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Contact-angle hysteresis on rough surfaces:
mechanical energy balance framework
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Using as a starting point conservation of momentum, a multiphase mechanical energy
balance equation is derived that accounts for multiple material phases and interfaces
present within a moving control volume. This balance is applied to a control volume
that is anchored to a three-phase contact line as it advances continuously over the
surface of a rough and chemically homogeneous and inert solid. Using semi-quantitative
models for the material behaviour occurring within the control volume, an order of
magnitude analysis is performed to neglect insignificant terms, producing an equation for
predicting contact-angle hysteresis from a knowledge of the interface dynamics occurring
around the three-phase contact line. It is shown that the viscous energy dissipation that
occurs during the ‘stick–slip’ motion of the three-phase contact line, being the cause of
contact-angle hysteresis on rough surfaces, can be calculated from changes in intermediate
equilibrium interface states. The balance is applied to the Wenzel, Cassie–Baxter and Fakir
(super-hydrophobic) wetting states, showing for the Fakir case that significant dissipation
occurs during both interface advance and recede, and relating these dissipations to
interfacial area changes that occur around the ‘stick–slip’ events.
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1. Introduction

The ability of a liquid to ‘wet’ a solid is described by the angle that the liquid makes
with the solid when the interface is stationary – the static contact angle. For a liquid in
contact with a smooth and chemically homogeneous and inert surface, this angle θe is
unique and given by Young’s equation. Real surfaces, which are often rough on a variety
of length scales, are chemically heterogeneous and/or involve some type of irreversible
work of adhesion, display a range of equilibrium contact angles: the maximum is the static
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advancing angle θa, above which the interface will advance, and the minimum is the static
receding angle θr, below which it will recede. The difference between these two angles is
defined as the range of contact-angle hysteresis (CAH). The CAH, θa and θr are critical
wetting parameters that determine (for example) how easily drops can move over solid
surfaces, under what conditions liquid films will smoothly coat surfaces, or whether gas
injection will aid particle floatation. Technologies that depend on CAH angles include
established processes such as industrial separation devices or the wetting behaviour of
fabrics, through to more novel processes such as transparent self-cleaning surfaces for
solar power generation or low-energy liquid fuel separation membranes (Cassie & Baxter
1944; Wu et al. 2002; Feng et al. 2004; Callies & Quéré 2005; Sun et al. 2005; Li et al.
2013). For the design and optimisation of these processes, general and validated wetting
theories are needed that can predict the CAH range. However, as highlighted via several
recent works, such theories are not yet available, with fundamental questions remaining
about the nature of the wetting process (Eral, ’t Mannetje & Oh 2013; Jiang et al. 2019;
Erbil 2021; Butt et al. 2022). The purpose of this study is to derive an energy conservation
framework that can be applied to predict CAH angles.

The early energy-based wetting theories of Wenzel and Cassie remain influential in
interpreting wetting phenomena. Considering the energy change that occurs as a liquid/gas
interface advances a small distance over the surface of a rough solid, Wenzel (1936)
proposed that the apparent contact angle is related to the roughness r of the surface,
defined as the total to projected surface area ratio (see § 4.1). In deriving this theory,
Wenzel assumed that the liquid completely wets each surface undulation. Cassie & Baxter
(1944) recognised that such ‘complete’ wetting did not necessarily occur, and derived
an expression for the apparent contact angle on a partially wet surface in terms of the
wetted and non-wetted liquid areas per projected solid area, being f1 and f2, respectively
(see § 4.1). The Wenzel and Cassie & Baxter equations are useful for understanding and
interpreting experimental data; however, theories based solely on these concepts (e.g.
Bico, Thiele & Quéré 2002; Patankar 2003) are not predictive as the proportion of solid
surface wetted by a liquid is not known a priori. Also, these theories give only one static
contact angle for a rough structured surface, rather than the CAH range that is observed
experimentally.

Another series of works is based on the thermodynamic concept of energy minimisation
of an entire drop sitting on a rough surface. Johnson & Dettre (1964) computed the
free energy of drops residing at the centre of concentric sinusoidal roughness rings,
showing that the energy of the system oscillated as the drop volume increased and
the interface advanced over each ring. They interpreted the amplitude of these energy
oscillations as energy barriers that must be overcome by macroscopic vibrational energy
to allow interface movement, implying that as the height of surface roughness decreases,
the range of CAH should also decrease. This conclusion is contrary to experimental
evidence, however, which shows that roughness-induced CAH depends strongly on surface
topology (relative shape) rather than absolute roughness size, provided that gravitational
and Laplace pressure effects can be neglected on the length scale of the roughness (Öner
& McCarthy 2000; Dorrer & Rühe 2008; Li et al. 2016; Jiang et al. 2019). Other studies
have used similar static free-energy minimisation concepts to explain CAH for a variety
of periodically shaped surfaces (Extrand 2002; Brandon et al. 2003; Marmur 2006, 2022);
however, in general, the results do not qualitatively agree with observation. For example,
Brandon et al. (2003) used minimal surface energy modelling to show that the apparent
contact-angle range for a drop on a doubly periodic undulating surface approached a single
value (the Cassie angle) as the drop size to roughness ratio increased, again contradicting

986 A17-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

31
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.317


Contact-angle hysteresis on rough surfaces

the above referenced experimental observations that show that the CAH range becomes
quite constant at large droplet to roughness size ratios. A related question also remains
about these analyses: is it really necessary to consider the energy of the entire flow
system (most commonly a droplet) to calculate the CAH range, or is it instead a property
associated with the three-phase contact line (TPCL) that can be applied to a wide variety
of surrounding flow systems? This is an unresolved question that has garnered conflicting
opinions (Extrand 2003; Gao & McCarthy 2007a,b; McHale 2007; Nosonovsky 2007;
Panchagnula & Vedantam 2007; Marmur 2022).

Other studies conclude that CAH is substantially a property of the TPCL region
(Nosonovsky 2007; Panchagnula & Vedantam 2007) and that CAH has its origin in the
energy dissipation that occurs around the TPCL as it advances over the rough solid.
Central to this concept is that the advancing and receding angles are defined as those
measured while the interface is moving (albeit at a vanishingly slow velocity) rather than
being determined solely by static thermodynamic states. An influential study in this vein
is by Joanny & de Gennes (1984), who proposed a model for CAH on a surface that
contains a dilute number of ‘strong defects’ as a model for surface contamination or
dilutely distributed surface roughness. The theory considered the ‘pinning’ and subsequent
‘depinning’ or ‘jumping’ of the contact line as it advanced over a surface, assuming
that during each interface jump surface potential energy is dissipated to heat. Joanny &
de Gennes (1984) calculated this energy dissipation amount under ideal conditions and
incorporated it into an equation for CAH relevant to dilute defect surfaces. More recent
works have observed experimentally the pinning/depinning or ‘stick–slip’ behaviour of
the fluid interface near the TPCL (Priest et al. 2009; Forsberg et al. 2010; Schellenberger
et al. 2016; Jiang et al. 2019). Other studies have used a variety of energy conservation
principles to extend the work of Joanny & de Gennes (1984) to periodic surfaces (Raj
et al. 2012; Butt et al. 2017; Jiang et al. 2019) or interpreted measurements of CAH in
terms of contact-line energy dissipation and interfacial ‘jumping’ dynamics (Priest, Sedev
& Ralston 2007, 2013; Dorrer & Rühe 2008; Song et al. 2022). Despite these successes,
however, questions remain about this conceptual model of CAH; around what specific
TPCL region should energy be conserved, how should the dissipation that occurs during
the ‘stick–slip’ motion of the interface be calculated, and how can the energies of practical
surfaces that may contain randomly shaped structures and/or micro-bubbles/droplets be
included in such an analysis?

On a slightly different track, Joanny & de Gennes (1984) also explored the influence of
‘weak’ surface defects on CAH, referring to smooth defects as those that cause the fluid
interface near the solid to become distorted, but that do not result in the aforementioned
‘pinning’ and ‘depinning’ behaviour of the TPCL. Their conclusion was that isolated weak
defects do not generally result in hysteresis; however, other works have extended this
analysis to conclude that distributions of weak surface heterogeneities can cause CAH
(Pomeau & Vannimenus 1985; Robbins & Joanny 1987; Öpik 2000). In related work,
Cox (1983) examined how an interface changes as it moves over a gently undulating
sinusoidal periodic rough surface, showing that when the interface moved in the direction
of roughness periodicity, TPCL ‘jumps’ occurred (i.e. ‘strong’ defects leading to CAH),
but when advancing in other directions relative to the periodicity direction, the interface
moved continuously (i.e. ‘weak’ defects producing no CAH). It should be noted that these
theoretical studies predict the possible shapes that a fluid interface can take when passing
over arrangements of surface heterogeneities, and from these, the range of CAH angles is
inferred. In general, the link between CAH angles calculated via these interface topology
methods and those calculated by energy conservation has not been established.
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In reviewing this body of literature, key questions about wetting behaviour remain.
Specifically, there is conjecture regarding how energy conservation, fluid interface
distortion and the dynamics of interface ‘jumping’ determine CAH. Critically, there is
no experimental consensus or fundamental analysis that shows how energy conservation
should be applied to predict CAH – works that are based on energy conservation
around entire droplets in general do not predict experimentally observed CAH trends,
while studies that are based on energy changes around a moving TPCL lack rigour,
leading to inconsistent formulations and application. Further, while many studies do view
contact-line jumping as a source of CAH (‘strong’ defects), there is confusion over whether
fluid interface distortion (‘weak’ defects) in isolation can produce CAH, and how studies
that predict CAH angles via interface topology and dynamics can be mathematically
related to CAH angles resulting from energy conservation.

This study addresses these questions. Specifically, we derive a rigorous energy
conservation framework, which, when applied to the moving TPCL, can be used to
predict CAH. We do this by first deriving a general multiphase mechanical energy balance
(MMEB) equation (§ 2) that adds terms associated with the interfacial stresses acting
between each of the material phases to the conventional single phase mechanical energy
balance. We then apply this MMEB to a cylindrical control volume that is anchored to a
TPCL as it moves across a rough solid surface at a vanishingly slow speed (§ 3), deriving
an energy conservation equation that predicts CAH from knowledge of the interfacial
dynamics occurring within the TPCL. Within § 4, we discuss under what physical
conditions the theory is valid, apply the theory to the common Wenzel, Cassie–Baxter
and ‘Fakir’ wetting regimes, and finally outline how the theory answers some of the open
questions in the wetting field.

