read as (x © y) ® z or x © (_y ® z) according to the
precedences of the infix operators © and <g>. The expression x ® y © z can be read as
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type Parser t v = [t] -> [(v,[t])]

— Immediately succeed. Consumes no tokens,

succeed :: v -> Parser t v

— Always fails,

fail :: Parser ts v

— Succeeds if predicate is True,

satisfy :: (t -> Bool) -> Parser t t

— Match a literal token

literal :: Eq t => t -> Parser t t

— Alternation, parses from either pi or p2 or both,

alt :: Parser t v -> Parser t v -> Parser t v

— Sequential composition, parses of pi followed by p2

— Variants throw away result from first or second parser,

seq :: Parser t vl -> Parser t v2 -> Parser t (vl, v2)

xseq :: Parser t vl -> Parser t v2 -> Parser t v2

seqx :: Parser t vl -> Parser t v2 -> Parser t vl

— Apply semantic action to value

using :: Parser t vl -> (vl -> v2) -> Parser t v2

— Repetition, keep applying parser until it fails,

many :: Parser t v -> Parser t [v]

— Throws away parse tree returns supplied value instead,

return :: Parser t vl -> v2 -> Parser t v2

— Monadic style combinator - result passed to next parser

into :: Parser t vl -> (vl -> Parser t v2) -> Parser t v2

— Combines a list of parsers with alternation.

— Parsers obtained by applying function to a list of values,

anyof :: (a -> Parser t v) -> [a] -> Parser t v

Fig. 1. Hutton's parsing combinators.

either x(B(y(Bz) or (x © y) © z according to the associativity of ©. To avoid further
ambiguity, operators with the same precedence must have the same associativity.

Consider a grammar for simple arithmetic expressions:

e ::= e + e | e * e | ( e ) \ v

(where v denotes a variable). This grammar is ambiguous. To resolve the ambiguity,
precedences are assigned to the operators and the grammar re-expressed thus:

e : := t \ e + e
t : := f \ t * t
f ::= ( e ) | v
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which gives multiplication a higher precedence than addition. Unfortunately, this
grammar is not suitable for implementation using a top-down parser since it involves
left-recursion, which would lead to non-termination. Again, the grammar must be
re-expressed, replacing recursion with iteration (Aho et al., 1986) in the standard
way:

e ::= t (+ t)*
t ::= / (* / ) •
/ ::= ( e ) | v

where the notation x' denotes zero or more occurrences of x. This new grammar
is suitable for a top-down parser. There is still an ambiguity regarding associativity,
although clearly in this particular example it is not significant. The semantic actions
associated with these productions will be responsible for resolving grouping. A
suitable parser for the grammar is thus:

data Tree = Token Char I Times Tree Tree I Plus Tree Tree

parse_e :: Parser Char Tree

parse_e = (parse_t 'seq ' many ( l i t e r a l '+ ' 'xseq' parse_t))
'using' mk_plus
where
mk.plus (e, 1) = foldl Plus e 1

parse_t :: Parser Char Tree

parse_t = (parse_f ' seq ' many ( l i t e r a l '* ' 'xseq' parse_f))
'using' mk_times
where
mk_times (e, 1) = foldl Times e 1

parse_f :: Parser Char Tree

parse_f = ( l i t e r a l ' ( ' 'xseq' (parse_e 'seqx' l i t e r a l ' ) ' ) ) ' a l t '
( (sat isfy is_token) 'using' Token)

This parser, although adequate in terms of the language it accepts, is a far remove
from the original grammar. The aim of this work is to provide a set of higher-level
combinators which retain a clear correspondence between the grammar and its
implementation.

Grammar manipulation by hand is mechanical, tedious and prone to error. More-
over, there is a virtually identical rule for every level of precedence. Instead, let us
propose the following parameterised rule which captures the grammatical pattern
for an infix binary operator at precedence level n:

en ::= en_i (en en-i)*
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In general, there will be a number of operators occupying each level of precedence,
so a more general rule is required. If precedence level n has k operators, the rule is:

en ::= en_, ((©J | ®\ | ...ffij) *„_,)' (1)

Similar rules for prefix and postfix unary operators can be derived. The rule for
prefix operators is:

en ::= (ffij | ©J | ... | ©Jj)'eB_i (2)

and that for postfix:

«„ : := e n _ , ( e i l © ' | ... | ®k
n)' ( 3 )

These rules could be used directly to implement parsers. However, the goal of this
work is to provide a set of generic combinators that embody their patterns. In the
schemes that follow, there will be no need to name each rule, nor will it be necessary
to assign arbitrary numeric values to each level of precedence.

