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G R A P H S W I T H O U T CYCLES O F E V E N L E N G T H

THOMAS LAM

Dedicated to George Szekeres on his ninetieth b i r thday

In this paper we prove that a bipartite graph with parts of sizes M and N, having
no cycles of even length less than or equal to 2(2fc + 1), where A; is a positive integer,
has at most (NM){k+l)/{2k+1) + Dk(N + M) edges, where Dk only depends on k.

In particular, we show that when k = 1, D\ = 1 is possible.

1. INTRODUCTION

Paul Erdos [3] first claimed in 1965 that for every k there is a c such that any graph
on n vertices with cn1+(1/IA:' edges has a cycle of length 2k.

In 1974, Bondy and Simonovits [2] proved more generally that any graph with
100/cn1+(1//:) edges has a C2i for every integer / € [k, kn1/k].

Constructions of graphs with no cycles of particular even lengths have been provided
by Benson in [l] and Wenger in [5]. They provide constructions of bipartite graphs with
parts of size N and N: TV3/2 + O(N) edges with no C4; 7V4/3 + 0{N) edges with no C4

or C6 and N6'5 + O(N) edges with no C4, C6 or Cw.

Our results prove that the constructions of Benson and Wenger are exact in the
following sense: a bipartite graph with parts N and M with neither a C4 nor a C6 can
have at most (NM)2'3 + N + M edges. When N = M the leading term has the same
order and constant as the construction, while the lower order term is of the same order
as well. When M — 1 or N = 1, clearly we cannot have any constant less than 1 for the
lower order (TV + M) term.

We shall prove the theorem in this form:

THEOREM 1. Let A be a matrix with dimensions M x N whose entries are either
1 's or 0 's. If A does not contain any cycles of length 21 where I < 2k +1 then the number
of entries with a 1 in A is no more than
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for some constant Ck depending only on k.

A cycle of length k in A corresponds to a possibly non-convex polygon with A; vertices
corresponding to entries with a 1 such that the edges are either horizontal or vertical
alternatingly.

A represents the incidence matrix of a bipartite graph where the rows are one part,
the columns the other part and the entries with a 1 are the edges.

2. PROOF OF THEOREM 1

We shall be using the following defintion:

DEFINITION 1: Suppose A is a matrix of Is and Os as above. A rook move of length
n is a vector of positions (xo, x\,...,xn) : X{ 6 A such that:

1. Every position Xi contains a 1.

2. Xi and Xi+\ belong in either the same column or the same row, and this
alternates, depending only on the parity of i. If XQ and x\ belong in the
same column then the rook move is said to begin vertically, otherwise it
begins horizontally.

We say that xn can be reached from XQ by a rook move of length n. If Xi = Xi+\ for
some 0 ^ i < n - 1 then the rook move is called degenerate. Otherwise, it is called
non-degenerate.

We shall prove the theorem by induction in TV and M where TV is the number
of columns and M the number of rows. The result is clearly true when either TV or
M is 1 with Ck = 1. Suppose then that there is some D ^ 1 such that X(n,m) ^
(nm)( t + 1 ) / ( 2 H 1 ) + D(n + m) is true V(n,m) : n < TV, m ^ M or n < TV, m < M.
Let A be an TV x M matrix of Is and Os such that the number of entries with a 1 is
X > (NMf+1)m+1) + £>(TV + M).

From now on, an entry is a position in A containing a 1. Throughout the proof, C
will represent any positive constant which only depends on k but not TV or M.

Our first step is the following lemma:

LEMMA 1. No row contains less than CN^+1^2k+^M^k1^2k+^ + 1 entries. No
column contains less than CM(fc+1>/<2*+1>TV(-fc)/(2fc+1> + 1 entries.

PROOF: Pick a row R with r entries. Then removing this row and applying the
inductive hypothesis to the resulting matrix gives:

D(N + M) - r < (N(M -
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By expanding the right hand side using the Taylor series f{x) = a;(
fc+1)/(2*+1) We get the

weaker inequality:

k + 1
- r < - 2k+ 1

-k)/(2k+\) _

from which our first desired result immediately follows as D ^ 1. The proof for columns
is identical. D

LEMMA 2 . No row contains more than CN(-k+i)/{2k+l)M^-^^2k+^ entries. No col-
umn contains more than CM(t+l '/(2 t+1)iV(-t)/(2*+1) entries.

P R O O F : Pick a row R with say r entries. We want to count the number of destination
entries which can be reached from any entry of R by non-degenerate rook moves of length
2k.

Pick any entry of R, XQ. The number of entries that can be reached from XQ by a non-
degenerate rook move of length 1. starting vertically, is at least C M ' l + 1 ' / ( 2 * + 1 ' M ' * ' " 2 ' + 1 ) ,
using Lemma 1. Repeating this, we see that the number of non-degenerate rook moves
of length 21 starting at XQ is at least

fC2M{k+l)/{2k+l)N{-k)/(2k+l)N[k+l)/(2k+l)M(-k)/[2k+l)\ _ CMl/(2k+\)Nl/{2k+l)

Now set I = k and note that all these non-degenerate rook moves must end on a
different column (and in particular, end on different entries). For if we have two rook
moves XQ, Xi,... X2k and xo, yx,... y^k such that x-ik and yik are entries of the same column,
then

Xl, • • -X2k,y2k,y2k-1, • • - , 1 / 1 , 3 1

will contain a cycle of even length at most Ak {x\ and y\ are both on the same column
as xo so are on the same column as each other).

