elements in such a statement. First, t may go on decreasing or increasing. Secondly, in cases where the boundary crosses itself, it is not possible for the current point P to move steadily round the boundary and always leave the area on left or right.

For example, in fig. 20

$$
\begin{aligned}
\frac{1}{2} \int_{t_{1}}^{t_{2}}\left(x \frac{d y}{d t}-y \frac{d x}{d t}\right) d t & =\text { Area } A_{1} P_{2} \ldots \mathrm{P}_{5} \mathrm{~A} \\
& =\text { area* of space }(2)-\text { area }^{*} \text { of space }(1)
\end{aligned}
$$

space (2) being to left of current point, while space (1) is to right of current point.

In fig. 21

$$
\begin{aligned}
\text { Integral } & =\text { Arca } A P_{1} P_{2} \ldots P_{5} A \\
& =\text { twice area* of space }(1)+\text { area* }^{*} \text { of space }(2),
\end{aligned}
$$

space (2) not including the shaded portion.
In fig. 22

$$
\begin{aligned}
\text { Integral }= & \text { Area } A P_{1} P_{2} \ldots P_{12} A \\
= & \text { area* of shaded space }+ \text { twice area* of space }(4) \\
& \quad-\text { sum of areas* of spaces (1), (2), (3). }
\end{aligned}
$$

It is worth noting that, using double integrals, we have

$$
\iint d x d y=\frac{1}{2} \int\left(x \frac{d y}{d t}-y \frac{d x}{d t}\right) d t
$$

the simplest case of Stokes's Theorem.

* "Area" being here neither positive nor negative.

On Commutative Matrices.

By J. H. Maclagan-Wedderburn, M.A.

