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Abstract

We prove the existence and uniqueness of the solution to certain reflected backward
stochastic differential equations (RBSDEs) with one continuous barrier and deterministic
terminal time, under monotonicity and general increasing growth conditions on the
associated coefficient. As an application, we obtain, in some constraint cases, the price
of an American contingent claim as the unique solution of such an RBSDE.
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1. Introduction

Nonlinear backward stochastic differential equations (BSDEs) with deterministic terminal
time were first introduced by Pardoux and Peng (1990), who proved the existence and uniqueness
of adapted solutions with smooth square-integrability assumptions on the associated coefficient
f (t, ω, y, z), and on the terminal condition ξ , when the coefficient is Lipschitz in (y, z)
uniformly in (t, ω). Independently, Duffie and Epstein (1992) introduced stochastic differential
utilities in economic models as solutions of certain BSDEs. More recently, Briand and Carmona
(2000), Pardoux (1999), and Briand et al. (2003) studied the solution of a BSDE with a
coefficient f (t, ω, y, z) that satisfies only monotonicity, continuity, and general increasing
growth conditions with respect to y, and a Lipschitz condition on z. That is, for some real
numbers µ ∈ R and C > 0, the coefficient satisfies

〈y − y′, f (t, y, z)− f (t, y′, z)〉
≤ µ|y − y′|2 for all (t, z) ∈ [0, T ] × R

n×d and y, y′ ∈ R
n, almost surely (a.s.),

(1.1)

|f (t, y, z)− f (t, y, z′)|
≤ C|z− z′| for all (t, y) ∈ [0, T ] × R

n and z, z′ ∈ R
n×d , a.s.; (1.2)
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Reflected backward stochastic differential equations 135

and, for some continuous, increasing function ϕ : R+ → R+, it satisfies

|f (t, y, 0)| ≤ |f (t, 0, 0)| + ϕ(|y|) for all (t, y) ∈ [0, T ] × R
n, a.s., (1.3)

where T is a fixed, strictly positive terminal time. In Briand and Carmona (2000), the authors
considered the case where ϕ is polynomially increasing in y.

El Karoui et al. (1997a) introduced the notion of a reflected BSDE on one lower barrier in one
dimension: the solution is constrained to remain above a continuous lower-boundary process.
More precisely, a solution for such an equation associated with a coefficient f (t, ω, y, z), a
terminal value ξ , and a continuous barrier (Lt )0≤t≤T is a triple (Yt , Zt ,Kt )0≤t≤T of adapted
processes valued in R

1+d+1, which satisfies a square-integrability condition,

Yt = ξ +
∫ T

t

f (s, Ys, Zs) ds +KT −Kt −
∫ T

t

Zs dBs, 0 ≤ t ≤ T , a.s.,

and Yt ≥ Lt , 0 ≤ t ≤ T , a.s. (In this equation and all the following, we suppress the explicit
dependence of f on ω.) Furthermore, the process (Kt )0≤t≤T is nondecreasing, continuous,
and the role of Kt is to push the state process upward with minimal energy, in order to keep
it above L; in this sense, it satisfies

∫ T
0 (Ys − Ls) dKs = 0. El Karoui et al. (1997a) proved

the existence and uniqueness of the solution when f (t, y, z) is Lipschitz in (y, z) uniformly in
(t, ω). Then Matoussi (1997) considered RBSDEs where the coefficient f is continuous and
has at most linear growth in y and z. In this case, he proved the existence of maximal solutions
of the RBSDEs.

In this work, we prove the existence and uniqueness of the solution to a certain type of
RBSDE, as Pardoux (1999) did for BSDEs. We work under the assumptions (1.1)–(1.3) on
the coefficient f (t, y, z), smooth square-integrability of the barrier L, and with the terminal
condition ξ . In this case, f increases in y at a rate controlled by the positive function ϕ, so the
techniques of Matoussi (1997) are not adequate.

Our paper is organized as follows. After the presentation of our notation and assumptions in
Subsection 2.1, we prove the solution’s uniqueness in Subsection 2.2. Then, in Subsection 2.3,
we prove its existence in four steps. In the first step, using the penalization method, we show
existence under the boundedness condition on the parameters. In step 2, the boundedness
condition on the barrier is relaxed. This proves to be our main difficulty, and the solution is not
trivial. Then, in the last two steps, we relax the boundedness condition on the coefficient and
the terminal condition. In Section 3, we apply this result to characterize, under our working
assumptions, the price of an American contingent claim as the unique solution of such an
RBSDE. Finally, in Appendix A, several comparison theorems with respect to BSDEs and
RBSDEs, which are intensively used in the proof of existence, are presented.

2. RBSDEs on a fixed finite time interval

2.1. Hypotheses and notation

Let (�,F ,P) be a complete probability space and let (Bt )0≤t≤T = (B1
t , B

2
t , . . . , B

d
t )

	
0≤t≤T

be a d-dimensional Brownian motion defined on a finite interval [0, T ], 0 < T < ∞, where
‘	’ denotes the transpose operator. Denote by {Ft , 0 ≤ t ≤ T } the natural filtration generated
by the Brownian motion B:

Ft = σ {Bs, 0 ≤ s ≤ t},
where F0 contains all P-null sets of F .
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136 J.-P. LEPELTIER ET AL.

We will need the following spaces:

L2(Ft ) = {η : an Ft -measurable, random, real-valued variable such that (s.t.)

E[|η|2] < ∞},

H2
n(0, T ) =

{
(ψt )0≤t≤T : a predictable process, valued in R

n, s.t. E
∫ T

0
|ψ(t)|2 dt < ∞

}
,

S2(0, T ) =
{
(ψt )0≤t≤T : a progressively measurable real-valued process s.t.

E
[

sup
0≤t≤T

|ψ(t)|2
]
< ∞

}
,

A2(0, T ) = {(Kt )0≤t≤T : an adapted, continuous, increasing process s.t.

K(0) = 0, E[K(T )2] < ∞}.
In addition, we will work under the following assumptions.

Assumption 2.1. We assume that ξ ∈ L2(FT ).

Assumption 2.2. There exists a coefficient f : �× [0, T ] × R × R
d → R, which is such that,

for some continuous, increasing function ϕ : R+ → R+ and real numbers µ and C > 0,

(i) f (·, y, z) is progressively measurable for all (y, z) ∈ R × R
d ;

(ii) |f (t, y, 0)| ≤ |f (t, 0, 0)| + ϕ(|y|) for all (t, y) ∈ [0, T ] × R, a.s.;

(iii) E
∫ T

0 |f (t, 0, 0)|2 dt < ∞;

(iv) |f (t, y, z)− f (t, y, z′)| ≤ C|z− z′| for all (t, y) ∈ [0, T ] × R and z, z′ ∈ R
d , a.s.;

(v) (y−y′)(f (t, y, z)−f (t, y′, z)) ≤ µ(y−y′)2 for all (t, z) ∈ [0, T ]×R
d and y, y′ ∈ R,

a.s.;

(vi) y → f (t, y, z) is continuous for all (t, z) ∈ [0, T ] × R
d , a.s.

Assumption 2.3. There exists a barrier (Lt )0≤t≤T that is a continuous, progressively mea-
surable, real-valued process satisfying E[ϕ2(sup0≤t≤T (eµtL+

t ))] < ∞, with (L+
t )0≤t≤T ∈

S2(0, T ) and LT ≤ ξ , a.s.

Now we introduce the definition of the solution of the RBSDE with parameters satisfying
Assumptions 2.1–2.3, which is the same as in El Karoui et al. (1997a).

Definition 2.1. We say that (Yt , Zt ,Kt )0≤t≤T is a solution of the reflected backward stochastic
differential equation with one continuous, reflecting lower barrier L(·), terminal condition ξ ,
and coefficient f , if the following conditions hold:

1. (Yt )0≤t≤T ∈ S2(0, T ), (Zt )0≤t≤T ∈ H2
d(0, T ), and (Kt )0≤t≤T ∈ A2(0, T );

2. Yt = ξ + ∫ T
t
f (s, Ys, Zs) ds +KT −Kt − ∫ T

t
Zs dBs, 0 ≤ t ≤ T , a.s.;

3. Yt ≥ Lt , 0 ≤ t ≤ T ;

4.
∫ T

0 (Ys − Ls) dKs = 0 a.s.

We denote this solution RBSDE(ξ, f, L)).
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2.2. Uniqueness of the solution of the RBSDE

We first study the uniqueness of the solution of the RBSDE(ξ, f, L), under Assumptions 2.1
to 2.3.

Theorem 2.1. Under Assumptions 2.1–2.3, the RBSDE(ξ, f, L) has at most one solution
(Yt , Zt ,Kt )0≤t≤T .

Proof. Suppose that

(Yt , Zt ,Kt )0≤t≤T and (Y ′
t , Z

′
t , K

′
t )0≤t≤T

are two solutions of the RBSDE(ξ, f, L). Set�Y = Y−Y ′,�Z = Z−Z′, and�K = K−K ′.
Applying the Itô formula to �Y 2 on the interval [t, T ], and taking expectations on both sides,
it follows that

E[|�Yt |2] + E
∫ T

t

|�Zs |2 ds

= 2 E
∫ T

t

�Ys(f (s, Ys, Zs)− f (s, Y ′
s , Z

′
s)) ds + 2 E

∫ T

t

�Ys d(�Ks)

≤ 2C E
∫ T

t

�Ys�Zs ds + 2µE
∫ T

t

�Y 2
s ds

≤ (2C2 + µ)E
∫ T

t

�Y 2
s ds + 1

2 E
∫ T

t

|�Zs |2 ds.

