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ON RINGS WHOSE SIMPLE MODULES ARE FLAT 

YASUYUKIHIRANO 

ABSTRACT. A ring R is called a right SF-ring if all of its simple right R-modules are 
flat. It is well known that a von Neumann regular ring is a right SF-ring. In this paper 
we study conditions under which the converse holds. 

In this paper all rings are rings with unity and all modules are unital. A homomorphism 
is written on the side opposite to the operation of the ring. Let R be a ring, and M a right 
/^-module. Then we write MR in order to indicate the ring which is involved. The socle 
of M is denoted by Soc(M) and the annihilator of M in R is denoted by Ann(M). 

A ring R is called a right (left) SF-ring if all of its simple right (left) ^-modules are 
flat. It is well known that a ring R is von Neumann regular if and only if every right 
(left) /^-module is flat (cf. [7, Proposition 5.4.4]). Hence a von Neumann regular ring 
is a right and left SF-ring. Ramamurthi [9] raised a question whether a right SF-ring is 
necessarily von Neumann regular, and several authors (e.g. [3], [10], [13], [14]) studied 
this question. In this paper we find a class of rings containing the Pi-rings, in which the 
two conditions of being von Neumann regular and right SF-ring are equivalent. 

We begin with the following lemma. 

LEMMA 1. Let R be a ring, and I an ideal ofR such that R/l is a simple artinian 
ring. Then R/IR is flat if and only if RR/I is injective. 

PROOF. Let T denote an irredundant set of representatives of the simple left R-
modules and let E denote the injective envelope of (Brer T. Then there exists a unique 
simple left /^-module M in T such that RR/I Ĉ  fyftn) for some positive integer n. Let 
us write R/I = T\ ® T2 © • • • © Tn with 7} ~ M for each /. Consider the mapping 
(p: Horn*(/?//, E)-+E defined by (f)<p = (l+I)f for al l / E HomR(R/I, E). Clearly tp 
is an /?-monomorphism. Let/ be an element of Hom/?(#/7, E). Then, for each /, (Tfjf is 
either M or 0, so that (1 + / ) / € M. Since M is simple, we have Im ip = M and hence 

RHomR(R/I,E) - RM. Therefore RR/I ~ RKomR(R/I,E)^. Now, by virtue of [12, 
Proposition 1.10.4], RHomR(R/l,E) is injective if and only if R/IR is flat. This com
pletes the proof. 

THEOREM 1. Let R be a ring all of whose left primitive factor rings are artinian. 
Then the following conditions are equivalent: 

(1) R is a right SF-ring. 
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(2) R is von Neumann regular. 

PROOF. Assume that R is a right SF-ring and let M be a simple left 7?-module. Then 
R = R/ Ann(M) is left primitive, so that R is a simple artinian ring by hypothesis. Since 
RR is a finite direct sum of simple right /^-modules, RR is flat. Then RR is injective by 
Lemma 1. Since RR Ĉ  M(n) for some positive integer n, M is an injective left /^-module. 
This proves that R is a left V-ring. By virtue of [1, Theorem], we conclude that R is 
von Neumann regular. 

REMARK 1. Let R be a ring all of whose left primitive factor rings are artinian. Let 
fd(M) denote the flat dimension of the right /^-module M and set s(R) = sup{fd(T) | T 
is a simple right /^-module}. Theorem 1 asserts that the weak global dimension wgld(/?) 
of R equals 0 if and only if s(R) — 0. Hence it may be suspected that wgld(7?) = s(R). 
However K. L. Fields [4, p. 348] constructed a right noetherian local ring S with wgld^S) 
(= rt. g\d(R)) = 2 and s(S) = 1 (cf. [11, Theorem 9.22]). 

Let R be a Pi-ring. Then all right or left primitive factor rings of R are artinian by 
Kaplansky [5, Theorem]. Hence we have the following corollary. 

COROLLARY 1. Let R be a Wring. Then the following conditions are equivalent: 
(1) R is a right SF-ring. 
(2) R is a left SF-ring. 
(3) R is von Neumann regular. 

Let R be a ring, and G a group. Then RG denotes the group ring of G over R. 

COROLLARY 2. Let R be a ring all of whose left primitive factor rings are artinian, 
and G be a group. Then the following conditions are equivalent: 

(1) RG is a right SF-ring. 
(2) RG is von Neumann regular. 