2. Macroscopic mechanical energy balance for immiscible multiphase mixtures

In this section, a macroscopic mechanical energy balance is derived for a moving control
volume that contains a number of immiscible phases (see figure 1). The derivation is
similar to that of Bird, Stewart & Lightfoot (2002, p. 221, § 7.8) except that interfacial
tension acts at the interface between each pair of phases, and the balance is not specific
to Newtonian liquids. (We do assume that each material has a symmetric stress tensor;
however, for most homogeneous materials, this assumption appears to be valid (Kuiken
1995; Dahler & Scriven 1961).)

The starting point is a momentum equation for a mixture of immiscible phases,

∂

∂t
ρv +∇ · ρvv = ∇ · [T M + T S]+ ρg. (2.1)

Here, v is the local phase velocity (assumed to vary continuously throughout), ρ is the
local phase density, T M is the local total material stress at any point within any phase, and
T S is the local surface stress acting on the interfaces between phases. The functional form
of the material stress tensor T M(x) is a property of the material type present at x.

Formally, for (2.1) to be valid everywhere within Vcv , all terms appearing in the equation
must be defined not only within each phase but also on the interfaces between phases.
This includes terms such as T M and ρ that are associated with a particular material type.
Such formal definitions could be made; however, as (2.1) is integrated over space in the
following analysis, as long as any phase-specific terms are finite on each interface, their
interface values do not affect the final energy balance. Hence we simply assume that the
interface values for T M(x) and ρ are finite.
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vcv

Vcv

nS,23

nS,23

nS,13

ncv

nS,12

nS,34
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Figure 1. The macroscopic mechanical energy balance is performed on a moving control volume that contains
multiple immiscible phases bounded by multiple interface types. Each interface type has an associated unit
normal vector nS,ij that is directed into phase i (where i < j). The velocity and outward unit normal of the
control volume boundary are vcv and ncv , respectively. In the indicated configuration, four material phases are
present within the control volume, and they intersect along four different interface types.

The effects of interfacial tension on material movement are captured using a surface
stress tensor T S(x). The form of this tensor is taken from Lafaurie et al. (1994), but
generalised here to include interfaces between multiple phases:

T S(x) =
∑
i<j

σij(I − nS,ijnS,ij) δS,ij. (2.2)

In this equation, σij is the constant surface energy per unit area (or interfacial tension)
associated with the ‘ij interface’ (i.e. the interface between phases i and j), I is the identity
tensor, nS,ij is a unit vector directed normal to the ij interface and into phase i, and δS,ij
is a ‘surface’ delta function that is non-zero only on the ij interface. The surface delta
function is essentially a multidimensional analogue of the Dirac delta function and has
been utilised extensively in the development of computational fluid dynamics methods
(Brackbill, Kothe & Zemach 1992; Lafaurie et al. 1994). In the present context, it has the
property that ∫

Vcv

δS,ij dV = Aij, (2.3)

where Aij is the total area of the ij interface existing within the control volume Vcv .
Further, under conditions where ncv · nS,ij is uniform over a particular intersection between
a surface Scv and an interface defined by δS,ij, the surface integral of the surface delta
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function is given by ∫
Scv

δS,ij dS = lij√
1− (ncv · nS,ij)2

, (2.4)

where lij represents the line length of the intersection between the two surfaces, and ncv is
a unit normal to the surface Scv . These properties of the surface delta function and others
are discussed in more detail in Appendix A.

Note that in general, interfacial stresses will act at each one of the immiscible material
boundaries that exist within Vcv . Consequently, the sum in (2.2) cycles through all possible
phase combinations under the condition that i < j; that is, j = 1→ m and i = 1→ j,
where m is the total number of material phases present. Thus stresses from a possible
(m− 1)! interface types may be included in the momentum balance.

By using (2.2) to represent surface stresses, three assumptions about the system are
implied. First, as the surface stress is a sum of contributions from each interface type,
we have neglected any ‘line tension’ stresses that may occur at the intersection between
interfaces. While no consensus regarding the existence of these stresses has been reached
in the literature, most studies suggest that even if line tension does exist, it has a negligible
effect on macroscopically measurable contact angles (Boruvka & Neumann 1977; Marmur
1997, 2006; Pompe, Fery & Herminghaus 1999). Second, by assuming constant surface
energies for each interface type, we have neglected any Marangoni forces that would exist
if surfactants or thermal gradients were present within the control volume. Third, the
assumption of constant surface energies also implies that the process of surface creation or
destruction is reversible on a molecular scale. We discuss implications of this assumption
in § 4.4.

With the immiscible multiphase momentum equation defined, we take the dot product of
(2.1) with the local velocity v and then integrate the result over the volume Vcv . Noting that
both the stress tensors T M and T S are symmetric, application of the Leibniz formula for
differentiating a volume integral, the Gauss–Ostrogradskii theorem and the compressible
continuity equation yields

d
dt

∫
Vcv

(
1
2

ρv2 + ρΦ̂

)
dV =

∫
Scv

ncv ·
[(

1
2

ρv2 + ρΦ̂

)
(vcv − v)

]
dS

+
∫

Scv

ncv · [T M · v] dS−
∫

Vcv

T M : ∇v dV

+
∫

Scv

ncv · [T S · v] dS−
∫

Vcv

T S : ∇v dV. (2.5)

Here, vcv and ncv are the velocity and outwardly directed unit normal of the control
volume boundary Scv , respectively, v is the magnitude of the local velocity v, and Φ̂ is
a gravitational potential function satisfying g = −∇Φ̂.

To simplify (2.5) further, we concentrate on the last two terms on the right-hand side,
which relate to interfacial stresses. For the first of these, we substitute in the surface stress
definition of (2.2) to find∫

Scv

ncv · [T S · v] dS =
∑
i<j

σij

∫
Scv

δS,ij(I − nS,ijnS,ij) : vncv dS. (2.6)
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For the second term, we use the surface delta function transport equation derived in
Appendix A:

∂δS,ij

∂t
+∇ · (δS,ijv) = δS,ij(I − nS,ijnS,ij) : ∇v. (2.7)

Substituting T S from (2.2) into the second interfacial stress term of (2.5), and then using
the right-hand side of (2.7) to expand the double dot product gives∫

Vcv

T S : ∇v dV =
∑
i<j

∫
Vcv

σijδS,ij(I − nS,ijnS,ij) : ∇v dV

=
∑
i<j

∫
Vcv

∂(σijδS,ij)

∂t
+∇ · (σijδS,ijv) dV. (2.8)

Using the scalar Leibniz theorem on the first term on the right-hand side of this equation
and the Gauss–Ostrogradskii theorem on the second term yields∫

Vcv

T S : ∇v dV =
∑
i<j

{
d
dt

(σijAij)−
∫

Scv

ncv · [σijδS,ij(vcv − v)] dS
}

, (2.9)

where (2.3) has been used to relate surface area to the volume integral of δS,ij.
Finally, substituting (2.6) and (2.9) back into (2.5) and simplifying the material stress

surface integral gives the immiscible MMEB valid for compressible and incompressible
materials:

d
dt

⎡⎣∫
Vcv

(
1
2

ρv2 + ρΦ̂

)
dV +

∑
i<j

σijAij

⎤⎦
︸ ︷︷ ︸

rate of change of kinetic, gravitational potential and interfacial
surface energy within Vcv

=
∫

Scv

ncv ·
⎡⎣⎛⎝1

2
ρv2 + ρΦ̂ +

∑
i<j

σijδS,ij

⎞⎠ (vcv − v)

⎤⎦ dS

︸ ︷︷ ︸
rate at which kinetic, gravitational potential and interfacial surface energy are

advected into Vcv

+
∑
i<j

σij

∫
Scv

δS,ij(I − nS,ijnS,ij) : vncv dS

︸ ︷︷ ︸
rate of work done on the contents of Vcv by interfacial tension

acting at Scv

+
∫

Scv

T M : vncv dS︸ ︷︷ ︸
rate of work done on the

contents of Vcv by
material stresses acting

at Scv

−
∫

Vcv

T M : ∇v dV︸ ︷︷ ︸
rate at which energy
dissipates to heat via

material stresses acting
within Vcv

. (2.10)

Along with the usual terms found in the single-phase mechanical energy balance (Bird
et al. 2002, p. 81, § 3.3), the MMEB of (2.10) contains three interfacial stress terms: the first
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represents the rate of change of interfacial energy contained within the control volume; the
second represents the rate at which interfacial energy is advected across the control volume
surface; and the third represents the rate at which interfacial stresses perform work on the
control volume at the control volume surface.

To the best of our knowledge, this MMEB equation has not been derived previously.
James & Lowengrub (2004), based on the work of Batchelor (1967, p. 132), give an
equation that is similar but concerns the material derivative of an infinitesimal surface
element, rather than the material derivative of the surface delta function. In a different
context, Yue (2020, B11, p. 899) provides a mechanical energy conservation equation that
includes surface potential energy, but is expressed in terms of phase field variables.

Equation (2.10) should serve as a useful generic tool for examining energy conservation
in flowing systems that possess phase interfaces. For example, the equation could also
be used to examine the behaviour of foams or emulsions, applied either locally around
phase interfaces to look at structure stability, or globally to understand conservation of
bubble/droplet collections. Within the remainder of the paper, we apply the MMEB to
understand contact-angle behaviour for a liquid interface advancing over a rough solid.

3. Calculating the advancing contact angle on a rough solid surface

Here, we analyse the macroscopic contact angle of an interface between two immiscible
fluids that slowly advances over a rough solid. The analysis uses the MMEB derived in § 2,
applied to a small control volume (CV) that moves with the advancing TPCL across the
surface of the solid. Using semi-quantitative models for material and interface behaviour,
an order of magnitude analysis is performed to determine which terms within the energy
balance are significant, and from this an expression for the advancing contact angle is
found that is valid in the limit of an infinitely slowly moving interface.

3.1. Defining the physical system and moving CV geometry
Figure 2 illustrates the physical system. Two fluid phases, labelled©1 and©2 , are bounded
below by a solid phase, labelled ©S . The fluids may be either liquids or gases, but are
completely insoluble with each other (immiscible) and with the solid, incompressible,
and above a certain length scale hmol (for molecular), act as continua. The implications of
these assumptions are discussed further below and in § 4. The surface of the solid is rough,
having undulations of a maximum characteristic size hrough. (Two-dimensional roughness
topologies such as long ridges or concentric rings are not covered by this theory as these
shapes have one dimension that is infinitely long.) A hydrodynamic flow is occurring on
a length scale of hsurround that is much larger than hrough. This flow slowly drives the fluid
interface to the right, hence phase©1 is slowly advancing over the solid, while phase©2 is
slowly receding.