Here we have used the monotonicity assumption on y, the Lipschitz assumption on z, and that

∫ T

t

�Ys d(�Ks) =
∫ T

t

(Ys − Ls) dKs +
∫ T

t

(Y ′
s − Ls) dK ′

s

−
∫ T

t

(Ys − Ls) dK ′
s −

∫ T

t

(Y ′
s − Ls) dKs

≤ 0.

We find that

E[|�Yt |2] ≤ (2C2 + µ)E
∫ T

t

�Y 2
s ds.

From Gronwall’s inequality, it follows that E[|�Yt |2] = E[|Yt − Y ′
t |2] = 0, 0 ≤ t ≤ T ,

i.e. Yt = Y ′
t a.s. Then, we also have E

∫ T
0 |�Zs |2 ds = E

∫ T
0 |Zs − Z′

s |2 ds = 0, and Kt = K ′
t

follows.

2.3. Existence of the solution of the RBSDE

We will prove the existence of a solution in several steps, as we will see in the following
theorem. Comparing with the Lipschitz and the monotonic, linearly increasing cases (see
El Karoui et al. (1997a) and Matoussi (1997), respectively), new techniques are needed.

2.3.1. The main result. First, we note that (Yt , Zt ,Kt )0≤t≤T solves the RBSDE(ξ, f, L) if and
only if

(Ȳt , Z̄t , K̄t ) :=
(

eλtYt , eλtZt ,
∫ t

0
eλs dKs

)
(2.1)
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138 J.-P. LEPELTIER ET AL.

solves the RBSDE(ξ̄ , f̄ , L̄), where

ξ̄ = ξeλT ,

f̄ (t, y, z) = eλtf (t, e−λty, e−λt z)− λy,

L̄t = eλtLt .

If we choose λ = µ then the coefficient f̄ satisfies the analogue of Assumption 2.2, but with
part (v) replaced by

(v′) (y − y′)(f (t, y, z)− f (t, y′, z)) ≤ 0.

Since we are in the one-dimensional case, (v′) means that f is decreasing in y. In addition, the
barrier L̄ satisfies the following alternative assumption.

Assumption 2.3′.
E
[

sup
0≤t≤T

(L̄+
t )

]
< ∞,

E
[
ϕ2

(
sup

0≤t≤T
(L̄+
t )

)]
= E

[
ϕ2

(
sup

0≤t≤T
(eµtL+

t )
)]
< ∞,

where L̄+
t denotes the positive part of L̄t .

In the following, we will work with Assumption 2.2′, which is Assumption 2.2 with (v)
replaced by (v′), and Assumption 2.3′ instead of Assumption 2.3. We first present the following
existence theorem, which holds when f does not depend on z. It will be proved later.

Theorem 2.2. For any process (Vt )0≤t≤T ∈ H2
d(0, T ), suppose that f satisfies Assumption

2.2′, and that (Lt )0≤t≤T satisfies Assumption 2.3′. Then, there exists a triple (Yt , Zt ,Kt )0≤t≤T
that satisfies parts 1, 3, and 4 of Definition 2.1, and

Yt = ξ +
∫ T

t

f (s, Ys, Vs) ds +KT −Kt −
∫ T

t

Zs dBs, 0 ≤ t ≤ T .

With this result, we present the existence of a solution as follows.

Theorem 2.3. Suppose that Assumptions 2.1–2.3 hold. Then, there exists a (Yt , Zt ,Kt )0≤t≤T
that solves the RBSDE(ξ, f, L).

Proof. After the transformation of (Yt , Zt ,Kt )0≤t≤T in expression (2.1), we consider the
RBSDE(ξ, f, L), whose parameters we take to satisfy Assumptions 2.1, 2.2′, and 2.3′. Owing
to Theorem 2.2, we can construct a mapping 
 from the space S, defined as the space of
progressively measurable, (R × R

d)-valued processes (Yt , Zt )0≤t≤T normed by

‖(Y, Z)‖γ :=
(

E
∫ T

0
eγ t (|Yt |2 + |Zt |2) dt

)1/2

(2.2)

(for an appropriate γ ∈ (0,∞), which will be determined later), into itself.
Given (U, V ) ∈ S, (Y, Z) = 
(U, V ) is the unique solution of following RBSDE:

Yt = ξ +
∫ T

t

f (s, Ys, Vs) ds +KT −Kt −
∫ T

t

Zs dBs,
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i.e. if we define the process

Kt = Yt − Y0 −
∫ t

0
f (s, Ys, Vs) ds +

∫ t

0
Zs dBs, 0 ≤ t ≤ T ,

then (Y, Z,K) satisfies parts (1)–(4) of Definition 2.1, with f (s, y, z) = f (s, y, Vs).
Consider another element (u′, v′) of S, define (Y ′, Z′) = 
(U ′, V ′), and set

�U = U − U ′, �V = V − V ′, �Y = Y − Y ′, �Z = Z − Z′.

Then, by applying the Itô formula to eγ t |�Yt |2 on the interval [t, T ], we find that

eγ t E[|�Yt |2] + E
∫ T

t

eγ s(γ |�Ys |2 + |�Zs |2) ds

= 2 E
∫ T

t

eγ s�Ys(f (s, Ys, Vs)− f (s, Y ′
s , V

′
s )) ds + 2 E

∫ T

t

eγ s�Ys d(�Ks)

≤ 2C2 E
∫ T

t

eγ s |�Ys |2 ds + 1
2 E

∫ T

t

eγ s |�Vs |2 ds,

since ∫ T

t

eγ s�Ys d(�Ks) =
∫ T

t

eγ s(Ys − Ls) dKs +
∫ T

t

eγ s(Y ′
s − Ls) dK ′

s

−
∫ T

t

eγ s(Ys − Ls) dK ′
s −

∫ T

t

eγ s(Y ′
s − Ls) dKs

≤ 0.

Hence, if we choose γ = 1 + 2C2, it follows that

E
∫ T

t

eγ s(|�Ys |2 + |�Zs |2) ds ≤ 1
2 E

∫ T

t

eγ s |�Vs |2 ds

≤ 1
2 E

∫ T

t

eγ s(|�Us |2 + |�Vs |2) ds.

Consequently, 
 is a strict contraction on S with the norm (2.2), and has a fixed point, which
is the unique solution of the RBSDE(ξ, f, L).

2.3.2. Proof of Theorem 2.2. Let us recall the assumptions on the coefficient f (writing f (s, y)
for f (s, y, Vs)).

Assumption 2.2′′.

(ii′) |f (s, y)| ≤ |f (s, 0, 0)| + C|Vs | + ϕ(|y|);
(iii′) E

∫ T
0 |f (t, 0)|2 dt < ∞;

(v′′) (y − y′)(f (s, y)− f (s, y′)) ≤ 0;

(vi′) y �→ f (s, y) is continuous for all s ∈ [0, T ], a.s.

We point out that we always denote by c > 0 a constant whose value can change from line
to line.
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The proof of Theorem 2.2 will be done in four steps, as follows.

1. Using a penalization method, we prove existence under the assumption that

|ξ |2 + sup
0≤t≤T

|f (t, 0)|2 + sup
0≤t≤T

L+
t ≤ c. (2.3)

2. Approximating the barrier L, we prove existence under Assumption 2.3′ and the bound-
edness assumption on ξ and f (t, 0), i.e.

|ξ |2 + sup
0≤t≤T

|f (t, 0)|2 ≤ c. (2.4)

3. By approximation, we prove the existence of the solution under the assumptions that
ξ ≥ c and inf0≤t≤T f (t, 0) ≥ c.

4. Finally, and again by approximation, we prove the existence of the solution under the
assumptions that ξ ∈ L2(FT ) and f (t, 0) ∈ H2

1(0, T ).

Step 1. We shall need the following lemma, in view of the estimation.

Lemma 2.1. Suppose that f satisfies Assumption 2.2′′ and that (2.3) holds. Then, there exists
a triple (Y ∗

t , Z
∗
t , K

∗
t )0≤t≤T that satisfies

Y ∗
t = ξ +

∫ T

t

f (s, Y ∗
s ) ds +K∗

T −K∗
t −

∫ T

t

Z∗
s dBs; (2.5)

Y ∗
t ≥ Lt , 0 ≤ t ≤ T , a.s.; sup0≤t≤T |Y ∗

t | ≤ c; and Z∗ ∈ H2
d(0, T ), with K∗ increasing,

K∗
0 = 0, and K∗

T ≤ c.

Proof. Consider the random variable ξ̄ := max{sup0≤t≤T L+
t , ξ} ≥ 0. By (2.3), it follows

that |ξ̄ | ≤ c. Set L̄t = E[ξ̄ | Ft ]. The process L̄t is a bounded martingale and, by the Itô
representation theorem, there exists a process Z̄ ∈ H2

d(0, T ) such that

L̄t = L̄0 +
∫ t

0
Z̄s dBs = ξ̄ −

∫ T

t

Z̄s dBs (2.6)

= ξ̄ +
∫ T

t

f (s, L̄s) ds −
∫ T

t

f (s, L̄s) ds −
∫ T

t

Z̄s dBs.

The processK∗
t = ∫ t

0 f
−(s, L̄s) ds + (ξ̄ − ξ)1{t=T } is uniformly bounded and increasing, since

K∗
T ≤ T

(
sup

0≤t≤T
f (t, 0)+ ϕ

(
sup

0≤t≤T
L̄t

))
+ |ξ̄ | + |ξ | ≤ c.