4 Implementation

The final form of the combinators, presented in section 5, was achieved via a
number of stepwise refinements. This section briefly describes these steps to provide
a better insight into their motivation and operation. Each method provides a toolkit
for constructing parsers for expressions involving at least infix binary and prefix
unary operators. However, many real languages require support for special features,
and this motivates a move away from an approach based on algebraic data to a
higher-order method.

4.1 Explicit data

In the first method a grammar is represented as a table (or list). The table enumerates
the tokens corresponding to operators in the grammar, and associates these with
semantic actions (for example, to build a parse tree or evaluate an expression). Thus
a type Ptable is defined as:

type Ptable token exp = [Prule token exp]

type Prule token exp = [(token, exp->exp->exp)]

where the rules in the parse table are listed in increasing order of precedence. The
parser examines a Ptable processing each level of precedence in turn attempting to
match expressions involving the specified tokens. It constructs the parse tree from
the operators paired with each token. In practice, more than one sort of rule is
needed, since realistic grammars will feature at least binary and unary operators, as
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well as sub-expressions and atoms. A more realistic Prule type is:

data Prule token exp =
Binopr [(token, exp->exp->exp)] |
Binopl [(token, exp->exp->exp)] |
Prefix [(token, exp->exp)] |
Postfix [(token, exp->exp)] I
Subexp [(token, token)] |
Atom

A parser is now constructed by applying an interpreter to the grammar table, for
example:

parser =
parse

Binopl [("+", Plus) , ("-", Minus)],
Binopl [("*", Times), ("/", Divide)],
Binopr [("$", Apply)],
Subexp [ ( " ( " , " ) " ) ] ,
Atom

Each entry in the table is processed by a different function. The functions corre-
sponding to each rule type take the remnant of the parse table as an argument.
They can then call the parser again in order to parse higher precedence rules.

parse :: Ptable token exp -> Parse token exp

parse ((Binopl ops) : rest) = binopl ops rest
parse ((Binopr ops) : rest) = binopr ops rest

parse [] = f a i l

binopl ops ptable = parse ptable 'seq' ...

4.2 Using functions

A drawback of the previous approach is that a constructor is needed for each kind of
operator committing the method to a fixed repertoire. Notice that the constructors
merely serve to identify the function that should be used to parse a particular level
of precedence. In a functional language we shouldn't be afraid of using functions!
The entries in the table can be replaced with the parsing functions themselves, giving
the new types:

type Ptable token exp = [Prule token exp]

data Prule token exp = Prule (Ptable -> Parse Char Expr)
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Most popular non-strict functional languages (Hudak et al, 1992; Turner, 1986;
Jones, 1991) do not support recursive type synonyms. A data constructor must be
used to 'break the loop'. The top-level parsing function now becomes:

parse :: Ptable token exp -> Parse token exp

parse (Prule f:fs) = f fs
parse [] = fa i l

and the parse table looks like this:

parser =

parse

Prule (binopl [("+", Plus),(M-", Minus)])

This method is more flexible—any parsing function with the correct type can be
slotted into the parse table. The intention is that these functions should process their
own precedence level, and where appropriate call the top-level parse function on
the remnant of the parse table to deal with higher levels of precedence.

4.3 Using continuations

The parse function in the previous section is still essentially an interpreter. A
constructor that is not logically necessary is also required. Fortunately, there is a
better, more direct approach. The value that is passed to each rule function (the
remnant of the parse table) is a representation of the computation that is required in
order to parse any higher precedence operators. Why do we need a representation?
Why not pass this computation explicitly, i.e. as a function?

The type of a typical parsing function now becomes:

binopr :: . . . -> Parse token exp -> Parse token exp

binopr . . . next = . . . next . . .

The parameter next is the function to parse the next highest level of precedence—it
is a continuation. This is not the only instance where continuations have proved
useful in transformation techniques (Appel, 1992).