The MMEB of (2.10) is applied to a moving CV as it advances at a constant
velocity vcv = vcve1 over a distance Xcv along the solid surface. This is illustrated in
figure 2(b). Note that vcv is characteristic of the surrounding flow. The CV contains and
is approximately centred on the TPCL, defined as the intersection between the advancing
fluid interface and rough solid surface. The moving CV has the geometry of a cylinder
with radius rcv and length lcv . The dimensions of the volume are smaller than those of
the surrounding hydrodynamic flow (hsurround), yet larger than those of the solid surface
roughness (hrough). Hence, noting the above description of the physical system and CV
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1

2

S

hsurround

hrough
rcv

rcv

xcv

vcv

Xcv
Control
volume

θa

θa

S

2

1
Average

solid surface

plane

lcv

Acv

e1

e2

e3

Projected

fluid interface

plane

Scv,cir

Scv,endScv,end

S

2 1

1

2

Control volume

boundary

Average solid

surface plane Projected fluid

interface plane

σ12A1C,12 + σ1sA1C,1s + σ2sA1C,2s σ1sA2C ,1s + σ2sA2C,2s + σ12A2C,12

σ1CAcv σ2CAcv

vcv

D

σ12

θa

(b)(a)

(c)

e3

e1

Figure 2. The MMEB is performed over a cylindrical CV that is located at the intersection of the average solid
surface and projected fluid interface planes, and moves forward over the solid at a speed of vcv and distance
Xcv . (a,b) The region surrounding the CV and contact line on a macroscopic scale. (c) The same region on
the scale of the CV and solid surface roughness. The symbols©1 ,©2 and©S indicate regions of phase-1 fluid,
phase-2 fluid and solid, respectively.
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geometry, we effectively assume the separation of four length scales in our analysis:

hmol � hrough � rcv, lcv, Xcv � hsurround. (3.1)

Defining τ as the time taken for the CV to advance the entire distance Xcv , it follows that
Xcv = vcvτ .

The precise centreline of the moving CV is defined to lie at the intersection between
two averaged planes: the ‘average solid surface plane’ and the ‘projected fluid interface
plane’. The locations of these planes are defined as those of the solid surface and fluid
interfaces, respectively, averaged over distances of O(rcv) (where O(z) means ‘order z’).
As the solid surface roughness hrough is of much smaller size than rcv , it follows that the
average solid surface plane is perfectly flat on the length scale of the CV. The topology
of the fluid interface is governed by the momentum and surface stress equations ((2.1)
and (2.2), respectively), combined with boundary conditions specifying how the interface
interacts with the solid surface. The specific boundary condition that we employ for the
microscopic contact angle is Young’s equation, expressed as

[nS,12]TPCL · nw = cos θe, (3.2)

where [nS,12]TPCL is the unit normal to the fluid interface at a point on the TPCL, nw is
the outwardly directed wall normal at the same contact point, and θe is the equilibrium or
‘Young’s’ angle. As (3.2) specifies a direct relationship between the fluid interface (nS,12)
and solid (nw) normals along the TPCL, it follows that close to the rough solid surface,
the fluid interface will have local curvatures that are characteristic of the solid roughness –
that is, of O(1/hrough) – and that these curvatures will exist within distances of O(hrough)
from the TPCL. Conversely, further from the solid surface, the topology of the interface
varies over the larger length scales of the surrounding flow (indeed, this can be used to
define hsurround), so the curvature of the interface there approaches O(1/hsurround). Hence,
as hrough � rcv � hsurround (see (3.1)), averaging the actual fluid interface over O(rcv)

produces a projected fluid interface plane that is perfectly flat on the length scales of the
CV, and as the centreline of the CV is defined as the intersection between the projected
fluid interface plane and average solid surface plane, on the scale of the CV, its geometry
is that of a perfect cylinder, with a perfectly straight centreline.

This description of the fluid interface topology and relationship to the geometry of the
CV has implications when applying the MMEB. At distances of O(rcv) from the TPCL,
the actual fluid interface and projected fluid interface will at all times be coincident and
perfectly flat on these length scales. Hence, given that the projected fluid interface is used
to define the centreline of the CV, the actual fluid interface will intersect the circumference
of the CV (labelled as Scv,cir in figure 2b) in a perfectly normal direction. Similarly, along
the ends of the CV (labelled as Scv,end in figure 2b) and at distances greater than O(hrough)
from the TPCL, the actual fluid interface will be flat, coincident with the projected fluid
interface, and perfectly normal to the CV boundary. Closer to the TPCL, however, the
interface will undulate with curvatures of O(1/hrough), crossing the CV boundary at angles
that are not necessarily normal to Scv,end.

The contact angle of phase©1 on the macroscopic length scale is defined as θ . It is the
angle between the average solid surface plane and fluid interface plane, measured through
phase ©1 . Equivalently, consistent with the above, it is the angle between the average
solid surface plane and actual fluid interface measured at distances of O(rcv) from the
TPCL. The objective of our analysis is to determine the minimum macroscopic angle that
just causes the fluid interface to advance continually over the solid surface, albeit at the
vanishingly slow velocity vcv . An equivalent objective is to find the maximum macroscopic
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angle that just allows the fluid interface to remain stationary. Either definition represents
the advancing angle of phase©1 over solid©S in the presence of phase©2 and is referred
to as θa (for ‘advancing’). Formally, θa = limvcv→0 θ .

Note that as phase ©1 advances over the solid, phase ©2 recedes. Thus an equivalent
objective is to find the receding angle of phase ©2 (θr,2 = π− θa). Indeed, by swapping
the physical properties between phases ©1 and ©2 (detailed in § 4.1), we can use the
same analysis to determine the range of angles over which a fluid interface will remain
stationary – that is, the range of CAH.

3.2. Describing material dynamics within the moving CV
As well as defining the physical system and CV geometry used in the MMEB, to be
able to perform an order of magnitude analysis on its various terms, we need to describe
quantitatively how the materials within the volume behave as a function of both space
and time. Specifically, we need conceptual models for how the fluid velocities, pressures,
interface topology and solid stresses vary as the CV advances.

Within the fluid phase, we assume that for the majority of the advancing time τ ,
the TPCL and surrounding fluid both move continuously at the slow speeds of O(vcv).
We refer to the system as being in ‘equilibrium’ when this is the case, and define the
velocity field existing during these times as ṽ = O(vcv). However, at certain times during
τ , local areas of the TPCL will become pinned by particular surface defects, creating
local interface deflections that become larger as the remainder of the TPCL continues
to advance. Eventually, once the surrounding TPCL has advanced some distance of
O(hrough) from the pinning location, these contact-line sections will either detach from
the surface defect and return to the main TPCL, or detach from the TPCL and form
isolated bubbles/droplets of entrained fluid within the surface roughness. Either way, these
detachment processes cause the local TPCL and surrounding fluid to move at much faster
capillary-driven speeds than the continuous CV advance speed (vcv), causing a viscous
dissipation of energy. This ‘stick–slip’ dissipative motion has been described previously as
one cause of CAH (Joanny & de Gennes 1984; Raj et al. 2012; Butt et al. 2017; Jiang et al.
2019) and as discussed in the Introduction has also been observed experimentally (Priest
et al. 2009; Forsberg et al. 2010; Schellenberger et al. 2016; Jiang et al. 2019). In this study,
we define the local interface and fluid speeds associated with these capillary-driven events
as v̂ = O(vcap), and the total time during which there is a dissipation event occurring
within the CV as τcap. We further assume that the number of defects within the CV (N)
is small enough and the capillary velocity (vcap) large enough that only one dissipation
event occurs within the CV at any one time. With these assumptions, and for convenience
assuming that the analysis duration τ commences and finishes while the system is in
equilibrium, we can split the total time over which the analysis is being conducted into
a number of ‘dissipation events’ (N) and ‘equilibrium stages’ (N + 1), with the kth
dissipation event starting at t̂k and lasting for 	̂tk, and the kth equilibrium stage starting
at t̃k and lasting for 	̃tk. The schematic timeline of figure 3 illustrates this decomposition.
The following relationships result:

τcap =
N∑

k=1

	̂tk, τ =
N+1∑
k=1

	̃tk + τcap,

	̂tk = t̃k+1 − t̂k, 	̃tk = t̂k − t̃k,

t̃1 = 0, t̃N+1 + 	̃tN+1 = τ.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.3)
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˜�t1 ̂�t1 ˜�t2 ̂�t2 ˜�t3 ̂�t3 ̂�tN − 1
̂�tN˜�tN ˜�tN + 1

τt̃1 = 0 t̂1 t̃2 t̂2 t̃3 t̂3 t̃4 t̃N t̃N + 1t̂Nt̂N − 1

Figure 3. The entire analysis time τ is split into a number N of dissipation periods (indicated in blue) where a
portion of the TPCL moves at velocities of O(vcap), interspersed between N + 1 equilibrium stages where the
entire TPCL moves at velocities of at most O(vcv).

In terms of notation used in the remainder of the analysis, variables annotated with a ‘hat’
correspond to properties associated with individual dissipation events (where parts of the
TPCL are moving at O(vcap)), variables annotated with a ‘tilde’ correspond to properties
associated with the system while in equilibrium (where the entire TPCL is moving at at
most O(vcv)), and variables annotated with a ‘bar’ correspond to the entire advancing
period τ . The decomposition of τ into separate dissipation and equilibrium stages is a key
concept used in the subsequent energy analysis.

A number of mathematical constraints follow from the dynamic model of fluid
movement described above. First, the analysis assumes that vcv � vcap. By assuming that
the fluids are Newtonian with a stress defined by

T M = −pI + μ[∇v + (∇v)T], (3.4)

an order of magnitude analysis on the augmented Navier–Stokes equations (as defined by
(2.1) and (2.2)) shows that capillary-driven fluid velocities can be limited by either viscous
dissipation (i.e. Ca ∼ 1) or momentum acceleration/advection inertial terms (i.e. We ∼ 1)
during any dissipation event. Hence a conservative estimate for the capillary-driven
velocity scale is

vcap = min
(

σ

μ
,

√
σ

ρ hrough

)
. (3.5)

In this expression and subsequent order of magnitude analyses, properties such as σ , μ and
ρ are order of magnitude estimates only, which for most expressions can be taken as the
maximum of the different phase properties existing within the CV. Equation (3.5) places a
constraint on the maximum vcv that can be used, given that vcv � vcap.