Now consider (Ỹ , Z̃), the solution of the following BSDE, where f̃ (t, y) = f (t, y −K∗
t ):

Ỹt = ξ +K∗
T +

∫ T

t

f̃ (s, Ỹs) ds −
∫ T

t

Z̃s dBs. (2.7)

Since

|ξ +K∗
T | + sup

0≤t≤T
|f̃ (t, 0)| ≤ |ξ | +K∗

T + sup
0≤t≤T

|f (t, 0)| + ϕ(|K∗
T |) ≤ c,
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from the proof of the first step of Proposition 2.4 of Pardoux (1999), the BSDE (2.7) has a
unique solution (Ỹt , Z̃t )0≤t≤T and Ỹ is uniformly bounded. Now, if we set Y ∗

t = Ỹt −K∗
t and

Z∗
t = Z̃t , it is easy to check that (Y ∗, Z∗) satisfies

Y ∗
t = ξ +

∫ T

t

f (s, Y ∗
s ) ds +K∗

T −K∗
t −

∫ T

t

Z∗
s dBs,

with
sup

0≤t≤T
|Y ∗
t | ≤ sup

0≤t≤T
|Ỹt | +K∗

T ≤ c.

On the other hand, (2.6) can be rewritten as

L̄t +K∗
t = ξ +K∗

T +
∫ T

t

f̃ (s, L̄s +K∗
s ) ds −

∫ T

t

f+(s, L̄s) ds −
∫ T

t

Z̄s dBs.

Since
∫ t

0 f
+(s, L̄s) ds is an increasing process, by the generalized comparison theorem (The-

orem A.1 in Appendix A) we have Y ∗
t +K∗

t ≥ L̄t +K∗
t , 0 ≤ t ≤ T , and so

Y ∗
t ≥ L̄t ≥ Lt , 0 ≤ t ≤ T .

We can now start to prove the existence of the solution under the assumption (2.3). Consider
the penalized BSDEs

Ynt = ξ +
∫ T

t

f (s, Y ns ) ds + n

∫ T

t

(Y ns − Ls)
− ds −

∫ T

t

Zns dBs, n ∈ N.

By setting fn(s, y) = f (s, y)+n(y−Ls)−, it is easy to check that fn satisfies the assumptions
of Proposition 2.4 in Pardoux (1999), so it follows that each of these penalized BSDEs admits
a unique solution (Y nt , Z

n
t )0≤t≤T .

Write

Kn
t = n

∫ t

0
(Y ns − Ls)

− ds.

Let us now prove the a-priori estimate of (Y nt , Z
n
t ,K

n
t )0≤t≤T , uniformly in n. To do so, we

consider the BSDE

Ỹt = ξ +
∫ T

t

f (s, Ỹs) ds −
∫ T

t

Z̃s dBs

with coefficient f (t, ·). By the result of the first step of Proposition 2.4 of Pardoux (1999),
sup0≤t≤T |Ỹt | ≤ c. Obviously, for (s, y) ∈ [0, T ] × R, fn(s, y) ≥ f (s, y); therefore, by
Theorem 2.4 of Pardoux (1999) we obtain

Ynt ≥ Ỹt , 0 ≤ t ≤ T , a.s. (2.8)

On the other hand, by Lemma 2.1 there exists a triple (Y ∗
t , Z

∗
t , K

∗
t )0≤t≤T that satisfies (2.5)

with Y ∗
t ≥ Lt , 0 ≤ t ≤ T , and sup0≤t≤T |Y ∗

t | ≤ c. Moreover, the triple (Y ∗, Z∗,K∗) satisfies

Y ∗
t = ξ +

∫ T

t

f (s, Y ∗
s ) ds + n

∫ T

t

(Y ∗
s − Ls)

− ds +K∗
T −K∗

t −
∫ T

t

Z∗
s dBs

= ξ +
∫ T

t

fn(s, Y
∗
s ) ds +K∗

T −K∗
t −

∫ T

t

Z∗
s dBs.
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Using Theorem A.1, we find that Y ∗
t ≥ Ynt , 0 ≤ t ≤ T . Then, using (2.8),

Y ∗
t ≥ Ynt ≥ Ỹt , 0 ≤ t ≤ T ,

follows and, since Y ∗ and Ỹ are uniformly bounded in the interval [0, T ],
sup

0≤t≤T
|Ynt | ≤ max

{
sup

0≤t≤T
|Y ∗
t |, sup

0≤t≤T
|Ỹt |

}
≤ c, (2.9)

where c is a constant independent of n. Furthermore, for each n ∈ N,

|f (s, Y ns )| ≤ |f (t, 0)| + ϕ
(

sup
0≤t≤T

|Yns |
)

≤ c. (2.10)

Now we apply the Itô formula to |Ynt |2 on the interval [t, T ] and take expectations, to find
that

E[|Ynt |2] + E
∫ T

t

|Zns |2 ds ≤ E[|ξ |2] + E
∫ T

t

|Yns |2 ds + E
∫ T

t

|f (s, 0)|2 ds

+ α E
[

sup
0≤t≤T

(L+
t )

2
]

+ 1

α
E[(Kn

T −Kn
t )

2], (2.11)

where α is a positive number. We rewrite the BSDE(ξ, fn, L) as

Kn
T −Kn

t = Ynt − ξ −
∫ T

t

f (s, Y ns ) ds +
∫ T

t

Zns dBs. (2.12)

Hence, by (2.3), (2.9), and (2.10),

E[(Kn
T −Kn

t )
2] ≤ 2 E[|Ynt |2] + 2 E[|ξ |2] + 2T E

∫ T

t

|f (s, Y ns )|2 ds + 2 E
∫ T

t

|Zns |2 ds

≤ c + 2 E
∫ T

t

|Zns |2 ds. (2.13)

Next we substitute (2.13) into (2.11) and set α = 4; from (2.3) and (2.9), it follows that

E
∫ T

0
|Zns |2 ds ≤ c.

Using (2.13) again, we find that
E[(Kn

T )
2] ≤ c. (2.14)

Notice that, for all n ∈ N and for all (s, y) ∈ [0, T ] × R, fn(s, y) ≤ fn+1(s, y). Therefore,
by Theorem 2.4 of Pardoux (1999), we have Ynt ≤ Yn+1

t , 0 ≤ t ≤ T , a.s. Hence,

Ynt ↗ Yt , 0 ≤ t ≤ T , a.s. (2.15)

In view of (2.9), we have
sup

0≤t≤T
|Yt | ≤ c

and, by the dominated convergence theorem,

E
∫ T

0
(Y nt − Yt )

2 dt → 0 as n → ∞.
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We will now prove that the sequence Yn converges in the space S2(0, T ). Applying the Itô
formula to |Ynt − Y

p
t |2, for n, p ∈ N, on the interval [t, T ], we find that

E[|Ynt − Y
p
t |2] + E

∫ T

t

|Zns − Z
p
s |2 ds

= 2 E
∫ T

t

(f (s, Y ns )− f (s, Y
p
s ))(Y

n
s − Y

p
s ) ds + 2 E

∫ T

t

(Y ns − Y
p
s ) d(Kn

s −K
p
s )

≤ 2 E
∫ T

t

(Y ns − Ls)
− dKp

s + 2 E
∫ T

t

(Y
p
s − Ls)

− dKn
s . (2.16)

Let us state the following lemma. Since Yn and f (t, Y n) are uniformly bounded, its proof is
similar to that of Lemma 6.1 in El Karoui et al. (1997a), so we omit it.

Lemma 2.2. For 0 ≤ t ≤ T , the limit satisfies Yt ≥ Lt a.s., and

E
[

sup
0≤t≤T

(|Ynt − Lt |−)2
]

→ 0 as n → ∞.

As in El Karoui et al. (1997a), from this lemma and (2.14) we deduce that, for the first term
in the last line of (2.16),

E
∫ T

t

(Y ns − Ls)
− dKp

s ≤
(

E
[

sup
0≤t≤T

(|Ynt − Lt |−)2
])1/2

(E[(Kp
T )

2])1/2 → 0

as n, p → ∞. Similarly,

E
∫ T

t

(Y
p
s − Ls)

− dKn
s → 0 as n, p → ∞.

Hence, from (2.16),

E
∫ T

0
|Zns − Z

p
s |2 ds → 0 as n, p → ∞ (2.17)

and there exists a process Z ∈ H2
d(0, T ) such that

E
∫ T

0
|Zns − Zs |2 ds → 0 as n → ∞.

Then, by the Burkholder–Davis–Gundy (BDG) inequality, it follows that

E
[

sup
0≤t≤T

|Ynt − Y
p
t |2

]
≤ 4 E

∫ T

0
(Y ns − Ls)

− dKp
s + 4 E

∫ T

0
(Y
p
s − Ls)

− dKn
s

+ c

∫ T

0
|Zns − Z

p
s |2 ds

→ 0

as n, p → ∞. Finally,

E
[

sup
0≤t≤T

|Ynt − Yt |2
]

→ 0 as n → ∞.
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By (2.15) and the fact that f (s, y) is continuous and decreasing in y, we have f (s, Y ns ) ↘
f (s, Ys), 0 ≤ s ≤ T . Moreover, |f (s, Y ns )| ≤ c and, using the monotone convergence
theorem, we deduce that

E
∫ T

0
[f (t, Y nt )− f (t, Yt )]2 dt → 0. (2.18)

Now let us consider the convergence of the sequenceKn. For n, p ∈ N, rewriteKn andKp

in forward form (i.e. between 0 and t), as in (2.12), and consider their difference. Using the
BDG inequality, we obtain

E
[

sup
0≤t≤T

|Kn
t −K

p
t |2

]
≤ 2|Yn0 − Y

p
0 |2 + 2 E

[
sup

0≤t≤T
|Ynt − Y

p
t |2

]

+ 2 E

[
sup

0≤t≤T

(∫ t

0
(f (s, Y ns )− f (s, Y

p
s )) ds

)2]

+ 2 E

[(
sup

0≤t≤T

∣∣∣∣
∫ t

0
(Zns − Z

p
s ) dBs

∣∣∣∣
)2]

≤ 2|Yn0 − Y
p
0 |2 + 2 E

[
sup

0≤t≤T
|Ynt − Y

p
t |2

]

+ 2T E
∫ T

0
(f (s, Y ns )− f (s, Y

p
s ))

2 ds + c E
∫ T

0
|Zns − Z

p
s |2 ds.