Now consider the set of all such non-degenerate rook moves as XQ varies over all the
entries of R. Again I claim no two such rook moves say x0, x\,... X2k and yQ, yx,... y2k

where :ro ^ j/o end on the same column. For otherwise,

X0,Xi., . . .X2k,y2k,y2k-l, • • • ,2/1,2/0,^0

will contain a cycle of length at most 2(2/c + 1).

Thus we get the inequality:

r x CMk/(2k+1)Nk'l2k+1) < N.

So:

r

Similarly, no column contains more than CM(t+1l/ (2 t+1)iV<-| ;)/(2l+i) entries.
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At this point we require a combinatorial lemma from [4].

LEMMA 3 . Let X and Ax,... ,An be finite sets for some n ^ 0, and for each
I ^ i ^ n let fi : X —¥ At be a function. Then:

# { ( x O l . . . , xB) G X"+l : /«(*,_!) = Man), 0 < i < n}

Let X be the set of entries which have a 1, and let At be the set of rows for i odd
and the set of columns when i is even. Apply Lemma 3 with n = 2k.

The left hand side of the equation corresponds to (possibly degenerate) rook moves
of length 2k which start horizontally. Now we observe that no two non-degenerate rook
moves of length 2k starting horizontally can start on the same column and end on the
same row, for otherwise we would easily have a cycle of length 2(2k +1). We now use
Lemma 2 to prove:

LEMMA 4 . The number of degenerate rook moves of length 2k is no more than

P R O O F : A degenerate rook move (xo,xi,...,X2k) must have some i such that
X{ = xi+i. Let the row with the maximum number of entries have CT entries, and
correspondingly Cc for the columns. Fixing i, the maximum number of such rook moves
is no more than XCk~1Ck when i is even or XCkCk~l when i is odd. Since X ^ NCC

and X < MCr, we get these are less than N(CcCT)k and M(CcCr)
k. Using Lemma 2 to

give CT ^ CN^k+l^2k+^M(-k^2k+l^ and Cc ^ CM^k+1^2k+^N^k^2k^ and summing
over 0 ^ i ^ 2k (this summation just contributes to the constant as it doesn't depend
on TV or M) , we see that the number of degenerate rook moves is no more than:

C(N + M)(NM)k/{2k+1). D

Combining Lemma 3 and Lemma 4 we now have:

_ C(N + M)(NM)k«2k+1) < NM

or

By using the first two terms of the Taylor series for f(x) = xl^2k+l\ this implies that:

(1) X ^ (/VM)(*+1)/(2*+1) + -£—{N + M)(NM)k{2k+m2k+1)(NM)-{k+lW{2k+1)

Thus:
X < (/VM)(fc+1)/(2fc+1) + -£— (N + M).

Since C does not depend on N or M nor on the size of D in the inductive hypothesis, we
have proved that X ^ (NM)(k+m2k+1) + max(C/(2fc + 1), D){N + M). Thus, by the
principle of mathematical induction, for each k there is a constant £>* such that

X ^ (/VM)(*+1)/(2fc+1) + Dk(N + M).

https://doi.org/10.1017/S0004972700019511 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019511


[5] Graphs without cycles of even length 439

This proves Theorem 1.

3. T H E CASE k = 1

THEOREM 2 . When k = 1, Dx = 1 suffices in Theorem 1.

We begin as before, supposing that the result X(n,m) ^ {nm)2/3 + n + m is true
V(n, rn) : n < TV, m ^ Mor n ^ TV, m < M. Let J4 be an TV x M matrix of Is and Os
such that the number of entries with a 1 is A' > (TVM)2/3 + TV + M.

Lemma 1 gives us an easier way to count the number of non-degenerate rook moves
which start horizontally. For A; = 1, no row contains less than (2/3)TV2/3M~1/3 + 1 l's
and no column has less than (2/3)M2/3TV~1/3 + 1 l's. All rook moves of length 2 are of
the form {XQ,XI,XZ). Fixing Xi we see that the proportion of non-degenerate rook moves
to total rook moves is at least:

(2/3)/V2/3M-1/3 + i '

This ratio holds for all X\ so is true for all rook moves as a whole. So applying the same
logic as before we obtain:

x x $C TV M
NM (2/3)TV2/3M-1/3 + i (2/3)M2/3TV-1/3 + 1

Rearranging, we get:

X3 ^ (TVM)2fl + -N~2/3M1/3') (l + -M"2/3TV1/3V

Now we use the Taylor series for f(x) = x1?3. T h e third t e rm of the Taylor series i s .
negative, so we can preserve our inequality by using only the first two:

A' ^ ( T V M ) 2 / 3 ( l + -{N-2'3Mll3 + AT 2 ' 3 TV 1 ' 3 ) + -i

Multiplying out , we get:

X ^ (NM)2/3 + -(TV + M) + -TV! / 3 M 1 / 3 .
^ v ' 2V ' A

This is as good as our desired bound of (TVM)2^3 + (TV + M) when:

Let us suppose t h a t M — aN. Subs t i tu t ing this , we get:

Now a is a positive real number and an easy calculation shows that a2 / 3+a~1 / 3 > 1.889. So
we have proved our bound when N > 0.5 which is always the case. This is a contradiction
to the fact that X > (NM)2/3 + (TV + M) and thus no such matrix A exists.

Hence by the inductive hypothesis, Theorem 2 is true for all TV and M.
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