Interestingly, (3.5) predicts that capillary velocities are limited by inertial terms (We ∼
1) rather than viscous terms (Ca ∼ 1) on most practical surfaces. To illustrate, for a water
droplet within air advancing over a rough solid surface, the viscous limited velocity is
σ/μ ≈ 72 m s−1, while for all surface roughness values hrough � hrough,crit = μ2/(ρσ) =
14 nm, the inertially limited velocity (

√
σ/(ρ hrough)) is smaller and hence will determine

vcap. Indeed, for a more typical surface roughness hrough = 10 μm, (3.5) gives vcap ≈
3 m s−1. We consider the implications of this in more detail in § 4.3. Note that even though
the local velocities existing during a dissipation event may be determined by a balance
between capillary and inertial terms (We ∼ 1), the Reynolds number for the motion near
the surface roughness is not large (Re ∼ 20 for the above hrough = 10 μm system). This
means that the size of the region where velocities are O(vcap) during dissipation events is
only of O(hrough), and importantly, these high velocities will not exist at the circumference
of the CV, located at approximately rcv from the TPCL.

A second constraint required by the dynamic model of fluid movement outlined
above is that τcap � τ . We first note that the time taken for each dissipation event
can be estimated from the interface velocity and distance travelled during each
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event – 	̂tk = O(hrough/vcap) – and that as there are N dissipation events occurring during
τ , τcap = O(N hrough/vcap). Recognising that the number of dissipation events occurring
during the advance duration is O(Acv/h2

rough) where Acv = Xcvlcv , and that τ = Xcv/vcv ,
leads to

τcap

τ
= O

(
lcv

hrough

vcv

vcap

)
� 1. (3.6)

Equation (3.6) can always be satisfied provided that vcv is small enough, which is
obviously the case when determining θa as this angle is derived in the limit of vcv → 0.
If the energy balance is being applied to moving interfaces, however, (i.e. vcv /= 0), then
(3.6) places a constraint on the maximum applicable vcv . This is discussed further in § 4.3.

Two final conceptual models concerning the continuous fluid movement occurring
during the equilibrium stages of the flow have to be developed in order to apply the
MMEB; these specify the velocity gradient and pressure, both of which relate to the fluid
stress.

For the velocity gradient, we note that during equilibrium stages, the TPCL advances at
a speed of O(vcv) over the solid, resulting in a velocity discontinuity at the solid surface if
the conventional continuum no-slip fluid boundary condition is applied. Indeed, velocity
profiles that satisfy the Navier–Stokes equations and that are consistent with both a moving
TPCL and the no-slip boundary condition are available (Moffatt 1964; Huh & Scriven
1971); however, these result in velocity gradients near that TPCL that increase as 1/r
(where r is the distance to the TPCL). We find that integrating these gradients over the
region surrounding the TPCL in our energy balance results in an energy dissipation term
for non-zero vcv that diverges logarithmically in an unphysical fashion, as others have
found (Huh & Scriven 1971). Proposed solutions to this problem, which we invoke here,
all involve removing or limiting the stress (equivalently velocity gradients) within the fluid
at small distances (hmol) from the TPCL. Various justifications for this limiting have been
proposed (Huh & Scriven 1971; Joanny & de Gennes 1984; Petrov & Petrov 1992), but
most revolve around a breakdown of the Newtonian or continuum model of a fluid at
the TPCL where individual molecules or particles within the fluid must ‘jump’ along the
solid. The implications of this limit are discussed further in § 4.3. Putting these concepts
together, we hence estimate the velocity gradients existing within the fluid during the
equilibrium stages as

∇̃v = O
(

vcv

max(r, hmol)

)
, (3.7)

where as discussed, hmol is a small length scale related to the molecular (or
non-continuum) nature of the fluid.

For the continuous flow pressure variation, we perform an order of magnitude on the
single-phase Navier–Stokes equations, recognising that pressure gradients may develop in
response to viscous stress, momentum acceleration/advection and/or gravitational terms.
This gives an expression for the pressure gradient in either fluid phase as

∇̃p = O(ρ ∇ · ṽṽ)+ O(μ∇2ṽ)+ O(ρg)

= O
(

ρv2
cv

max(r, hmol)

)
+ O

(
μvcv

[max(r, hmol)]2

)
+ O(ρg), (3.8)

where again the fluid stress has been limited within a distance of hmol from the TPCL.
Noting that the equilibrium stage fluid pressure p̃ is relative to some point in the
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surrounding fluid far from the TPCL, and that under these slow flow conditions there is a
potential pressure jump over the fluid interface due to the surrounding interface curvature
of O(σ/hsurround), we model the pressure variation within the CV during the equilibrium
stages as

p̃ = O(ρv2
cv)+ O

(
μvcv

max(r, hmol)

)
+ O

(
σ

hsurround

)
+ O(ρgrcv)+ p0, (3.9)

where p0 is some reference pressure located at a point away from the TPCL, but within
the vicinity of the CV. All models describing the conceptual behaviour of the fluid phases
during the equilibrium stages have now been defined.

For the solid phase, to apply the MMEB, we need models that describe how the solid
velocities and stresses vary as the TPCL advances over the rough surface. In this study,
we invoke the simplest possible model by assuming that velocities within the solid are
everywhere zero. With this assumption the energy balance becomes independent of solid
phase stresses. On physical grounds, zero velocities can be justified within the solid by
assuming that it is a yield-stress (or plastic) material that does not experience a stress
exceeding its yield-stress during the analysis time. In reality, this is probably justifiable for
most solids used in engineering applications, but for soft solids used in (e.g.) biomedical
applications, energy dissipation within the solid phase may be significant. This is certainly
an area for future work that could be incorporated into the presented mechanical energy
balance framework, but it is not advanced here.

3.3. Applying the mechanical energy balance to the moving CV
With the physical system defined and semi-quantitative models for how the materials
within the CV behave as it advances over the rough solid, we can now apply the MMEB
to find the advancing contact angle.

3.3.1. Formulating the contact-angle mechanical energy balance
We start by deriving the most general form of the contact-angle energy balance by applying
(2.10) to the moving CV and integrating it over a time period from t1 to t2, giving

T0(t1, t2) =
6∑

i=1

Ti(t1, t2), (3.10)

where

T0(t1, t2) = 1
Acv

[E(t = t2)− E(t = t1)], (3.11)

E(t) =
∫

Vcv

(
1
2

ρv2 + ρΦ̂

)
dV +

∑
i<j

σijAij, (3.12)

T1(t1, t2) = 1
Acv

∫ t2

t1

∫
Scv

∑
i<j

σijδS,ijncv · vcv dS dt, (3.13)

T2(t1, t2) = 1
Acv

∫ t2

t1

∫
Scv

ncv · 1
2

ρv2(vcv − v) dS dt, (3.14)
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T3(t1, t2) = 1
Acv

∫ t2

t1

∫
Scv

ncv · ρΦ̂(vcv − v) dS dt, (3.15)

T4(t1, t2) = − 1
Acv

∫ t2

t1

∫
Scv

∑
i<j

σijδS,ijnS,ijnS,ij : vncv dS dt, (3.16)

T5(t1, t2) = 1
Acv

∫ t2

t1

∫
Scv

T M : vncv dS dt, (3.17)

T6(t1, t2) = − 1
Acv

∫ t2

t1

∫
Vcv

T M : ∇v dV dt. (3.18)

In the derivation, use has been made of I : vncv = ncv · v.
Next, defining the following notations that correspond to the entire, the kth equilibrium

and the kth dissipation stages of the advance as
T̄i = Ti(t1 = 0, t2 = τ), (3.19)

T̃i,k = Ti(t1 = t̃k, t2 = t̃k + 	̃tk), (3.20)

T̂i,k = Ti(t1 = t̂k, t2 = t̂k + 	̂tk), (3.21)
respectively for i = 0 to 6, (3.10) is applied over the entire advance period from time 0 to
τ to give

T̄0 =
6∑

i=1

T̄i. (3.22)

Recognising that T̄i for i = 1 to 6 are all integrals over the total time period, using (3.3)
these terms can be written as sums of the corresponding terms from the equilibrium and
dissipation stages, giving

T̄0 =
6∑

i=1

(N+1∑
k=1

T̃i,k +
N∑

k=1

T̂i,k

)
=

6∑
i=1

N+1∑
k=1

T̃i,k +
N∑

k=1

6∑
i=1

T̂i,k. (3.23)

To simplify the final term, we apply the energy balance equation (3.10) to the kth
dissipation period, giving

T̂0,k =
6∑

i=1

T̂i,k, (3.24)

which, when substituted back into (3.23), leads to

T̄0 =
6∑

i=1

N+1∑
k=1

T̃i,k +
N∑

k=1

T̂0,k. (3.25)

This is the form of the energy balance that is used to evaluate the advancing contact angle.
It expresses the total change in mechanical energy within the moving CV between the start
and end of the advance (T̄0) as the sum of energy transfers happening during each of the
N + 1 equilibrium stages (T̃i,k) plus the change in mechanical energy existing within the
CV that occurs over each of the N dissipation events (T̂0,k). We now examine each of these
terms, finding either their order of magnitude, or – for terms that prove to be significant –
expressions that allow their quantitative evaluation in terms of system properties. This
analysis is straightforward but detailed, and is presented in full in Appendix B.
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3.3.2. Final contact-angle mechanical energy balance
With each term within the contact-angle energy balance evaluated, we substitute their
expressions from (B2), (B6), (B13), (B15), (B17), (B19), (B23) and (B26) into (3.25) and
gather like terms, giving

O(ρv2
cv hrough)+ O(ρglcv hrough)+ O

(
σ hrough

Xcv

)
= O(ρg h2

rough)+ O(ρv2
cvrcv)

+ O(ρgr2
cv)+ O

(
σ

hrough

lcv

)
+ O(μvcv)+ O

(
σ rcv

hsurround

)
+ O

[
μvcv ln

(
rcv

hmol

)]
+ 	̂σ − σ12 cos θa + σ2C − σ1C. (3.26)

Neglecting any terms that are relatively small due to the length scales equation (3.1) yields

	̂σ − σ12 cos θa + σ2C − σ1C

= O(ρv2
cvrcv)+ O(ρgr2

cv)+ O
[
μvcv ln

(
rcv

hmol

)]
. (3.27)

Equivalently, this contact-angle energy balance can be expressed as

σ12 cos θa = 	̂σ + σ2C − σ1C, (3.28)

under conditions where the following inequalities hold:

ρv2
cvrcv

σ
,
ρgr2

cv

σ
,
μvcv

σ
ln
(

rcv

hmol

)
� 1. (3.29)

Three new surface energies are used in (3.28). The compound surface energies

σ1C =
∑
i<j

σij
A1C,ij

Acv
and σ2C =

∑
i<j

σij
A2C,ij

Acv
, (3.30a,b)

measure the surface energy of all interfaces associated with the rough solid, on the leaving
(behind and to the left of the TPCL) and entering (in front and to the right of the TPCL)
sides of the advancing CV, respectively. We note that in addition to energy increases
caused by the roughness increasing the specific solid surface area, these compound surface
energies also account for any micro-bubbles or droplets that could possibly be contained
within the surface structures. For the leaving energy (σ1C), these could be formed during
the discussed dissipation events that occur as the TPCL sweeps over rough solid, while
for the entering energy (σ2C), these could be pre-existing within the surface roughness,
possibly as a result of previous wetting processes (such as receding back over a previously
wetted surface). Additionally, the specific dissipation event surface energy change is
defined as

	̂σ =
N∑

k=1

∑
i<j

σij
	̂Aijk
Acv

. (3.31)

This variable represents the sum of changes to potential surface energies occurring within
the CV over all capillary-driven dissipation events, per projected area of solid traversed.
This variable has a magnitude of O(σ ) and is key in predicting roughness-induced CAH.
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3.3.3. Interpretation of specific dissipation event surface energy change 	̂σ

The specific dissipation event surface energy change 	̂σ as defined above is the sum of all
surface energy changes occurring within the CV over each interface slip event. However,
consistent with the physical model of how the contact line advances over the rough solid
as outlined in § 3.2, we hypothesise that these surface energy changes are dissipated to
heat (via viscous stresses) during each slip event, resulting in a negative 	̂σ . Hence an
alternative nomenclature for this term that is consistent with this contact-line movement
model and previous literature (e.g. Joanny & de Gennes 1984) is to define the specific
dissipation per projected area of solid traversed due to surface roughness as D ≈ −	̂σ .
In this subsubsection, we show how this relationship formally holds true by performing
an order of magnitude analysis on an energy balance conducted over all dissipation slip
events occurring during the advance period.

In order to perform this analysis, we need models for how the materials within the CV
behave during the dissipation periods. As for the equilibrium periods, we assume that the
solid does not deform (following the justifications from § 3.2), giving v = 0 within the
solid during these times. For the fluids, we require a description of the velocity v̂, velocity
gradient ∇̂v and pressure p̂ existing during these times. For the velocity, noting that the
continuous equilibrium velocities still exist within the dissipation periods, and assuming
that significant capillary-driven velocities exist only within a region of size O(hrough) local
to each dissipation event (as Re for these motions is not large), we define

v̂(x) =
{

ṽ + O(vcap) if rcap < O(hrough),

ṽ otherwise,
(3.32)

where rcap = |x− xcap| is the distance to the centre of the relevant kth dissipation event,
and xcap is the location of the particular kth dissipation event that is centred on the
centreline of the CV. (For notational simplicity here and in subsequent dissipation event
model definitions, we do not indicate what specific dissipation event variables such as v̂,
xcap and rcap refer to.) For the velocity gradient, we similarly define

∇̂v(x) =
⎧⎨⎩∇̃v + O

(
vcap

max(rcap, hmol)

)
if rcap < O(hrough),

∇̃v otherwise,
(3.33)

where as per the equilibrium velocity gradient model of (3.7), we limit the stress generated
at the moving TPCL that is within O(hmol) of the solid. Finally, for pressure, we perform
another order of magnitude analysis on the Navier–Stokes equations, but now recognise
that capillary induced pressure changes occur over the interface that is deforming over
length O(hrough) during these times, giving

p̂(x) =
⎧⎨⎩p̃+ O(ρv2

cap)+ O
(

μvcap

max(rcap, hmol)

)
+ O

(
σ

hrough

)
if rcap < O(hrough),

p̃ otherwise.
(3.34)

This completes the dissipation event material specifications.
The dissipation event energy analysis now largely mirrors that conducted for the

equilibrium stages (as detailed in §§ B.3–B.8) by summing the individual dissipation event
energy balances of (3.24) over all N dissipation events. The details of this analysis are
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contained within Appendix C, with the final result being

	̂σ = O

(
τcap

τ

6∑
i=1

N+1∑
k=1

T̃i,k

)
+ O(ρv2

cv hrough)+ O(ρg h2
rough)

+ O

(
ρv2

cap h2
rough

lcv

)
+ O

(
ρg h3

rough

lcv

)
+ O

(
σ

hrough

lcv

)

+ O
(

μvcap
hrough

lcv

)
+ O

[
μvcap ln

(
hrough

hmol

)]
. (3.35)

Under conditions for which the inequalities of (3.29) hold, the equilibrium terms
represented by

∑N+1
k=1 T̃i,k in the above have a maximum magnitude of O(σ ), which is the

same as that of 	̂σ . As O(τcap/τ)� 1 via (3.6), it follows that the equilibrium terms make
no significant contribution to (3.35) and can be neglected. For the remaining terms, using
the length scales assumption (3.1) in combination with (3.29) yields, after simplifications,

	̂σ = O

(
ρv2

cap h2
rough

lcv

)
+ O

[
μvcap ln

(
hrough

hmol

)]
. (3.36)

Tracing back through the dissipation energy analysis presented in Appendix C shows
that the first and second terms on the right-hand side of (3.36) represent the transport
of kinetic energy (and associated pressure work) through the ends of the CV due to
dissipation event velocities, and the viscous dissipation of energy that is converted to heat
around the moving TPCL during dissipation events, respectively. The ratio of these two
terms depends on Re as well as various length scale ratios, so that in general neither can
be assumed to be dominant. The second term directly represents energy conversion to heat
during the capillary-driven dissipation events, as envisaged. While the first term does not
relate directly to energy dissipation, it does represent the transport of energy through the
ends of the CV and hence parallel to the TPCL. As the analysis shows that no significant
energy transport occurs over the circumference of the CV during the dissipation events,
the energy represented by the first term in (3.36) remains within the vicinity of the contact
line, and so will eventually be dissipated to heat via the second term in the same equation,
but in an adjacent CV. Hence, overall (3.36) shows that the energy liberated by surface
changes that occur during each dissipation event is dissipated to heat within the vicinity
of the TPCL, and we are justified in using the nomenclature D = −	̂σ that states that the
specific energy dissipation per area travelled due to surface roughness can be calculated
from the changes in interfacial energies that occur over each of the dissipation ‘stick–slip’
events. It should be reiterated, however, that the discussion in this section does not change
the way in which 	̂σ (or equivalently −D) is evaluated, being defined solely in terms of
surface energy changes that occur over all dissipation events. Indeed, a key result of this
study is that D can be calculated based solely on these surface energy changes, rather than
needing to know the transient details of each individual dissipation event.

4. Discussion

4.1. Summary of key results
The contact-angle mechanical energy balance equations are summarised in table 1.
The requirements of inequality (3.29) have been combined with previous length scale
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Contact-angle hysteresis on rough surfaces

assumptions and interpreted as conditions on rcv and vcv . Additionally, O(lcv) = O(rcv) is
applied throughout. The limiting CV size variable rcv,grav is the capillary length that in this
analysis has originated from limiting the transport of gravitational potential energy during
the equilibrium stages of the energy balance. The three limiting CV velocities vcv,ke, vcv,vis
and vcv,cap have originated from limiting the transport of kinetic energy through the CV
boundaries during the equilibrium stages, limiting the rate of viscous dissipation occurring
at a molecular level around the moving TPCL during the equilibrium stages, and ensuring
that the duration of dissipation events occurring within the CV is small compared to the
duration of interface movement, respectively.

As shown in the table, the advancing angle analysis can also be applied to provide an
expression for the receding contact angle θr of phase©1 . As per figure 2, when phase©1
is advancing over the solid, phase ©2 is receding. Hence substituting θa = π− θr,2 into
(4.2), where θr,2 is the receding angle of phase©2 , and then swapping all indices (1↔ 2)
results in (4.3). Note that to distinguish between the two wetting processes, Da and Dr
have been defined individually as the specific dissipations occurring during the advancing
and receding of phase©1 , respectively, noting, however, that both are calculated using the
same equation but applied at different times. Note also that while σ2C and σ1C have not
been given specific ‘a’ and ‘r’ subscripts, they will not necessarily be the same between
an interface’s advance and recede. For example, if a liquid does not completely dewet a
surface when receding (and microdroplets are left behind), then σ2C during the recede will
be different than it was during the first advance. Similarly, σ1C may be different between
an advance and recede if (say) microbubbles/microdroplets formed under phase©1 during
the advance dissolve/evaporate prior to the interface receding over the same region again.
If, however, σ2C and σ1C do remain the same before and after an interface advance and
recede combination, then together (4.2) and (4.3) show that the cosine of the total CAH is
given by

σ12(cos θr − cos θa) = Da + Dr = Dt, (4.1)

where Dt is the total dissipation occurring over the advance and recede combination. While
this equation (or slight variations thereof) has been employed to model or analyse CAH in
previous works (e.g. de Gennes 1985; Reyssat & Quéré 2009; Ramiasa et al. 2013; Butt
et al. 2017), we do emphasise that it is valid only if σ2C and σ1C are unchanged after an
entire advance and recede cycle.

4.2. Application to various wetting regimes
We now analyse various wetting regimes using the contact-angle mechanical energy
balance.

4.2.1. Young’s
For a fluid advancing over a perfectly flat surface (that satisfies our other system
constraints), the phase©1 compound surface energy is σ1C = σ1s, the phase©2 compound
surface energy is σ2C = σ2s, and the specific roughness dissipation rate is Da = 0 as no
dissipation events occur during the TPCL advance. Application of (4.2) gives σ12 cos θa =
σ2s − σ1s, or via Young’s equation, θa = θe. Note that this relationship applies also to the
receding angle.
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We have
σ12 cos θa = σ2C − σ1C − Da, (4.2)

σ12 cos θr = σ2C − σ1C + Dr, (4.3)

subject to

hmol � hrough � rcv � hsurround, rcv,grav, (4.4)

vcv � min
(
vcv,ke, vcv,vis, vcv,cap

)
, (4.5)

where

σ1C =
∑
i<j

σij
A1C,ij

Acv
and σ2C =

∑
i<j

σij
A2C,ij

Acv
, (3.30a,b)

Da/r = −
N∑

k=1

∑
i<j

σij
	̂Aijk
Acv

, (4.6)

vcap = min
(

σ

μ
,

√
σ

ρ hrough

)
, (3.5)

vcv,ke =
√

σ

ρrcv
, (4.7)

vcv,vis =
√

σ

μ ln(rcv/hmol)
, (4.8)

vcv,cap = vcap
hrough

rcv
, (4.9)

rcv,grav =
√

σ

ρg
. (4.10)

Table 1. Equation summary for the contact-angle mechanical energy balance.