By (2.15), (2.17), and (2.18), it follows that

E
[

sup
0≤t≤T

|Kn
t −K

p
t |2

]
→ 0 as n, p → ∞,

so there exists an increasing process K in A2(0, T ) such that

E
[

sup
0≤t≤T

|Kn
t −Kt |2

]
→ 0 as n → ∞,

and (Yt , Zt ,Kt )0≤t≤T ∈ S2(0, T )× H2
d(0, T )× A2(0, T ) satisfies property 2 of Definition 2.1.

From Lemma 2.2, we know that property 3 of Definition 2.1 is true; it remains to check prop-
erty 4. Since (Y nt ,K

n
t )0≤t≤T tends to (Yt ,Kt )0≤t≤T uniformly in t in probability, the measure

dKn converges to dK weakly in probability, so that
∫ T

0 (Y
n
t − Lt) dKn

t → ∫ T
0 (Yt − Lt) dKt in

probability as n → ∞. Obviously,
∫ T

0 (Yt − Lt) dKt ≥ 0, while, on the other hand, for each
n ∈ N,

∫ T
0 (Y

n
t − Lt) dKn

t ≤ 0. Hence,

∫ T

0
(Yt − Lt) dKt = 0 a.s.

Consequently, (Y, Z,K) is a solution of the RBSDE(ξ, f, L), under the assumption (2.3).

Step 2. Now we consider the case of a barrier L that satisfies Assumption 2.3′, that is,

E
[
ϕ2

(
sup

0≤t≤T
(L+
t )

)]
< ∞

with L+ ∈ S2(0, T ) and LT ≤ ξ , even when ξ and f (t, 0) are uniformly bounded.
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Under Assumption 2.2′′ and (2.4), we know that there exist constants c1 and c2 such that
ξ ≤ c1 and f (t, 0) ≤ c2. Set c′ = max{c1, c2T }. Then (Yt , Zt ,Kt )0≤t≤T is the solution of
the RBSDE(ξ, f, L) if and only if (Y ′

t , Z
′
t , K

′
t )0≤t≤T is the solution of the RBSDE(ξ ′, f ′, L′),

where
(Y ′
t , Z

′
t , K

′
t ) = (Yt + c2t − 2c′, Zt ,Kt )

and
ξ ′ = ξ + c2T − 2c′,

f ′(t, y) = f (t, y − (c2t − 2c′))− c2,

L′
t = Lt + c2t − 2c′.

Since c′ ≥ c2T , L′ ≤ L, which implies that L′ satisfies Assumption 2.3′. In fact, the triple

(Y ′
t , Z

′
t , K

′
t )0≤t≤T

satisfies property 2 of Definition 2.1 for the RBSDE(ξ ′, f ′, L′)

Y ′
t = Yt + c2t − 2c′

= ξ ′ +
∫ T

t

f ′(s, Y ′
s) ds +K ′

T −K ′
t −

∫ T

t

Z′
s dBs,

and Y ′
t = Yt + c2t − 2c′ ≥ Lt + c2t − 2c′ = L′

t , with

∫ T

0
(Y ′
t − L′

t ) dK
′
t =

∫ T

0
(Yt − Lt) dKt = 0.

Now we consider the RBSDE(ξ ′, f ′, L′). Obviously, (2.4) also holds for ξ ′ and f ′; in fact,

|ξ ′| + sup
0≤t≤T

|f ′(t, 0)| ≤ |ξ | + c2T − 2c′ + sup
0≤t≤T

|f (t, 0)| + ϕ(2c′)+ c2 ≤ c.

It follows directly that f ′ satisfiesAssumption 2.2′′ with ϕ′(y) = |f (t, 0)| + c2 + ϕ(|y| + 2c′),
which is still a continuous, increasing, positive function. Moreover, since f is decreasing on y
and 2c′ − c2t ≥ 0, we have

ξ ′ = ξ + c2T − 2c′ ≤ ξ − c′ ≤ 0,

f ′(t, 0) = f (t, 0 − (c2t − 2c′))− c2 ≤ f (t, 0)− c2 ≤ 0.

We now need the following lemma.

Lemma 2.3. Assume that f satisfies Assumption 2.2′, that (2.4) holds, and that the barrier L
satisfies Assumption 2.3′. Furthermore, suppose that

ξ ≤ 0 and f (t, 0) ≤ 0.

Then there exists a triple (Yt , Zt ,Kt )0≤t≤T that solves the RBSDE(ξ, f, L).

By this lemma, there exists a unique (Y ′
t , Z

′
t , K

′
t )0≤t≤T that solves the RBSDE(ξ ′, f ′, L′).

Then we know that the RBSDE(ξ, f, L) has the unique solution (Yt , Zt ,Kt )0≤t≤T .
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Proof of Lemma 2.3. For n ∈ N, set Ln = L∧ n; then sup0≤t≤T (Lnt )+ ≤ n. By Step 1, we
know that, for all n, there exists a triple (Y nt , Z

n
t ,K

n
t )0≤t≤T that satisfies

Ynt = ξ +
∫ T

t

f (s, Y ns ) ds +Kn
T −Kn

t −
∫ T

t

Zns dBs, (2.19)

Ynt ≥ Lnt , 0 ≤ t ≤ T , and
∫ T

0
(Y nt − Lnt ) dKn

t = 0.

By Theorem A.1, Ynt ≥ Ỹt , 0 ≤ t ≤ T , where (Ỹt , Z̃t )0≤t≤T ∈ S2(0, T )× H2
d(0, T ) is the

solution of the classic BSDE(ξ, f )

Ỹt = ξ +
∫ T

t

f (s, Ỹs) ds −
∫ T

t

Z̃s dBs. (2.20)

Let us consider the RBSDE(ξ+, 0, L+); by Proposition 2.3 of El Karoui et al. (1997a), the
Snell envelope of L+

t 1{t<T } + ξ+1{t=T } is the solution of this linear RBSDE, so

Ȳt = ess sup
τ∈Tt,T

E[L+
τ 1{τ<T } + ξ+1{τ=T } | Ft ] = ess sup

τ∈Tt,T

E[L+
τ | Ft ]

= K̄T − K̄t −
∫ T

t

Z̄s dBs,

in view of the fact that L+
T = ξ+ = 0, where Tt,T denotes the set of stopping times t ≤ τ ≤ T .

The processes K̄ and Z̄ come from the Doob–Meyer decomposition of the Snell envelope
and the Itô representation of the martingale part. Since Ȳt ≥ L+

t ≥ 0 and f is decreasing,
f (t, Ȳt ) ≤ f (t, 0) ≤ 0, which implies that f+(t, Ȳt ) = 0. So, (Ȳt , Z̄t , K̄t )0≤t≤T is still the
solution of the RBSDE(ξ+, f+, L+). Moreover, notice that the Snell envelope is the smallest
supermartingale that dominates the process L+, and that it is positive. Therefore, we have

E
[

sup
0≤t≤T

(Ȳt )
2
]

≤ E
[

sup
0≤t≤T

(
E
[

sup
0≤t≤T

L+
t

∣∣∣ Ft
])2]

≤ E
[

sup
0≤t≤T

E
[(

sup
0≤t≤T

L+
t

)2 ∣∣∣ Ft
]]

≤ E
[

sup
0≤t≤T

(L+
t )

2
]
,

so (Ȳt )0≤t≤T ∈ S2(0, T ), since (L+
t )0≤t≤T ∈ S2(0, T ).

Notice that ξ+ ≥ ξ , f+(t, y) ≥ f (t, y), (t, y) ∈ [0, T ] × R, and L+
t ≥ Lt ≥ Lnt ,

0 ≤ t ≤ T , for n ∈ N. Therefore, by Theorem A.2, we get Ynt ≤ Ȳt , 0 ≤ t ≤ T , and,
consequently,

E
[

sup
0≤t≤T

(Y nt )
2
]

≤ max
{

E
[

sup
0≤t≤T

(Ỹt )
2
]
,E

[
sup

0≤t≤T
(Ȳt )

2
]}

≤ c. (2.21)

Since Lnt ≤ Ln+1
t , 0 ≤ t ≤ T , from Theorem A.2 we have Ynt ↗ Yt , 0 ≤ t ≤ T . From

(2.21) and Fatou’s lemma, we get

E
[

sup
0≤t≤T

(Yt )
2
]

≤ c,
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and it follows from the dominated convergence theorem that

E
∫ T

0
|Ynt − Yt |2 dt → 0 as n → ∞. (2.22)

In order to prove the convergence of (Zn,Kn), we first need a-priori estimates. Applying
the Itô formula to |Ynt |2, and using the fact that ab ≤ αa2 + (1/α)b2 for all α > 0, we find that

E[|Ynt |2] + E
∫ T

t

|Zns |2 ds ≤ E[|ξ |2] + E
∫ T

t

|Yns |2 ds + E
∫ T

t

|f (s, 0)|2 ds

+ α E
[

sup
0≤t≤T

|Ynt |2
]

+ 1

α
E[(Kn

T −Kn
t )

2], (2.23)

where α is a positive number. We rewrite the RBSDE(ξ, f, Ln) in forward form, as in (2.12)
in Step 1, then square and take expectations on both sides, from which it follows that

E[(Kn
T −Kn

t )
2] ≤ 2 E[|Ynt |2] + 2 E[|ξ |2] + 2 E

[(∫ T

t

f (s, Y ns ) ds

)2]
+ 2 E

∫ T

t

|Zns |2 ds.