PROOF. Assume that RG is a right SF-ring. Let uG denote the augmentation ideal of 
RG. Since R ~ RG/uG, R is also a right SF-ring. Hence R is von Neumann regular by 
Theorem 1. Let P be a left primitive ideal of R, and consider the factor ring R = R/P. 
Since RG ~ RG/PG, RG is also a right SF-ring. Since R is a finite direct sum of simple 
right ^G-modules, R is a flat right /?G-module. By [8, Lemma 6.5], G is locally finite 
and the order of every element in G is a unit of R. Let g be an element of G, and n the 
order of g. Since R is von Neumann regular, there exists a n i G i ? such that n = n2x. 
Since n is a unit in R = R/P, we have nx — 1 € P. Since P is an arbitrary left primitive 
ideal of R and since the Jacobson radical of the von Neumann regular ring R is 0, we 
obtain nx — 1 = 0. Thus we proved that R is von Neumann regular, G is locally finite 
and the order of every element in G is a unit of R. Then RG is von Neumann regular by 
[7, Proposition 2, p. 155]. 

We try to extend Theorem 1 and we consider the following condition: 

(*) For any singular simple left /^-module M,R/ Ann(M) is artinian. 

https://doi.org/10.4153/CMB-1994-053-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-053-6


RINGS WHOSE SIMPLE MODULES ARE FLAT 363 

EXAMPLE. Let L = End/r V be the full right linear ring over an infinite dimensional 
vector space V over a field F, let S be the ideal consisting of linear transformations of 
finite rank, and let R = S + F be the subring generated by S and the subring F consist
ing of scalar transformations. Then R is a left primitive von Neumann regular ring with 
SOC(RR) = S. Since R is not artinian, R does not satisfy the hypothesis of Theorem 1. 
Now let M be a singular simple left /^-module. Then we can easily see that Ann(M) = S 
and R/ Ann(M) ~ F. Therefore R satisfies the condition (*). 

THEOREM 2. Let Rhea ring satisfying the condition (*). Then the following condi
tions are equivalent: 

(1) R is a right SF-ring. 

(2) R is von Neumann regular. 

PROOF. Suppose that R is a right SF-ring. We first claim that every minimal left ideal 
ofR is generated by an idempotent. Let K be a minimal left ideal ofR. If K is non-singular, 
then we can easily see that K is projective. By the proof of [3, Theorem 2] it follows that 
the right annihilator of a finitely generated proper left ideal is always nonzero. Hence, 
by [2, Theorem 4.5], K is a direct summand OÎRR. Next, assume that K is singular. Then 
R = Rj Ann(X) is artinian by the condition (*). Hence RR is a finite direct sum of simple 
right /^-modules, so that RR is flat. Therefore RR is injective by Lemma 1. Since RR ~ K(n) 

for some positive integer n, K is injective, and hence K is a direct summand of RR. This 
contradicts the singularity of K. Next, we claim that, for any a G SOC(RR), there exists 
an idempotent e G R such that Ra — Re. We prove this by induction on the composition 
length c(Ra) of RRCI. By the previous claim, we may assume n = c(Ra) > 1. Then we 
can write Ra = K\ © • • • © Kn for some minimal left ideals K\,..., Kn. By the previous 
claim, there exists an idempotent/ G R such that K\ = Rf. Then Ra = Rf Ç& R(a — af) 
and c(R(a — af)) = n — 1. By induction hypothesis there exists an idempotent g G R 
such that R(a — af) = Rg. Note that gf = 0. Hence, if we set e = f + g —fg, then e is an 
idempotent and Ra = Re. Now we can show that SOC(RR) is von Neumann regular. Let 
a G SOC(RR) and take an idempotent e G R such that Ra = Re. Then e = ra for some 
r G R and a = ae = ara. Finally we claim that R/ SOC(RR) is von Neumann regular. If M 
is a non-singular simple left /^-module, then M ~ Re for some idempotent e G R, so that 
SOC(RR)M ^ 0. Therefore the condition (*) implies that all left primitive factor rings of 
R/ SOC(RR) are artinian. Thus R/ SOC(RR) is von Neumann regular by Theorem 1. Since 
both SOC(RR) and R/ SOC(RR) are von Neumann regular, R is von Neumann regular by 
[6, Theorem 22, p. 112]. 

REMARK 2. A ring is called a MELT ring if every maximal essential left ideal is two 
sided. Clearly a MELT ring satisfies the condition (*). Hence Theorem 2 improves [14, 
Proposition 9]. 
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