4.2.2. Wenzel
The Wenzel regime here means that both phases completely wet their corresponding
compound surfaces. Hence during advance, the phase ©1 compound surface energy is
σ1C = rσ1s and the phase ©2 surface energy is σ2C = rσ2s, where r is the roughness or
specific solid area (total solid area per projected solid area). Application of (4.2) gives
cos θa = r cos θe − Da/σ12, which is consistent with Wenzel’s equation, but augmented
by a roughness dissipation term. Here, increasing the roughness r can either increase
or decrease the advancing angle, depending on θe; however, increasing the roughness
dissipation Da always increases the contact angle.

4.2.3. Cassie–Baxter
In the general Cassie–Baxter case, f1 and f2 are defined as the wetted and non-wetted
liquid areas under the droplet per projected area, respectively, with r defined as per the
Wenzel case. Under these conditions, the phase ©1 compound surface energy is σ1C =
−f1σ12 cos θe + f2σ12 + rσ2s, and the phase ©2 compound surface energy is σ1C = rσ2s.
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(a) (b)

1 θa
θr

2 2 2 2 2 2 2 2

1

S SS S

Figure 4. Schematics illustrating how the various interface areas change during the dissipation events
occurring when a Fakir droplet/TPCL (a) advances or (b) recedes over a rough surface containing flat-topped
poles. In each case, the fluid/fluid interface (A12) shape that immediately precedes the dissipation event is
indicated in red, the fluid/fluid interface shape that immediately follows the dissipation event is indicated in
blue, and the other green fluid/fluid interface shapes represent equilibrium stages where the interface is moving
in a continuous manner. Note that the schematics are a two-dimensional representation of a three-dimensional
process.

Substituting into (4.2) gives cos θa = f1 cos θe − f2 − Da/σ12, which is consistent with the
analysis of Cassie & Baxter (1944), but again augmented with a dissipation term.

4.2.4. Fakir droplets
For a droplet resting on the top of flat ‘pole’ structures (e.g. super-hydrophobic ‘Fakir’
droplets existing on photolithography-based surfaces) the above Cassie–Baxter equation
can be combined with a simple model for the interface deformation occurring during
dissipation events to produce a quantifiable model of CAH.

First, we note that for this particular wetting regime, provided that the inherent Young’s
angle for the fluid combination is high (say θe � 90◦), the area fraction of the projected
solid surface covered in poles will be φ = f1 = 1− f2. Applying this relationship to the
previous Cassie–Baxter theory gives

cos θa = cos θCB − D′a and cos θr = cos θCB + D′r, (4.11a,b)

where cos θCB = φ(1+ cos θe)− 1 introduces the well-known equilibrium Cassie–Baxter
angle for this system, and the dissipations have been non-dimensionalised using D′a/r =
Da/r/σ12.

To develop expressions for the two dissipations, we refer to the schematics shown
in figure 4 that illustrate how the interfacial areas change as the TPCL advances in a
‘stick–slip’ manner.

Focusing first on the advancing case, when the fluid/fluid interface just touches the
next pole (indicated by the red interface profile in figure 4a), the local contact angle is
immediately in excess of its Young’s value, causing the local TPCL to rapidly slip across
the top of the pole. Indeed, the interface does not stop moving until the majority of the pole
top area is covered (indicated by the blue shape profile in the figure). This process, which
has been observed via high-speed photography (Jiang et al. 2019), results in dissipation.
Specifically, over this event, the area on the top of one pole changes from being wetted by
phase©2 to phase©1 , and the fluid/fluid interface is reduced by an amount that is almost
equal to the top area of the pole. Applying these concepts to (4.6) gives

D′a = φ(β + cos θe), (4.12)
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with β defined as the decrease in A12 occurring during a single advancing dissipation
event, normalised by the top area of one pole. From the above discussion we expect β ≈ 1.

The receding dissipation event is slightly more complex. As observed (Schellenberger
et al. 2016; Jiang et al. 2019) and indicated in figure 4(b), for the hydrophobic liquids
considered here, the local TPCL actually moves continuously across each pole top during a
recede, only ‘depinning’ from the pole (and dissipating energy) after the liquid contact area
has almost reduced to a single point (indicated by red in figure 4b). After being released
from the pole, the fluid/fluid interface rapidly adopts an equilibrium configuration, as
indicated by the blue profile in figure 4(b). Examining the change in interfacial areas that
occurs over this receding dissipation event, we see that they are primarily limited to a
decrease in A12, which we again express as a multiple (α) of the top area of the pole,
giving

D′r = φα. (4.13)

Given the kinematics of the event, we expect α to be a small but positive number.
Equations (4.11)–(4.13) relate the contact angles of Fakir droplets to the geometric

parameters α and β that describe the receding and advancing dissipation events,
respectively. In the limiting cases of β = 1 and α = 0, the equations predict that θa = 180◦
and θr = θCB, being angles that are approximately in line with measurements. Delving
deeper, however, we can use (4.11)–(4.13) to find the geometric parameters α and β that
produce the measured θa and θr for Fakir wetting, suggesting a method for predicting
these angles for similar wetting systems. Table 2 shows these data for water wetting
a hydrophobic surface structured with a staggered array of high-aspect-ratio posts, as
measured by Öner & McCarthy (2000). Three surface modifications were tested, giving
three different inherent contact angles (all θe > 98◦), with all having very low inherent
CAH (<9◦). The calculated α values vary from 0.17 to 0.2, and the β values vary
from 0.93 to 0.98, both of which are in line with theoretical expectations, and both
in narrow ranges suggesting that average parameters could be used to predict apparent
contact angles for similar hydrophobic systems. A broader range of experimental data is
analysed in the supplementary material available at https://doi.org/10.1017/jfm.2024.317
(see ‘1. Additional Fakir wetting data’), showing that in general, α values range between
approximately 0.2 and 1.5, and β values between 0.7 and 1, as a function of surface
structure, structure arrangement and inherent contact angle.

4.2.5. General application to predict contact angles
In general, the specific roughness dissipation Da and phase©1 compound surface energy
σ1C formed during an interface advance (equivalently Dr and σ2C during recede) cannot
be guessed from the solid topology alone and instead must be modelled from an
understanding of the fluid dynamics occurring within the CV, or measured. Additionally,
the phase©2 compound surface energy σ2C during advance (σ1C during recede) depends
on the history of the surface and must similarly be modelled or measured. Hence for
wetting regimes that are more complex than those analysed above, the contact-angle
equation (4.2) is a framework within which results from dynamic interfacial modelling or
measurements can be incorporated for specific combinations of solid topologies and fluid
phases. In a companion paper (Kumar & Harvie 2024), we use numerical simulations
of roughness-scale interface dynamics during Wenzel wetting to predict CAH, finding
excellent agreement with published experimental results. These simulations use no fitting
parameters. Additionally, in Kumar, Mulvaney & Harvie (2024), we use contact-angle
measurements on a variety of randomly and periodically structured surfaces wetting in
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Figure 5. Regions of validity (shaded) for the contact-angle energy analysis based on a typical water/air
system. The velocity limits vcv,cap, vcv,ke and vcv,vis, and the entire shaded validity region (dark grey plus
light grey), assume that the CV size depends on the solid roughness according to rcv/hrough = 10. Conversely,
the velocity limits v′cv,cap, v′cv,ke and v′cv,vis, and the light grey validity region, assume that the CV size is
constant at the maximum allowable value of rcv = rcv,max = rcv,grav/10.

the Wenzel regime to develop correlations for Da/r, while also using the framework to
determine under what conditions alternative wetting states may occur, thus delimiting the
validity range for the results.

4.3. Range of validity
A strength of this analysis is that (4.4) and (4.5) specify the conditions under which (4.2)
is valid. Continuing the discussion from § 3.2, we examine what physical limitations these
conditions place on applying the theory to the common water/air system, with results
shown in figure 5.

In terms of length scales, evaluating rcv,grav from (4.10) requires that rcv � rcv,grav =
2.7 mm, which is satisfied if we adopt rcv � 0.27 mm for the water system (i.e. one order
of magnitude less). From the separation of length scales in (4.4), this in turn places an
upper constraint on the roughness applicable under the theory of hrough � 27 μm, which
is indicated by the right-hand bound of the shaded area in figure 5. Hence gravitational
effects place an upper limit on the size of roughness applicable under this theory. At the
small scales, we also require that hmol � hrough, and given that the molecular size of water
is approximately 0.27 nm, this places a lower limit on hrough of approximately 2.7 nm, as
indicated by the left-hand bound of the shaded area in figure 5. Note that some theories use
a larger length cut-off of 100 nm in their analysis, citing the influence of van der Waals and
double-layer forces at these length scales (de Gennes 1985); while still continuum forces,
these are not accounted for in our hydrodynamically based framework. Non-continuum
effects such as thermal fluctuations that could influence interface topologies at very small
length scales are also not considered. Hence, while the lower roughness size limit of this
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theory requires further validation, overall the conclusion is that CAH can be significant
even for surfaces that have very small-sized roughness (at least in an engineering sense),
a conclusion that is supported by experiments (Delmas, Monthioux & Ondarçuhu 2011;
Fetzer & Ralston 2011; Ramiasa et al. 2013).

In terms of the speed at which the CV can travel for the theory still to be valid (i.e. vcv),
the constraints partly depend on how the size of the CV is defined, or equivalently, at what
distance from the solid (or TPCL) we are measuring the ‘macroscopic’ advancing angle θa.
We consider two scenarios: in the first, the CV size (or measurement distance) decreases
with hrough such that rcv/hrough = 10; in the second, the CV size (or measurement
distance) is kept constant at the maximum value of rcv = 0.27 mm as determined by (4.4).
The various limiting velocities corresponding to the decreasing CV size case are indicated
by vcv,cap, vcv,ke and vcv,vis in figure 5, while the limiting velocities corresponding to the
constant CV size case are indicated by v′cv,cap, v′cv,ke and v′cv,vis. Similarly, the ranges of
theory validity are shown in the figure by the entire shaded region for the decreasing CV
case, and by the light shaded region for the constant CV case.