(2.24)
Since

Ȳt ≥ Ynt ≥ Ỹt , 0 ≤ t ≤ T , (2.25)

and from the monotonicity property of f (t, y), it follows that

f (t, Ȳt ) ≤ f (t, Y nt ) ≤ f (t, Ỹt ).

Then, from (2.20),

E

[(∫ T

0
f (t, Ỹt ) dt

)2]
≤ 2 E[|ξ |2] + 2(Ỹ0)

2 + 2 E
∫ T

t

|Z̃s |2 ds ≤ c.

On the other hand, due to the fact that Ȳ is the Snell envelope of L+, sup0≤t≤T Ȳt ≥
sup0≤t≤T L+

t . Then Ȳt ≤ L̄t , since the process L̄t = E[sup0≤t≤T L+
t | Ft ] is a martingale

that dominates L+. Notice that

E
[

sup
0≤t≤T

Ȳt

]
≤ E

[
sup

0≤t≤T
L̄t

]
= E

[
sup

0≤t≤T
E
[

sup
0≤t≤T

L+
t

∣∣∣ Ft
]]

≤ E
[
E
[

sup
0≤t≤T

L+
t

∣∣∣ Ft
]]

= E
[

sup
0≤t≤T

L+
t

]
:

it follows that sup0≤t≤T Ȳt = sup0≤t≤T L+
t . Then, from Assumption 2.3′, it further follows

that

E

[(∫ T

0
f (t, Ȳt ) dt

)2]
≤ E

[∫ T

0

(
2f 2(t, 0)+ 2ϕ2

(
sup

0≤t≤T
L+
t

))
dt

]

≤ c + 2T E
[
ϕ2

(
sup

0≤t≤T
L+
t

)]

≤ c
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and so we have

E

[(∫ T

0
f (t, Y nt ) dt

)2]
≤ max

{
E

[(∫ T

0
f (t, Ȳt ) dt

)2]
,E

[(∫ T

0
f (t, Ỹt ) dt

)2]}
≤ c

and, from (2.24),

E[(Kn
T −Kn

t )
2] ≤ c + 2 E

∫ T

t

|Zns |2 ds. (2.26)

If we substitute (2.26) into (2.23), set α = 4, and use (2.4) and (2.21), it then follows that

E
∫ T

0
|Zns |2 ds ≤ c.

Using (2.26) again, we get
E[(Kn

T )
2] ≤ c. (2.27)

Now if n, p ∈ N, n ≥ p, then Lnt ≥ L
p
t , 0 ≤ t ≤ T . By applying the Itô formula to

|Ynt − Y
p
t |2, and recalling that f satisfies Assumption 2.3′(v′′) we find that

E[|Ynt − Y
p
t |2] + E

∫ T

t

|Zns − Z
p
s |2 ds

= 2 E
∫ T

t

[f (s, Y ns )− f (s, Y
p
s )](Y ns − Y

p
s ) ds + 2 E

∫ T

t

(Y ns − Y
p
s ) d(Kn

s −K
p
s )

≤ 2 E
∫ T

t

(Y ns − Lns ) dKn
s + 2 E

∫ T

t

(Y
p
s − L

p
s ) dKp

s − 2 E
∫ T

t

(Y ns − Lns ) dKp
s

− 2 E
∫ T

t

(Y
p
s − L

p
s ) dKn

s + 2 E
∫ T

t

(Lns − L
p
s ) d(Kn

s −K
p
s )

≤ 2 E
∫ T

t

(Lns − L
p
s ) dKn

s − 2 E
∫ T

t

(Lns − L
p
s ) dKp

s

≤ 2 E
∫ T

t

(Lns − L
p
s ) dKn

s .

Since Lt − Lnt ↓ 0 for each t ∈ [0, T ], and Lt − Lnt is continuous, by the Dini theorem the
convergence holds uniformly on the interval [0, T ], i.e.

E
[

sup
0≤t≤T

(Lt − Lnt )
2
]

→ 0 as n → ∞. (2.28)

Then, using (2.27),

E
∫ T

0
|Zns − Z

p
s |2 ds ≤ 2 E

[
sup

0≤t≤T
(Lns − L

p
s )K

n
T

]

≤ 2
(

E
[

sup
0≤t≤T

(Lns − L
p
s )

2
])1/2

(E[(Kn
T )

2])1/2

≤ c
(

E
[

sup
0≤t≤T

(Lns − L
p
s )

2
])1/2

→ 0
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as n, p → ∞, so there exists a process (Zt )0≤t≤T ∈ H2
d(0, T ) such that, as n → ∞,

E
∫ T

0
|Zns − Zs |2 ds → 0. (2.29)

Furthermore, by the Itô formula,

sup
0≤t≤T

|Ynt − Y
p
t |2 ≤ 2 sup

0≤t≤T

∫ T

t

(Lns − L
p
s ) d(Kn

s −K
p
s )

+ 2 sup
0≤t≤T

∣∣∣∣
∫ T

t

(Y ns − Y
p
s )(Z

n
s − Z

p
s ) dBs

∣∣∣∣.
Taking the expectation of both sides, by the BDG inequality and (2.27) we find that

E
[

sup
0≤t≤T

|Ynt − Y
p
t |2

]
≤ 2

(
E
[

sup
0≤t≤T

(Lns − L
p
s )

2
])1/2

(E[(Kn
T )

2])1/2

+ c E

[
sup

0≤t≤T
|Yns − Y

p
s |2

∫ T

0
|Zns − Z

p
s |2 ds

]

≤ c
(

E
[

sup
0≤t≤T

(Lns − L
p
s )

2
])1/2 + 1

2 E
[

sup
0≤t≤T

|Yns − Y
p
s |2

]

+ c E
∫ T

0
|Zns − Z

p
s |2 ds.

Hence, by (2.22), (2.29), and (2.28), as n, p → ∞,

E
[

sup
0≤t≤T

|Ynt − Y
p
t |2

]
→ 0,

which implies that there exists a process (Yt )0≤t≤T ∈ S2(0, T ) such that, as n → ∞,

E
[

sup
0≤t≤T

|Ynt − Yt |
]

→ 0. (2.30)

Moreover, since f is continuous and decreasing on y, with Ynt ↗ Yt , 0 ≤ t ≤ T , we also have

f (t, Y nt )− f (t, Yt ) ↘ 0, 0 ≤ t ≤ T .

By the monotone limit theorem, we find that
∫ T

0 [f (t, Y nt )− f (t, Yt )] dt ↘ 0 while, from (2.25)
and the convergence of Ynt , we have Ȳt ≥ Yt ≥ Ỹt , 0 ≤ t ≤ T ; given the monotonic condition
on f , it follows that

E

[(∫ T

0
f (t, Yt ) dt

)2]
≤ max

{
E

[(∫ T

0
f (t, Ȳt ) dt

)2]
,E

[(∫ T

0
f (t, Ỹt ) dt

)2]}
≤ c,

with E[(∫ T0 f (t, Y nt ) dt)2] ≤ c. We then deduce that

E

[∫ T

0
(fn(t, Y

n
t )− f (t, Yt )) dt

]2

→ 0 as n → ∞. (2.31)
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Since E[(Kn
T )

2] ≤ c, it follows that E[(Kn
t )

2] ≤ c for each t ∈ [0, T ]. Also, the sequence (Kn
t )

has a weak limitKt in L2(Ft ), with E[(Kt )2] ≤ c. Therefore, for 0 ≤ t ≤ T , (Yt , Zt ,Kt )0≤t≤T
satisfies

Yt = ξ +
∫ T

t

f (s, Ys) ds +KT −Kt −
∫ T

t

Zs dBs. (2.32)

We must prove the convergence of {Kn} in a stronger sense. For this, we rewrite (2.19) and
(2.32) in the forward form with respect to K (as in (2.12)), and then consider their difference.
It follows that

sup
0≤t≤T

|Kn
t −Kt |2 ≤ 2|Yn0 − Y0|2 + 2 sup

0≤t≤T
|Ynt − Yt |2

+ 2 sup
0≤t≤T

∣∣∣∣
∫ t

0
(f (s, Y ns )− f (s, Ys)) ds

∣∣∣∣
2

+ 2 sup
0≤t≤T

∣∣∣∣
∫ t

0
(Zns − Zs) dBs

∣∣∣∣.
Taking expectations on both sides, and using the BDG inequality and the fact that f (s, Y ns ) ≥
f (s, Ys), it follows in turn that

E
[

sup
0≤t≤T

|Kn
t −Kt |2

]
≤ 2|Yn0 − Y0|2 + 2 E

[
sup

0≤t≤T
|Ynt − Yt |2

]

+ 2 E

[(∫ T

0
[f (s, Y ns )− f (s, Ys)] ds

)2]

+ c E
∫ T

0
|Zns − Zs |2 ds.

Then, by (2.30), (2.31), and (2.29), we deduce that, as n → ∞,

E
[

sup
0≤t≤T

|Kn
t −Kt |2

]
→ 0.