A parser is now constructed by applying the lowest precedence parser to the next
level's parser which is in turn applied to the next and so on. For example:

parser :: Parse [Char] Expr

parser = binopl [("+", Plus), ("-", Minus)] $
binopl [("*", Times), ("/", Divide)] $

atom
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The $ symbol stands for function application (in Miranda* Sid would have the
same effect) and associates to the right. It is used to make parsers more readable. A
programmer can regard $ simply as a combinator for combining the parsers at the
various precedence levels, and need not be concerned with continuations or other
implementation details.

5 The combinators

In section 3, rules were derived for operator precedence grammars suitable for imple-
mentation using a top-down parser. In this section, these definitions are translated
into concrete code using the basic parsing combinators described by Hutton, and
the continuation-based method described above. In the next section, the new combi-
nators will be used to build a parser for the expression part of the C programming
language.

The remainder of the section will require the use of the following parser:

l i t r e t : : Eq t => ( t , v) -> Parser t v

l i t r e t ( t , v) = l i t e r a l t ' r e tu rn ' v

This matches a token, throws it away and returns the value v. The new combinators
will use it to recognise operators and convert them to their semantic actions. The
tokens and their corresponding node constructors will be held as a list of pairs, so
the parser:

anyof litret ops

where ops is such a list, is a parser that accepts the listed tokens and converts them
to their associated value.

5.1 Unary operators

To parse a unary prefix operator, the grammar (Equation (2)) is transliterated thus:

prefix : : Eq t => [ ( t , v->v)] -> Parse t v -> Parse t v

prefix ops next
= (many (anyof l i t r e t ops) ' seq ' next) 'using' build

where
build (os, e) = foldr ($) e os

The parser is parameterised on a table of pairs where the first item is the token
representing the prefix operator, and the second is the semantic action. Here the
many parser is applied to a parser that tries to match the tokens at this level of
precedence, replacing them with their semantic actions when succesful. Once the

t Miranda is a trademark of Research Software Ltd.
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prefix operators have been consumed, any higher precedence operators are then
parsed.

The result of the parser is a pair consisting of a list of semantic actions of type
v->v and a value of type v. The function build combines these using function
application in the following manner:

build{[@\, ©2 • • • @k], e) = ©i(02 • • • (@ke)...)

The postfix parser is similar, except that higher precedence operators are parsed
first, and the resulting list is arranged in the opposite order. The grammar is
adjusted—the higher precedence parser is invoked first followed by a parser for a
list of postfix operators (see Equation (3)). The build function is also different since
the list is built in a different sense.

postfix :: Eq t => [(t, v->v)] -> Parser t v -> Parser t v

postfix ops next

= (next 'seq' (many (anyof litret ops))) 'using' build

where

build (e, os) = foldl (flip ($)) e os

flip f x y = f y x

5.2 Binary operators

When dealing with binary infix operators, associativity adds to the complexity of
the problem. However, the grammar for operators which associate either to the left
or to the right is identical, so the problem can be split into two separate parts.

The grammar can be handled by the following function derived from Equation (1)
and parameterised on the semantic action to handle associativity:

binop :: Eq t => Assocfn v -> [(t, v->v->v)] ->

Parser t v -> Parser t v

binop assoc ops next

= (next 'seq' op2) 'using' assoc

where

op2 = (many (anyof litret ops 'seq' next))

As with the unary operators, the ops argument is a table enumerating the operator
tokens and their associated semantic action. The next parameter is a parser for the
next level of precedence. The binop function looks for an expression with higher
precedence followed by a sequence of operators and expressions. The function assoc
is used to re-arrange the resulting list according to the associativity of the operators.
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Associativity is handled by specialising binop to handle left and right association
according to the assoc parameter, thus:

binopr :: Eq t => [ ( t , v->v->v)] -> Parser t v -> Parser t v

binopr = binop assocr

binopl :: Eq t => [ ( t , v->v->v)] -> Parser t v -> Parser t v

binopl = binop assocl

Finally, the associativity functions must be denned. Their type is:

type Assocfn v = (v, [(v->v->v, v)]) -> v

i.e. they consume a value and a list of operator value pairs combining them into a
single value either grouping to the left or to the right. Informally, the operations
required are:

assocr ( e 0 , [ ( © i , e \ ) , ( 0 2 , e 2 ) • • • {®k,ek)]) = e 0 © i ( e i © 2 ( e 2 . . . ® k e k ) . . . ) )

assocl ( e 0 , [ ( © 1 , e \ ) , ( © 2 , e 2 ) . . . { ® k , e k ) ] ) = {••• ((e0 © 1 e i ) © 2 e 2 ) . . . ® k e k )

and these can be defined formally as:

assocr (e l , (op, e2) : 1) = op el (assocr (e2, 1))
assocr (e, []) = e

assocl (e, 1) = foldl f e 1
where
f el (op, e2) = op el e2

5.5 Subexpressions and atoms

There are two further combinators to consider: one for sub-expressions and one to
handle the atoms. For generality, a generic sub-expression combinator which allows
for different styles of parentheses is defined.

subexp :: Eq t => Parser t v -> [ ( t , t ) ] -> Parser t v -> Parser t v

subexp back bs next
= anyof subexp' bs ' a l t ' next

where
subexp' (op, cl) = ( l i t e r a l op 'xseq' back) 'seqx' l i t e r a l cl

The sub-expression combinator first matches the open brace followed by the sub-
expression itself which is parsed by the function parameter back. This would nor-
mally be the parser for top-level expressions (although one is at liberty to use
any suitably typed parser). Finally, the closing brace must also be matched. If the
combinator fails, then it proceeds to the next level of precedence.
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The final combinator is responsible for parsing atoms. This parser will be used as
the final level of precedence, so has no next parameter. The atom parser has two
parameters, a recogniser and a semantic action. The recogniser checks that the next
input token is a valid atom, and the semantic action is then applied to recognised
tokens.

atom :: (t -> Bool) -> (t -> v) -> Parser t v

atom rec leaf = satisfy rec 'using' leaf

5.4 Example

Recall the simple expression grammar from section 3. Using the new combinators
described above gives the following parser:

parse :: Parser [Char] Tree

parse = binopl [("+", Plus)] $
binopl [ ("•" , Times)] $
subexpr [ ("(" ,")")] $
atom isAtom Atom

Note that this parser corresponds closely in structure to the simple grammar for ex-
pressions given at the beginning of section 3. Precedence and associativity is handled
by the combinators, rather than by making complicated grammar transformations.
In this way, the time taken to get from a grammar to a combinator parser is
considerably reduced.

5.5 Discussion

When using these combinators, the implementation of a wide range of common
expression grammars is quick and simple. A parser can be written directly from the
language grammar and precedence rules. Moreover, provided that just the core set
of combinators are used, it is guaranteed that the parser will terminate (assuming
that the semantic actions do). The parsers for infix and prefix operators embody
the grammar transformations required to remove left-recursion. In normal use, the
sub-expression combinator could introduce a loop, but since it always consumes
a token there is no possibility of non-termination. The atom parser will terminate
provided that the recogniser does.

It is worth noting that it is possible to define the combinators such that they do
not construct intermediate lists. The alternative definitions make use of the into
parser described by Hutton, and are slightly more efficient. However, the definitions
are more complicated than those shown here.

There is a performance overhead associated with the expression combinators,
which in the examples that have been examined represents a slow-down of the order
of 30%.
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6 Example: Parsing C expressions

The C language has a notoriously complex expression syntax. This is evidenced by
the existence of a tool cparen which parses C expressions and outputs them fully
parenthesised. In this section, the combinators developed in the previous section are
used to build a functional program similar to cparen.

The task is to construct a parse tree from a list of input tokens. It is assumed
that lexical analysis has already been implemented (possibly using the lower level
combinators described in section 2, or using a tool like lex (Lesk and Schmidt, 1975)).
The trivial unparse function which converts the parse tree into a fully bracketed
expression string is not shown. In fact, it would be possible to avoid constructing
the parse tree at all, and instead apply the unparse operations directly as semantic
actions.