For both CV size (or measurement distance) scenarios, the capillary velocity constraint –
which is an interpretation of (3.6) and requires that the total dissipation event time during
the advance (τcap) is less than the total advance time (τ ) – limits the advance velocity
over the entire range of applicable roughness scales. As was discussed in § 3.2 and
shown in figure 5, the capillary velocity vcap for this water system increases as hrough
decreases, reaching∼72 m s−1 below hrough = hrough,crit ≈ 14 nm. For the decreasing CV
size scenario, this velocity constraint allows vcv to remain at practically large values (of
∼0.72 m s−1) even at the lowest limit of applicable hrough. For the constant CV scenario,
however, the capillary velocity constraint decreases the viable vcv as hrough decreases,
reaching∼70 μm s−1 at the lowest applicable hrough ≈ 2.7 nm. Note that the link between
measurement distance (or CV size) and contact angle has been made previously in the
context of viscous-dissipation-based dynamic contact-angle models (e.g. de Gennes 1985).

A practical implication of this result is that for most surface roughness sizes and
macroscopic angle measurement distances, there is a large range of interface velocities
under which the interface will adopt its static (rather than dynamic) advancing angle. At
the highest valid solid roughnesses, which are in the tens of microns range, the advancing
angle will equal the static angle until the interface is moving faster than several cm s−1.
Conversely, at the lowest valid roughnesses, the maximum advance velocity at which the
contact angle equals its static value depends on the angle measurement distance. However,
even using the largest measurement distance combined with the smallest roughness,
the maximum applicable advance velocity is still approximately 0.1 mm s−1, which is
certainly an experimentally accessible value for performing contact-angle measurements.
In general, these results emphasise that for most chemically homogeneous/inert surfaces
used in engineering applications, CAH depends more on surface roughness topology than
interface velocity.

As discussed previously, for the constant CV size scenario – that is, the largest angle
measurement distance, which is also arguably the most experimentally relevant – the upper
velocity constraint is determined by v′cv,cap, which ensures that all dissipation events occur
independently in time. It is possible that this constraint could be relaxed if a different
approach to the energy balance were adopted, specifically allowing several spatially
independent dissipation events to occur concurrently. This route is more mathematically
onerous, but could extend the theory to faster velocities in cases where the CV size
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(measurement distance) is macroscopic (i.e. mm) and the roughness much smaller. Note
that if the v′cv,cap restraint were relaxed, then the next constraint on the dynamic contact
angle would come from v′cv,ke, which is related to kinetic energy transport through the CV
volume, rather than viscous dissipation (v′cv,vis). Interestingly, previous theories have used
viscous or molecular energy dissipation occurring around the TPCL to predict dynamic
contact angles (Moffatt 1964; Huh & Scriven 1971; Voinov 1976; de Gennes 1985; Petrov
& Petrov 1992); however, the present energy conservation framework suggests that kinetic
energy transport should be considered as well (or instead).

It is interesting that aside from these length scale and velocity constraints, there is
no reference to the absolute size of the surface roughness contained within the energy
analysis. While models of D, σ1C and σ2C may in some cases depend on the absolute size
of the surface roughness, it is likely that for many fluid combinations and solid topologies,
they depend only on the topology of the roughness. As discussed in the Introduction, this
is consistent with a growing number of observations (Öner & McCarthy 2000; Dorrer &
Rühe 2008; Li et al. 2016; Jiang et al. 2019).

4.4. Other model limitations
In addition to the advance velocity, roughness size and CV size constraints discussed in the
previous subsection, other assumptions used in the derivation of the contact-angle energy
balance will not be valid for some systems, but could form avenues for future work.

Inherent in the contact-angle framework and enabling MMEB presented in § 2 is the
assumption that there is no irreversible work involved in interface creation or destruction.
This implies that the underlying smooth surface has no inherent hysteresis. Physically,
irreversibilities could be present in a system due to chemical or molecular effects
associated with interface formation, including energy losses due to surfactant adsorption
or other surface-based molecular rearrangements. In the context of dynamic contact-angle
modelling, work has been done to incorporate molecular dissipation and adsorption
when predicting advancing contact angles (e.g. Blake & Haynes 1969; de Gennes 1985;
Brochard-Wyart & de Gennes 1992; Karim 2022). Following this work and recognising the
parallels between these interfacial formation irreversibilities and dissipation due to TPCL
jumps, it is likely that this irreversible interfacial work would appear in the contact-angle
energy balance as a dissipation term that is in addition to the hydodynamically based D, but
this does require reformulation of the MMEB and application to the moving contact-line
problem to show rigorously. A further assumption used by the model is that the solid is
chemically homogeneous. This assumption could be relaxed in a straightforward manner
by including more than one solid interface type in the contact-angle energy analysis.

Another limitation of the presented work is that the fluids are assumed to be
incompressible, and no dissolution or evaporation of the fluids is permitted. Both of these
assumptions are physically limiting when one of the phases is a gas. Physically, a gas will
behave differently to a liquid in cases where a micro-bubble is formed within the solid
roughness, caused by the specific dynamics of the fluid interface as it advances over solid
defects. Within a formed micro-bubble, the Laplace pressure may be high (O(σ/hrough),
depending on the specific bubble geometry, however), which will cause the density of
gas to increase and hence the volume of the micro-bubble to decrease. How significant
these affects are depends on the bubble size, interfacial tension and gas equation of state.
Further, high pressures within the bubble will drive gas dissolution into the surrounding
fluid phase, further reducing the volume of the formed micro-bubbles. These changes to
the micro-bubble size will in turn affect the leaving compound solid surface energy σ1C,
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affecting the predicted advancing contact angle. In terms of the energy framework, fluid
compressibility could be implemented quite easily by relaxing the ∇ · v = 0 constraint
used when evaluating the boundary pressure work terms. Gas dissolution is more complex,
however, as this process is transient, so the framework would need to recognise over what
time scale the dissolution process is taking place, and hence where in the energy balances
the changes in (particularly) interfacial energy should occur. Micro-droplet evaporation is
a related phenomenon not accounted for by the theory that could also change σ1C and σ2C
depending on the wetting history of the solid surface and volatility of the fluids. It would
be interesting to account for dissolution and evaporation effects within this framework as
both introduce a transient or history effect to the wetting behaviour of the system. Again,
this suggests avenues for future theoretical and experimental research.

A further limitation of the theory relates to the size of roughness considered. As
presented, the roughness is characterised by a single length scale hrough that represents both
the height of surface defects and the spacing between them. An extension to this theory
could distinguish between these two length scales, allowing a more tailored analysis of
surfaces composed of a dilute number of strong defects. A second assumption relating
to the size of the defects is that only one length scale is considered in the analysis,
whereas real surfaces (particularly biological inspired super-hydrophobic surfaces) can
possess a hierarchical range of roughnesses (Feng et al. 2002). A potential extension of
the theory would be to use a cascade of CV sizes to predict the CAH at each length
scale, with the interfacial modelling at each length scale determined from CAH predictions
performed using smaller length scale CVs. In this way, the macroscopic CAH range could
be determined from knowledge of roughness topologies at each length scale.

Finally, the stress model for the solid material used in this study effectively implies that
there are no energy changes occurring within the CV that are related to the solid phase.
More complex solid stress models could certainly be incorporated into the framework,
representing (for example) the advance of fluids over soft or semi-liquid materials.
Introducing deformable solids would not only introduce additional dissipation, but would
also require additional dynamical modelling or measuring of the fluid, solid and interfacial
behaviours occurring around the TPCL. This is also the topic of ongoing work.

4.5. Relationship to other theories of roughness-induced CAH
As alluded to in the Introduction, the present theory answers many questions that were
hitherto open in the roughness-induced wetting field.

For several decades, there has been controversy regarding the validity and applicability
of the Wenzel and Cassie–Baxter equations, with one recent review even suggesting
that these equations ‘must not be used in scientific articles’ (Erbil 2021). The present
theory, however, shows that these angles represent the zero-dissipation limits of moving
contact lines in their respective wetting regimes, so both are important in locating and
defining their respective CAH ranges. As a related question, there has long been an
uncomfortable relationship between the use of thermodynamics and energy conservation
in predicting CAH. In the present context, thermodynamic analysis involves choosing
system conditions that minimise the free energy of a system. In agreement with recent
analysis (Shardt & Elliott 2020), we contend that thermodynamics is not relevant for
predicting CAH as by definition the CAH range is delimited by the advancing and receding
angles, and these angles, again by definition, require the TPCL to move. The energy
transfers that occur during interface movement are constrained by the kinematics of the
interface shapes and fluid flow, as well as by energy conservation, rather than being
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θe θa θr θCB α β D′a D′r D′t
98 173.7 138.0 141.7 0.17 0.98 0.209 0.042 0.251
104.5 173.3 139.7 144.4 0.20 0.97 0.181 0.050 0.231
114.5 169.3 143.7 148.6 0.19 0.93 0.129 0.048 0.177

Table 2. Contact angles measured by Öner & McCarthy (2000, table 1) for water droplets exhibiting Fakir
wetting on silane-modified hexagonally arrayed 40 μm high square posts, as a function of equilibrium contact
angle. The parameters shown are averages of data from poles of three different widths (having the highest aspect
ratios), and the equilibrium contact angles (θe) were calculated from the average of the flat surface advancing
and receding angles. For all cases, φ = 0.25.

purely thermodynamic processes that tend to an equilibrium state by dissipating energy
to the surrounding environment. It is reassuring that thermodynamics predicts the same
‘equilibrium’ Cassie–Baxter angle for Fakir wetting as predicted by the present energy
conservation method, under the assumption of zero ‘stick–slip’ dissipation (Shardt &
Elliott 2020).

Another controversy in the field relates to whether area fractions (and indeed, surface
properties) under entire droplets, or just in the locality of the TPCL, should be used to
calculate CAH (Extrand 2003; Gao & McCarthy 2007a,b; McHale 2007; Nosonovsky
2007; Panchagnula & Vedantam 2007; Marmur 2022). Our analysis shows that CAH can
be explained by energy conservation around the TPCL, rather than being a property of the
surrounding flow system, and that the relevant area fractions used in the analysis (i.e. A2C,ij
and A1C,ij) represent those of the compound surfaces as they are advected into and out of
the TPCL region. It is interesting that a group of publications has attempted to explain
CAH by proposing modified local area fractions to use in the Cassie–Baxter equation that
purportedly measure differential or contact-line-averaged roughness (McHale 2007; Choi
et al. 2009; Erbil & Cansoy 2009; Raj et al. 2012; Xu 2016). Another group of publications
contends that the observed contact-angle results from linear averaging of local contact
angles existing along the TPCL (Extrand 2002). The present analysis does not support
either of these concepts, instead showing that CAH has its origins in energy dissipation
rather than simply a redefinition of φ or averaging of local angles.