The last thing to check is that (Y, Z,K) also satisfies properties 3 and 4 of Definition 2.1.
Since, for each n ∈ N and 0 ≤ t ≤ T , Ynt ≥ Lnt almost surely, with Ynt ↗ Yt and Lnt ↗ Lt ,
we have that Yt ≥ Lt almost surely. We know that the processes Kn are increasing, so the
limit K is also increasing. Notice that (Y nt ,K

n
t )0≤t≤T tends to (Yt ,Kt )0≤t≤T uniformly in

t in probability, so the measure dKn converges to dK weakly in probability, and (Lnt )0≤t≤T
converges to (Lt )0≤t≤T in S2(0, T ) as n → ∞. Hence,

E
∫ T

0
(Yt − Lt) dKt − E

∫ T

0
(Y nt − Lnt ) dKn

t

= E
∫ T

0
(Yt − Ynt ) dKn

t + E
∫ T

0
(Yt − Lt) d(Kt −Kn

t )+ E
∫ T

0
(Lnt − Lt) dKn

t

≤
(

E
[

sup
0≤t≤T

(Y nt − Yt )
2
])1/2

(E[(Kn
T )

2])1/2 + E
∫ T

0
(Yt − Lt) d(Kn

t −Kt)

+
(

E
[

sup
0≤t≤T

(Lt − Lnt )
2
])1/2

(E[(Kn
T )

2])1/2

→ 0.

https://doi.org/10.1239/aap/1113402403 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1113402403


Reflected backward stochastic differential equations 151

If E
∫ T

0 (Y
n
t − Lnt ) dKn

t = 0 then E
∫ T

0 (Yt − Lt) dKt = 0 and, since Yt ≥ Lt and so
∫ T

0
(Yt − Lt) dKt ≥ 0,

it follows that
∫ T

0 (Yt − Lt) dKt = 0, i.e. that (Y, Z,K) is the solution of RBSDE(ξ, f, L).

Step 3. In this step, we partly relax the assumption (2.4), which was widely used in Steps 1
and 2.

We now suppose only that

ξ ≥ c and inf
0≤t≤T f (t, 0) ≥ c, (2.33)

where c is a constant. We approximate ξ and f (t, 0) each by a sequence whose elements satisfy
the bounds assumed in Step 2, as follows: for each n ∈ N, let

ξn = ξ ∧ n, fn(t, y) = f (t, y)− f (t, 0)+ f (t, 0) ∧ n.
Obviously, (ξn, fn) satisfies the assumptions of Step 2 and, since ξ ∈ L2(FT ) and f (t, 0) ∈

H2(0, T ),

E[|ξn − ξ |2] → 0 and E
∫ T

0
|f (t, 0)− fn(t, 0)|2 dt → 0 as n → ∞. (2.34)

From the results in Step 2, for each n ∈ N there exists a triple

(Y nt , Z
n
t ,K

n
t )0≤t≤T ∈ S2(0, T )× H2

d(0, T )× A2(0, T )

that is the unique solution of the RBSDE(ξn, fn, L). By Theorem A.2, since ξn ≤ ξn+1 and
fn(s, y) ≤ fn+1(s, y) for all (s, y) ∈ [0, T ] × R and n ∈ N, we have Ynt ≤ Yn+1

t , 0 ≤ t ≤ T ,
almost surely. Hence,

Ynt ↗ Yt , 0 ≤ t ≤ T , a.s. (2.35)

Applying the Itô formula to |Ynt − Y
p
t |2 for n, p ∈ N, n ≥ p, on the interval [t, T ], we find

that

E[|Ynt − Y
p
t |2] + E

∫ T

t

|Zns − Z
p
s |2 ds ≤ E[|ξn − ξp|2] + E

∫ T

t

|Yns − Y
p
s |2 ds

+ E
∫ T

t

|fn(s, 0)− fp(s, 0)|2 ds,

since ∫ T

t

(Y ns − Y
p
s ) d(Kn

s −K
p
s ) =

∫ T

t

(Y ns − Ls) dKn
s +

∫ T

t

(Y
p
s − Ls) dKp

s

−
∫ T

t

(Y ns − Ls) dKp
s −

∫ T

t

(Y
p
s − Ls) dKn

s

≤ 0.

Hence, from Gronwall’s inequality and (2.34), we deduce that

sup
0≤t≤T

E[|Ynt − Y
p
t |2] → 0, E

∫ T

0
|Zns − Z

p
s |2 ds → 0. (2.36)
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Consequently, there exists (Zt )0≤t≤T ∈ H2
d(0, T ) such that

E
∫ T

0
|Zns − Zs |2 ds → 0. (2.37)

Using the Itô formula again, taking supremums and expectations, and in view of the BDG
inequality, Assumption 2.2′′(v′′), and the facts that Ynt ≥ Y

p
t and fn(t, 0) ≥ fp(t, 0), we find

that

E
[

sup
0≤t≤T

|Ynt − Y
p
t |2

]
≤ E[|ξn − ξp|2] + 2 E

[
sup

0≤t≤T

∫ T

t

(Y ns − Y
p
s )(fn(s, 0)− fp(s, 0)) ds

]

+ E

[
2 sup

0≤t≤T

∣∣∣∣
∫ T

t

(Y ns − Y
p
s )(Z

n
s − Z

p
s ) dBs

∣∣∣∣
]

≤ E[|ξn − ξp|] + 4T E
∫ T

0
|fn(s, 0)− fp(s, 0)|2 ds

+ 1
4 E

[
sup

0≤t≤T
|Yns − Y

p
s |2

]
+ 1

4 E
[

sup
0≤t≤T

|Ynt − Y
p
t |2

]

+ c E
∫ T

0
|Zns − Z

p
s |2 ds.

From (2.34) and (2.36), it follows that E[sup0≤t≤T |Ynt − Y
p
t |2] → 0 as n, p → ∞, i.e. the

sequence {Yn} is a Cauchy sequence in the space S2(0, T ). Consequently, using (2.35), we
have Y ∈ S2(0, T ) and

E
[

sup
0≤t≤T

|Ynt − Yt |2
]

→ 0.

By Theorem A.4, since ξn ≤ ξn+1 and fn(s, y) ≤ fn+1(s, y) for all (s, y) ∈ [0, T ] × R and
n ∈ N, we have Kn

t ≥ Kn+1
t ≥ 0, 0 ≤ t ≤ T , and so

Kn
t ↘ Kt (2.38)

with E[(Kn
t )

2] < ∞. By the monotone limit theorem, it then follows thatKn
t → Kt in L2(Ft )

with E[(Kt )2] < ∞, so (Kt )0≤t≤T is increasing.
Notice that, since f (t, y) is decreasing and continuous in y and Ynt ↗ Yt , we have

f (t, Y nt ) ↘ f (t, Yt ).

Thus, by the monotone limit theorem,
∫ t

0 f (s, Y
n
s ) ds ↘ ∫ t

0 f (s, Ys) ds. Since (Y n, Zn,Kn) is
the solution of RBSDE(ξn, fn, L), it also satisfies

Ynt = Yn0 −Kn
t −

∫ t

0
f (s, Y ns ) ds −

∫ t

0
(fn(s, 0)− f (s, 0)) ds +

∫ t

0
Zns dBs, (2.39)

and, using (2.34), (2.35), (2.37), and (2.38), we find that (Y, Z,K) satisfies

Yt = Y0 −Kt −
∫ t

0
f (s, Ys) ds +

∫ t

0
Zs dBs. (2.40)

Therefore,

Yt = ξ +
∫ T

t

f (s, Ys) ds +KT −Kt −
∫ T

t

Zs dBs.
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Since (Y nt , Z
n
t ,K

n
t )0≤t≤T ∈ S2(0, T )× H2

d(0, T )× A2(0, T ), we have, for 0 ≤ t ≤ T ,

E

[(∫ t

0
fn(s, Y

n
s ) ds

)2]
≤ 2 E[(Y nt )2] + 2(Y n0 )

2 + 2 E[(Kn
t )

2] + 2 E
∫ t

0
(Zns )

2 ds < ∞.

From the definition of fn(s, y), it follows that, for n ∈ N,

E

[(∫ t

0
f (s, Y ns ) ds

)2]
≤ 2 E

[(∫ t

0
fn(s, Y

n
s ) ds

)2]
+ 2 E

[(∫ t

0
(f (s, 0)− fn(s, 0)) ds

)2]

< ∞.

Then, from (2.40),

E

[(∫ t

0
f (s, Ys) ds

)2]
≤ 2 E[(Yt )2] + 2(Y0)

2 + 2 E[(Kt )2] + 2 E
∫ t

0
(Zs)

2 ds < ∞

for 0 ≤ t ≤ T , and it follows that
∫ t

0 f (s, Y
n
s ) ds → ∫ t

0 f (s, Ys) ds in L2(Ft ) as n → ∞.
Now we must prove that the convergence of {Kn} holds in a stronger sense. Let us rewrite

(2.39) and (2.40) in forward form (as in (2.12)), and consider their difference. By the BDG
inequality and the facts that f (s, Y ns ) ≥ f (s, Ys) and f (s, 0) ≥ fn(s, 0), we deduce that

E
[

sup
0≤t≤T

|Kn
t −Kt |2

]

≤ 2|Yn0 − Y0|2 + 2 E
[

sup
0≤t≤T

|Ynt − Yt |2
]

+ 2 E

[(∫ T

0
f (s, Y ns )− f (s, Ys) ds

)2]

+ 2 E

[(∫ T

0
f (s, 0)− fn(s, 0) ds

)2]
+ 2 E

∫ t

0
(Zns − Zs)

2 ds.

It follows that E[sup0≤t≤T |Kn
t −Kt |2] → 0 as n → 0, and the convergence holds in S2(0, T ).