The parse tree is represented by the following type of abstract C expressions, of
which the following is a representative part:

data CExp =
Comma CExp CExp I
Assign CExp CExp I
PlusAssign CExp CExp I

Func CExp CExp I
Arglist [CExp] I
CondOp CExp CExp CExp I
Atom [Char]

Next, the parser is built using the combinators from the previous section. It is
worth noting at this point that the syntax of C expressions is rather peculiar in its
treatment of function arguments. The comma symbol has two meanings in C. It is
used to delimit function argument lists, but it is also an operator. The expression
a, b has the value b, but as a side-effect it also evaluates a. So an expression f (a,
b) could be parsed as either a function call with two arguments, or a call with
one expression argument (a, b). In fact, the former interpretation is intended. This
peculiarity requires two versions of the parser - implemented as two entry points.
The first parses expressions including the comma operator. The second is used when
parsing function arguments, and requires that comma expressions be parenthesised.

The whole parser is presented in figure 2. For the most part, it is defined in
terms of the combinators described in the previous section. However, there are a
few syntactic constructs that require additional definitions. The first of these is the
terniary conditional operator. A parser for this operator is:

condop :: Parser [Char] CExp -> Parser [Char] CExp

condop next

= (condop' 'using' mkCondop) 'alt' next

where

condop' = toquery 'seq' (tocolon 'seq' cparser)
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cparser =
binopl

cparser:

cparserl =

binopr

condop

binopl

binopl

binopl

binopl

binopl

binopl

binopl

binopl

binopl

binopl

prefix

[(",", Comma)]

L

[("=", Assign),

("+=", PlusAssign),

("-=", MinusAssign),

("*=", MulAssign),

("/=", DivAssign)]

[("II", Or)]

[("&&", And)]

[("1", BitOr)]

[("-", BitEor)]

[("&", BitAnd)]

[("==", Equal),

("!=", NotEqual)]

[("<", Less),

("<=", LessEq),

(">", Greater),

(">=", GreaterEq)]

[("«", LeftShift),

("»", RightShift)]

[("+", Plus),

("-", Minus)]

[("*", Times),

("/", Divide),

07.", Mod)]
[("++", Prelnc),

("—", PreDec),

("!", Not),

("-", BitNot),

("*", Indirect),

("+", UnaryPlus),

("-", UnaryMinus),

("&", Address)]

postfix[("++", Postlnc),

genopl

subexp

(" — " , PostDec)]

[(oparg "->", Pointer)

(oparg ".", Dot),

(array, Array),

(func, Func)]

cparser [("(",")")]

atom isAtom Atom

Fig. 2. The C expression parser.

toquery = next 'seqx' literal "?"

tocolon = cparser 'seqx' literal ":"

mkCondOp (el, (e2, e3)) = CondOp el e2 e3
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To parse functions and arrays, another combinator is required which is a gener-
alisation of binopl with the following type:

genopl : : Eq t => [(Parser t v -> Parser t v, v->v->v)] ->
Parser t v -> Parser t v

The table given to genopl contains a list of pairs. The second element is, as before,
the semantic action. The first element is now a parsing combinator, i.e. it is a parser
which takes an argument parser for higher precedence expressions.

genopl ops next
= (next ' seq ' op2) 'us ing ' assocl

where
op2 = many (foldrl a l t (map mkParser ops))
mkParser (p, o) = succeed o 'seq' p next

To explain—we apply mkParser to each of the list entries to produce a list of
parsers. When invoked, each parser will have been applied to the next parser, so can
handle higher precedence expressions. They return a pair consisting of the semantic
action for the operator, and an operator argument value.

The genopl combinator can be used to obtain the same effect as binopl as, for
example:

parser = genopl [(oparg "->", Pointer), (oparg " ." , Dot)]

oparg t next = l i t e r a l t 'xseq' next

The oparg parser recognises an infix operator (genopl will already have parsed
the first argument) followed by an expression of higher precedence. Thus the above
could have been written as:

parser = binopl [("->", Poin te r ) , (".", Dot)]

The function genopl is needed when operators with a conventional infix syntax
have the same precedence level as other expression forms not handled by the basic
combinators. In the C expression parser, for example, it is used to parse functions
and arrays which occupy the same level of precedence as the structure element
referencing operators. For example, arrays are parsed with the function:

array next = ( l i t e r a l " [" 'xseq' cparser) 'seqx' l i t e r a l " ] "

Notice that the next parser is not used since the array parser calls the top-level
expression parser to process its argument. Note also that genopl will have already
parsed the expression denoting the address of the array. The parser for functions
is similar, except that it must parse a list of arguments. Moreover, it has to use
cparserl to avoid the comma ambiguity described earlier.