It remains to check that (Yt , Zt ,Kt )0≤t≤T satisfies properties 3 and 4 of Definition 2.1.
Since Ynt ≥ Lt and 0 ≤ t ≤ T , we have Yt ≥ Lt , 0 ≤ t ≤ T , almost surely. Furthermore,
(Y n,Kn) tends to (Y,K) uniformly in t in probability, as n → ∞. Therefore, as at the end of
Step 1, we conclude that

∫ T
0 (Yt − Lt) dKt = 0, i.e. the triple (Yt , Zt ,Kt )0≤t≤T is the solution

of RBSDE(ξ, f, L) under the assumption (2.33).

Step 4. Now we consider a terminal condition ξ ∈ L2(FT ) and a coefficient f that satisfies
Assumption 2.2′′, as follows:

ξn = ξ ∨ (−n) and fn(t, y) = f (t, y)− f (t, 0)+ f (t, 0) ∨ (−n)
for n ∈ N. It is clear that ξn and fn satisfy the assumptions of Step 3, and that

E[|ξn − ξ |2] → 0, E
∫ T

0
|f (t, 0)− fn(t, 0)|2 dt → 0.

By the results of Step 3, there exists a triple

(Y nt , Z
n
t ,K

n
t )0≤t≤T ∈ S2(0, T )× H2

d(0, T )× A2(0, T )
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that is the solution of the RBSDE(ξn, fn, L). By Theorem A.2, as n → ∞, Ynt ↘ Yt for
0 ≤ t ≤ T almost surely and, as in Step 3, we find that (Y nt )0≤t≤T → (Yt )0≤t≤T in S2(0, T )
and (Znt )0≤t≤T → (Zt )0≤t≤T in H2

d(0, T ).
Now we must prove the convergence of (Kn

t )0≤t≤T . Set ξn,m = ξn ∧m = (ξ ∨ (−n)) ∧m
and

fn,m(t, y) = fn(t, y)− fn(t, 0)+ fn(t, 0) ∧m
= f (t, y)− f (t, 0)+ (f (t, 0) ∨ (−n)) ∧m,

for m ∈ N. Then, |ξn,m| + sup0≤t≤T |fn,m(t, 0)| ≤ c, ξn,m ≥ ξn+1,m, and fn,m(t, y) ≥
fn+1,m(t, y). From Theorem A.4, considering the solutions (Ym,nt , Z

m,n
t , K

m,n
t )0≤t≤T to the

RBSDEs(ξm,n, fm,n, L), we find that Km,n
t ≤ K

m,n+1
t for t ∈ [0, T ]. Due to the convergence

results in Step 3, we know that Km,n
t → Kn

t and Km,n+1
t → Kn+1

t in L2(Ft ) as m → ∞.
ThereforeKn

t ≤ Kn+1
t for t ∈ [0, T ], with E[(Kn

t )
2] < ∞, and, by the monotone limit theorem,

it follows that Kn
t ↗ Kt in L2(Ft ).

So, by the same method as in Step 3, we deduce that the limit

(Yt , Zt ,Kt )0≤t≤T ∈ S2(0, T )× H2
d(0, T )× A2(0, T )

is the solution of the RBSDE(ξ, f, L).

This completes the proof of Theorem 2.2, and we conclude that, under Assumptions 2.1,
2.2′, and 2.3′, the RBSDE(ξ, f, L) has a unique solution (Yt , Zt ,Kt )0≤t≤T .

3. Application to finance

We follow the idea of El Karoui et al. (1997b). In some constraint cases we consider the
strategy wealth portfolio (Xt , πt ) as a pair of adapted processes in H2(0, T )× H2

d(0, T ) that
satisfy the following BSDE:

−dXt = b(t, Xt , πt ) dt − π	
t σt dBt ,

where b is R-valued, convex with respect to (x, π), and satisfies Assumption 2.2. We suppose
that the volatility matrix σ of the n risky assets is invertible and such that (σt )−1 is bounded.
Without loss of generality, we take σt = Id , the d-dimensional identity matrix.

We are concerned with the problem of pricing, at each time t , an American contingent claim,
which consists of the selection of a stopping time τ ∈ Tt (the set of stopping times valued in
[t, T ]) and a payoff on exercise Sτ if τ < T and ξ if τ = T . Here, (St ) satisfies Assumption 2.3.
We set

S̃s = ξ1{s=T } + Ss1{s<T },

and fix t ∈ [0, T ] and τ ∈ Tt . Then (Pardoux 1999), there exists a unique strategy

(Xs(τ, S̃τ ), π(τ, S̃τ )) ∈ H2(0, T )× H2
d(0, T ),

denoted by (Xτs , π
τ
s ), which replicates S̃τ , i.e. is the solution of the classical BSDE associated

with terminal time τ , terminal condition S̃τ , and generator b:

−dXτs = b(s,Xτs , π
τ
s ) ds − (πτs )

	 dBs, 0 ≤ s ≤ T ,

Xττ = S̃τ .

https://doi.org/10.1239/aap/1113402403 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1113402403


Reflected backward stochastic differential equations 155

Therefore, the price of the American contingent claim (S̃s, 0 ≤ s ≤ T ) at time t is given by

Xt = ess sup
τ∈Tt

Xt (τ, S̃τ ).

Applying the previous results on RBSDEs, it follows that the price (Xt , 0 ≤ t ≤ T ) corre-
sponds to the unique solution of the RBSDE associated with terminal condition ξ , coefficient
b, and barrier S, i.e. there exist (πt ) ∈ H2

d(0, T ) and (Kt ), an increasing, adapted, continuous
process with K0 = 0, such that

−dXt = b(s,Xt , πt ) ds + dKt − π	
t dBt ,

XT = ξ,

Xt ≥ St , 0 ≤ t ≤ T ,

∫ T

0
(Xt − St ) dKt = 0.

Furthermore, the stopping time Dt = inf(t ≤ s ≤ T | Xs = Ss) ∧ T is optimal, that is,

Xt = Xt(Dt , S̃Dt ).

Appendix A.

In this section, we present several comparison theorems, which are used in the proof of
Theorem 2.2. The first is a generalized version of the comparison theorem in Pardoux (1999),
which treats the one-dimensional case.

Theorem A.1. (General case for BSDEs.) Suppose that f 1(s, y, z) and f 2(s, y, z) satisfy
Assumption 2.2, that ξ1, ξ2 ∈ L2(FT ), and that K1 and K2 are two continuous, increasing
processes with E[(Ki

T )
2] ≤ c, i = 1, 2. If there exist pairs (Y it , Z

i
t )0≤t≤T , i = 1, 2, satisfying

the equations

Y it = ξ i +
∫ T

t

f i(s, Y is , Z
i
s) ds +Ki

T −Ki
t −

∫ T

t

Zis dBs, i = 1, 2,

and, moreover, if for any 0 ≤ t ≤ T ,

f 1(t, Y 1
t , Z

1
t ) ≤ f 2(t, Y 1

t , Z
1
t ), ξ1 ≤ ξ2,

and K2 −K1 is an increasing process, then Y 1
t ≤ Y 2

t , 0 ≤ t ≤ T , almost surely.

Proof. Define

αt =

⎧⎪⎨
⎪⎩
f 2(t, Y 2

t , Z
2
t )− f 2(t, Y 1

t , Z
2
t )

Y 2
t − Y 1

t

if Y 2
t �= Y 1

t ,

0 if Y 2
t = Y 1

t ,

βit =

⎧⎪⎨
⎪⎩
f 2(t, Y 1

t , Z̃
i−1
t )− f 2(t, Y 1

t , Z̃
i
t )

Z
2,i
t − Z

1,i
t

if Z2,i
t �= Z

1,i
t ,

0 if Z2,i
t = Z

1,i
t ,

where i = 1, . . . , d. Here Z̃it is the vector whose first i components are equal to those of Z1
t

and whose last d − i components are equal to those of Z2
t , that is,

Z̃it = (Z
1,1
t , . . . , Z

1,i
t , Z

2,i+1
t , . . . , Z

2,d
t ).
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Obviously, αt and βt are progressively measurable and, by parts (iv) and (v) of Assumption 2.2,
αt ≤ µ and |βt | ≤ C.

For 0 ≤ s ≤ t ≤ T , let �s,t = exp[∫ t
s
(αr − 1

2 |βr |2) dr + ∫ t
s
βr dBr ]. Consider the

difference of the two solutions of the BSDEs, i.e. �Yt = Y 2
t − Y 1

t and �Zt = Z2
t − Z1

t , and
�ξ = ξ2 − ξ1, Ut = f 2(t, Y 1

t , Z
1
t )− f 1(t, Y 1

t , Z
1
t ), and�Kt = K2

t −K1
t ; of these, we know

that �ξ ≥ 0, Ut ≥ 0, and d(�Kt) ≥ 0.
The pair (�Yt ,�Zt) solves the equation

�Yt = �ξ +
∫ T

t

(αs�Ys + βs�Zs) ds +
∫ T

t

Us ds +�KT −�Kt −
∫ T

t

�Zs dBs.

Applying the Itô formula to �Ys�s,t , we find that

�Ys = �s,t�Yt +
∫ t

s

�s,rUr dr +
∫ t

s

�s,r d(�Kr)−
∫ t

s

�s,r (�Zr +�Yrβr) dBr,

so, taking the conditional expectation, it follows that

�Ys = E

[
�s,t�Yt +

∫ t

s

�s,rUr dr +
∫ t

s

�s,r d(�Kr)

∣∣∣∣ Fs

]
.

In particular,

�Yt = E

[
�t,T �ξ +

∫ T

t

�t,rUr dr +
∫ T

t

�t,r d(�Kr)

∣∣∣∣ Ft

]
≥ 0,

using the positivity of �ξ , U , and �K .

We next prove a comparison theorem for the solution of the RBSDE in the general case,
which is similar to that in El Karoui et al. (1997a).

Theorem A.2. (General case for RBSDEs.) Suppose that the parameters (ξ1, f 1, L1) and
(ξ2, f 2, L2) satisfy Assumptions 2.1, 2.2, and 2.3. Let (Y it , Z

i
t , K

i
t )0≤t≤T be the solution of

the RBSDE(ξ i, f i, Li), i = 1, 2. Also assume the following:

ξ1 ≤ ξ2 a.s., (A.1)

f 1(t, y, z) ≤ f 2(t, y, z) for all (t, y) ∈ [0, T ] × R, a.s.,

L1
t ≤ L2

t for all t ∈ [0, T ], a.s.

Then Y 1
t ≤ Y 2

t for t ∈ [0, T ], almost surely.

Proof. Applying the Itô formula to ((Y 1 − Y 2)+)2 on the interval [t, T ], and taking expec-
tations on both sides, we find that

E[((Y 1
t − Y 2

t )
+)2] + E

∫ T

t

1{Y 1
t >Y

2
t }|Z1

s − Z2
s |2 ds

= E[(ξ1 − ξ2)+] + 2 E
∫ T

t

(Y 1
s − Y 2

s )
+1{Y 1

s >Y
2
s }(f 1(s, Y 1

s , Z
1
s )− f 2(s, Y 2

s , Z
2
s )) ds

+ 2 E
∫ T

t

(Y 1
s − Y 2

s )
+ d(K1

s −K2
s ).
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Since Y 1
t > Y 2

t ≥ L2
t ≥ L1

t on the set {Y 1
t > Y 2

t }, we have

∫ T

t

(Y 1
s − Y 2

s )
+ d(K1

s −K2
s ) ≤

∫ T

t

(Y 1
s − Ls) dK1

s −
∫ T

t

(Y 2
s − Ls) dK1

s

−
∫ T

t

(Y 1
s − Y 2

s )
+ dK2

s

≤ −
∫ T

t

(Y 1
s − Y 2

s )
+ dK2

s ≤ 0,

so, by (A.1) and the Lipschitz and monotonicity conditions on f 2, it follows that

E[((Y 1
t − Y 2

t )
+)2] + E

∫ T

t

1{Y 1
t >Y

2
t }|Z1

s − Z2
s |2 ds

≤ 2 E
∫ T

t

1{Y 1
s >Y

2
s }(Y 1

s − Y 2
s )(f

1(s, Y 1
s , Z

1
s )− f 2(s, Y 1

s , Z
1
s )

+ f 2(s, Y 1
s , Z

1
s )− f 2(s, Y 2

s , Z
2
s )) ds

≤ 2 E
∫ T

t

1{Y 1
s >Y

2
s }(Y 1

s − Y 2
s )(f

2(s, Y 1
s , Z

1
s )− f 2(s, Y 2

s , Z
2
s )) ds

≤ 1
2 E

∫ T

t

1{Y 1
t >Y

2
t }|Z1

s − Z2
s |2 ds + (2µ+ 4C2)E

∫ T

t

[(Y 1
s − Y 2

s )
+]2 ds.

Hence,

E[((Y 1
t − Y 2

t )
+)2] ≤ (2µ+ 4C2)E

∫ T

t

[(Y 1
s − Y 2

s )
+]2 ds

and, from Gronwall’s inequality, we deduce that (Y 1
t − Y 2

t )
+ = 0, 0 ≤ t ≤ T .

In this comparison theorem, we can only compare the two solutions Y i of the RBSDEs
with different coefficients; since the barriers L1 and L2 are different, we cannot compare the
increasing processes of the two solutions. However, the following comparison theorem shows
that if the two barriers are the same and satisfy Assumption 2.3, then we can compare the
increasing processes Ki . In the following we first prove a comparison theorem under the
boundedness condition for ξ , f , and sup0≤t≤T L+

t , and then relax it step by step.

Theorem A.3. (Special case for RBSDEs.) Suppose that f 1(s, y) and f 2(s, y) satisfy
Assumption 2.2′′, and that L, ξ i , and f i(·, 0), i = 1, 2, satisfy

|ξ i | + sup
0≤t≤T

|f i(t, 0)| + sup
0≤t≤T

L+
t ≤ c, i = 1, 2,

for some constant c. Denote by (Y it , Z
i
t , K

i
t )0≤t≤T the solution of the RBSDE(ξ i, f i, L),

i = 1, 2. If we have

f 1(t, y) ≤ f 2(t, y) for all (t, y) ∈ [0, T ] × R, a.s.,

ξ1 ≤ ξ2 a.s.,

then Y 1
t ≤ Y 2

t and K1
t ≥ K2

t for t ∈ [0, T ], almost surely, and, for 0 ≤ s ≤ t ≤ T ,
K1
t −K1

s ≥ K2
t −K2

s almost surely.
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Proof. We consider the penalized equations relative to the RBSDE(ξ i, f i, L), for i = 1, 2
and n ∈ N, as follows:

Y
n,i
t = ξ i +

∫ T

t

f i(s, Y n,is ) ds + n

∫ T

t

(Y n,is − Ls)
− ds −

∫ T

t

Zn,is dBs.

For each n ∈ N,

f 1
n (s, y) := f 1(s, y)+ n(y − Ls)

− ≤ f 2
n (s, y) := f 2(s, y)+ n(y − Ls)

−,

so, by the comparison theorem in Pardoux (1999), we have

Y
n,1
t ≤ Y

n,2
t , 0 ≤ t ≤ T .

Since Kn,i
t = n

∫ t
0 (Y

n,i
s − Ls)

− ds, we deduce that, for 0 ≤ s ≤ t ≤ T ,

K
n,1
t ≥ K

n,2
t ,

K
n,1
t −Kn,1

s ≥ K
n,2
t −Kn,2

s .

Since Yn,1t ↗ Y 1
t , Yn,2t ↗ Y 2

t , Kn,1
t → K1

t , and Kn,2
t → K2

t almost surely, by the conver-
gence results of Step 1 the inequalities

Y 1
t ≤ Y 2

t , K1
t ≥ K2

t , and K1
t −K1

s ≥ K2
t −K2

s

hold for 0 ≤ s ≤ t ≤ T .

In the next theorem, we relax the boundedness condition on the barrier L+.

Theorem A.4. (Special case for RBSDEs.) Suppose that f 1(s, y) and f 2(s, y) satisfy
Assumption 2.2′′, that the barrierL satisfies Assumption 2.3′, and that ξ i and f i(·, 0), i = 1, 2,
satisfy

|ξ i | + sup
0≤t≤T

|f i(t, 0)| ≤ c

for some constant c. Denote by (Y it , Z
i
t , K

i
t )0≤t≤T the solution of the RBSDE(ξ i, f i, L),

i = 1, 2. If we have

f 1(t, y) ≤ f 2(t, y) for all (t, y) ∈ [0, T ] × R, a.s.,

ξ1 ≤ ξ2 a.s.,

then Y 1
t ≤ Y 2

t and K1
t ≥ K2

t for t ∈ [0, T ], almost surely, and, for 0 ≤ s ≤ t ≤ T ,
K1
t −K1

s ≥ K2
t −K2

s almost surely.

Proof. As in Step 2, there exist constants c1 and c2 such that ξ i ≤ c1 and f i(t, 0) ≤ c2 for
i = 1, 2; set c′ = max{c1, c2T }. Then, for i = 1, 2, (Y it , Z

i
t , K

i
t )0≤t≤T is the solution of the

RBSDE(ξ i, f i, L) if and only if (Y i′t , Zi′t , Ki′
t )0≤t≤T is the solution of the RBSDE(ξ i′, f i′, L′),

where
(Y i′t , Zi′t , Ki′

t ) = (Y it + c2t − 2c′, Zit , Ki
t )

and

(ξ i′, f i′(t, y), L′
t ) = (ξ i + c2T − 2c′, f i(t, y − (c2t − 2c′))− c2, Lt + c2t − 2c′).
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From this transformation, we know that, for 0 ≤ s ≤ t ≤ T , the result is equivalent to

Y 1′
t ≤ Y 2′

t , K1′
t ≥ K2′

t , K1′
t −K1′

s ≥ K2′
t −K2′

s , a.s. (A.2)

Setting Ln = L′ ∧ n, we consider the solution

(Y
n,i′
t , Z

n,i′
t , K

n,i′
t )0≤t≤T

of the RBSDE(ξ i′, f i′, Ln), since sup0≤t≤T (Lnt )+ ≤ c, ξ1′ ≤ ξ2′, and

f 1′(t, y) ≤ f 2′(t, y) for all (t, y) ∈ [0, T ] × R.

Then, by Theorem A.3, we have

Y
n,1′
t ≤ Y

n,2′
t , K

n,1′
t ≥ K

n,2′
t , K

n,1′
t −Kn,1′

s ≥ K
n,2′
t −Kn,2′

s , a.s.,

for 0 ≤ s ≤ t ≤ T . Notice that ξ i′ ≤ 0 and f i′(t, 0) ≤ 0 for i = 1, 2; by the proof of
Lemma 2.3, we deduce that Yn,i′t ↗ Y i′t almost surely and that Kn,i′

t → Ki′
t in L2(Ft ), for

0 ≤ t ≤ T and i = 1, 2. So, letting n → ∞, (A.2) follows and the proof is complete.
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