7 Efficiency

Are the parsers generated using this method usable in practice? Table 1 provides a
comparison between five versions of the cparen tool. The first three use the expression
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Table 1. Comparison of parsing techniques

461

Reductions Cells Turn-around (s)

Combinators (Hutton)
Combinators (Augustsson)
Combinators (Maybe)
Ratatosk
Happy

50000
39000
38000
5100
1800

70000
150000
50000
11000
4700

0.9
1.2
0.9
24+62
335+1

combinators described in this article, built upon three underlying combinator sets;
Hutton's set described in section 2, Augustsson's which are part of the HBC system
(Augustsson, 1994) and a set derived from Hutton's based on the type:

type Parser t v = [ t ] -> Maybe ( v , [ t ] )

da ta Maybe a = None I Jus t a

The final two parsers are built using parser generators. The first is constructed using
the Ratatosk tool developed by Mogensen (1993) and the second is built using
the Happy package of Gill and Marlow (1995). So that the comparisons are fair,
all implementations use the same hand-written lexical analyser and pretty-printer.
Reduction counts and cell-usage are gathered from implementations running under
Gofer 2.30a. The parser generators were compiled using Glasgow Haskell version
0.23. All measurements were made on a SPARC-10 workstation with 64Mb of
memory running SUNOS version 4.

The table provides three figures:

• The number of reductions is a measure of how long the parsers took to parse
and pretty-print an expression containing 24 tokens from a representative set
of precedence levels.

• The number of cells measures the turn-over in heap cells for the same 24-token
expression.

• The turn-around is a measure of how long it takes to create a usable parser
from a program script of grammar file. In the case of a combinator imple-
mentation this merely involves loading the script into the Gofer system. For
the parser generators two figures are given: the first is the time required to
generate the parser script from the grammar file, the second is the time taken
to load the parser into Gofer.

The figures show that Happy generates by far the most efficient parser, but at the
cost of a large turn-around time. Thus, Happy parsers are good for final production,
but would not be practical, at present, for rapid software development. Even where
the grammar remains static, it takes approximately half a minute on an unloaded
machine for a generated parser to be loaded into Gofer.

The Ratatosk system generates parsers more rapidly. It also accepts the widest
class of grammars, but the resulting parsers are bigger, mainly due to a larger state
space. As with Happy, the generated parsers do not load quickly.
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Both the Happy and Ratatosk parsers place strains on the language implementation
—in Gofer, the type checker is particularly badly hit. Indeed, a new version of the
Gofer system had to be compiled especially to handle them. Under Glasgow Haskell,
prodigious heap spaces are required to compile the machine-generated parsers. The
Happy parser required a 60 Mbyte heap and the Ratotosk parser could not be
compiled even with an 80 Mbyte heap.

The combinator-based parsers are at least an order of magnitude slower than
their machine generated counterparts and turn-over far more memory. However,
the turn-around from writing a grammar to getting a working parser is rapid. In
prototype situations where the grammar is often changed, they provide a significant
advantage. They also provide templates for common grammatical constructions
reducing the likelihood of errors in transcription.

8 Conclusions and future work

There is still scope for some refinement of the combinators. At present, they use
the l i t e r a l parser to match tokens. In a realistic example, each token may carry
extra information such as line number and position. It would be a simple matter
to extend the combinators to accept a projection function parameter to extract this
information.

Many modern functional languages allow the programmer to define new operators
and to assign associativity and precedence to them. A parser for such languages
must defer disambiguation until this information is available—possibly not until the
end of a script. Although the new combinator set cannot handle these languages
directly, one approach would be to adopt a multi-pass parser. The first parse would
gather the operator fixity, precedence and associativity, and from this information
would construct a parser for the script using the expression combinators.

We believe that these higher-level combinators provide a useful addition to the
parser writer's toolbox. They allow parsers for reasonably complex grammars to
be constructed rapidly and accurately. Once our combinator set had reached its
final form, it took approximately an afternoon's work to write the functional cparen
tool. Further work will reveal whether there are other common syntactic patterns
that deserve their own combinators. The experiment with C expression syntax was
remarkable in that it necessitated the definition of only one extra combinator.
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