We have applied our theory in a quantitative sense to the Fakir wetting state (see § 4.2.4).
Equations (4.11a,b) show that the advancing and receding angles during Fakir wetting
are related to the Cassie–Baxter angle by the dissipation that occurs during each of the
movement stages, and consequently that the total dissipation that occurs around an advance
and recede cycle (Dt) is composed of both the advance- and recede-stage dissipations.
This observation is in contrast to some previous studies that assume that dissipation during
advance is negligible (Reyssat & Quéré 2009; Butt et al. 2017). Notably, our theory applied
to experimental data shows that the dissipation occurring during the advance stage is
generally a very significant contribution to the total dissipation (from 73 % to 83 % in
table 2). Confusingly, some previous studies also suggest that the advancing angle of a
Fakir droplet is always 180◦, and that measurement error is the cause of deviation from
this value (Schellenberger et al. 2016). In reality, the dissipation during advance is actually
at a maximum when θa = 180◦, and while we acknowledge the difficulties of measuring
high advancing contact angles, a Fakir advancing angle that is less than 180◦ is consistent
with theory and has been observed by multiple researchers.

The total dissipation Dt that occurs over an advance and recede cycle is an important
parameter as it determines the mobility of the TPCL, or equivalently, the mobility of
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a droplet. To reduce this total dissipation during Fakir wetting equation (4.12) shows
that Da can be minimised by using the lowest possible φ that still ensures Fakir stability
– that is, the droplet remains tethered to the post ridges, and no interface touches the
base of the structure – and by using a liquid, solid and structure combination that gives
β − cos θe closest to zero. In practice, biologically inspired super-hydrophobic surfaces
use hierarchical roughness to provide effectively large θe at each length scale (matching
β ≈ 1), noting that flat-surface contact angles have a maximum of approximately 120◦
for chemically homogeneous and inert surfaces. The value of Dt can also be decreased by
decreasing Dr, which also decreases with φ as described by (4.13), but is also proportional
to the geometry-dependent parameter α.

Using the present theory applied to Fakir wetting, predictions of CAH can be made by
choosing suitable values of the dissipation geometrical parameters α and β. Interestingly,
β, which is concerned with the destruction of fluid/fluid interfaces during the advance
event, appears to be approximately 1 for staggered arrays of roughness structures, but
approximately 0.7 for roughness structures arranged in regular arrays. This suggests that
less interface ‘slip’ motion occurs during the advance dissipation event in the latter case
(see supplementary material, ‘1. Additional Fakir wetting data’). As shown in table 1
in the supplementary material, α, which is concerned with the destruction of fluid/fluid
interfaces during the recede event, seems to be lower for staggered arrays as opposed
to regular arrays, and lower for less complex pole cross-sections such as squares/circles
as opposed to stars/crosses/diamonds, with both presumably related to the way the
fluid/fluid interface deforms about the roughness structures during the liquid release. It
is conceivable that α could be also influenced by very local topology effects due to (e.g.)
manufacturing roughness/tolerances. However, for staggered arrays of circular poles, the
data are reasonably well described by α ≈ 0.3, while α ≈ 1 for the examined regular
arrays. As discussed in the supplementary material, the correlations of Jiang et al. (2019)
and Reyssat & Quéré (2009) do not adequately describe the recede dissipations.

Equations that are similar in form to (4.1) have been used previously to describe
roughness-induced CAH; however, the terminology or mechanism represented by the
dissipation term varies (e.g. Priest et al. 2009; Reyssat & Quéré 2009; Ramiasa et al.
2013; Butt et al. 2017; Zhu & Dai 2019; Iliev, Pesheva & Iliev 2023). In summarising
their experimental results (see the supplementary material), Priest et al. (2009) use an
equivalent Dt defined as φ times a ‘pinning energy’ that is mathematically consistent
with our Fakir model. Others refer to the equivalent Dt as a roughness-induced ‘work of
adhesion’; however, its precise definition varies. Butt et al. (2017), for example, calculated
this work term as the amount of energy required to stretch the fluid/fluid interface away
from the top of a pole during a recede motion. This is similar to, but not equivalent to, the
dissipation derived in our analysis, in that it compares the energy state of the fluid/fluid
interface before and after stretching (but in both cases still ‘attached’ to the solid), whereas
the present dissipation term compares total surface energy between when the interface is
stretched and after it depins and assumes an equilibrium shape. As reported, the Butt
et al. (2017) analysis found ‘work of adhesion’ terms that were 2–3 times larger than that
required to describe the Öner & McCarthy (2000) or Bico, Marzolin & Quéré (1999)
regular pole data, despite also neglecting any contribution to CAH from the advance
motion. (Additionally, as shown in table 2, for these particular datasets, the dissipation
that occurs during receding is actually a much smaller contribution to the total dissipation
than that occurring during the advance.) Reyssat & Quéré (2009) used a similar conceptual
model for modelling their Fakir data. Zhu & Dai (2019) proposed that the total dissipation
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is proportional to the intrinsic CAH; however, this concept is not supported by the data
shown in the supplementary material. A major advance of the present study is that Dt, Da
and Dr are all defined unambiguously.

Other studies have proposed a completely new ‘friction tension’ term to explain CAH
that again is used directly in place of the total dissipation term (Makkonen 2017). This
tension is hypothesised to resist interface movement, and have a value equal to the
energy of whatever surface is being formed. However, application of the theory on even a
perfectly smooth and chemical homogeneous/inert surface leads to CAH values that have
cos θr − cos θa ≈ 0.5, equating to a CAH of approximately 30◦ for intermediate wetting
systems. Smaller CAH for such surfaces can be achieved, however, largely invalidating
this theory (Extrand 1998; e.g. 3◦ for water on octadecyltrichlorosilane). As discussed
previously, line tension has been neglected in this study; however, if it were to be included,
then the relevant D would be augmented with a k/(hsurround σ12) term, where k is the line
tension (in N) (Gaydos & Neumann 1987). For this term to be significant for millimetre
size droplets requires k to be O(10−4) N; however, experimental or theoretical estimates
put this parameter in the range 10−9−10−6 N or 10−10 N (Amirfazli & Neumann 2004),
respectively, supporting the neglect of this force, at least at this length scale. Huang (2020)
uses a similar ‘string’ tension concept to explain CAH. Note that as discussed previously,
we have used the present theory combined with dynamic interface simulations (Kumar &
Harvie 2024) to predict homogeneous wetting CAH ranges, finding excellent agreement
with experimental results without the use of any friction, line or string tension concepts.

Finally, and as also discussed in the Introduction, some studies contend that contact-line
distortion is the primary origin of roughness-induced CAH (Pomeau & Vannimenus 1985;
Robbins & Joanny 1987; Öpik 2000; Raj et al. 2012). However, from the present analysis,
distortion of the contact line, without the subsequent ‘stick–slip’ behaviour caused by
strong defects (Joanny & de Gennes 1984), does not cause CAH (at least under our
assumption of molecularly reversible interface creation). Distortion of the contact line is
captured in the present mechanical energy balance via the surface potential contained in
T0 (see (3.11) and (3.12)), which ends up being O(hrough/Xcv) smaller than the dominant
terms (third term on the left-hand side of (3.26)) and so is not significant. Distortion of the
contact line is, however, required to produce the ‘stick–slip’ motion required for energy
dissipation, explaining why both proposed mechanisms share this observable trait.

5. Conclusion

Starting from a statement of momentum conservation, a mechanical energy conservation
framework has been derived that allows the contact-angle hysteresis (CAH) range to be
predicted from knowledge of the interfacial dynamics that occurs around an advancing
three-phase contact line (TPCL). Unlike most previous works, the analysis is not specific
to a particular wetting regime (e.g. Cassie or Wenzel) or particular surface structure (e.g.
holes, poles, periodic, dilute). As a demonstration application, we have applied the theory
to analyse the Fakir wetting regime using a model of how surface areas change during the
advancing and receding ‘stick–slip’ dissipation events.

The analysis resolves a number of questions about wetting on rough surfaces that have
been the source of confusion in the literature. We show:

(i) how energy conservation can be applied to the advancing TPCL for any
roughness-induced wetting situation;
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(ii) that the Wenzel and Cassie–Baxter angles are contained within the relevant CAH
ranges, provided that the whole advance and recede motion is reversible, and that
the wetting behaviour remains in the respective ranges;

(iii) how energy dissipation occurring during the advance of a Fakir interface is
significant, and often larger than that occurring during the recede;

(iv) that contact-line distortion will not produce CAH in the absence of ‘stick–slip’
energy dissipation events.

Many limitations of the framework have been discussed and could form the basis
of future extensions, including considering compressible, evaporating or dissolving
fluids, irreversible work associated with interface creation or destruction, solid chemical
heterogeneity, soft solids, and non-negligible CV advance speeds. In companion papers,
the presented theory has been used successfully as a basis of numerical simulations to
predict Wenzel wetting CAH on periodic surfaces (Kumar & Harvie 2024), to develop a
correlation for the energy dissipation occurring during the Wenzel wetting of randomly
structured surfaces (Kumar et al. 2024), and to demarcate the limits of Wenzel wetting by
identifying alternative wetting regimes (Kumar et al. 2024).

6. Nomenclature

Arabic
Aij area of ij interface type
A2C,ij area of ij interface type entering CV as part of compound solid and phase©2 interface
A1C,ij area of ij interface type leaving CV as part of compound solid and phase©1 interface
Acv projected area of solid surface swept by CV over advance duration
	̂Aijk change in interfacial area ij during dissipation period k
Ca roughness-scale capillary number (vcapμ/σ )
D total energy dissipation occurring during advance
ek coordinate unit vector in direction k
g gravity vector
hrough length scale of solid surface roughness
hrough,crit length scale of solid surface roughness that delimits viscous and inertial fluid flow regimes
hsurround length scale of surrounding flow
hmol length scale of molecular or non-continuum effects within the fluid
I identity tensor
lcv length of CV
ncv outward normal to surface of CV
nS,ij unit normal vector of ij interface type, directed into phase i
m number of material phases present within CV
p pressure
p0 reference pressure
p̂ pressure within the fluid during a dissipation period
p̃ pressure within the fluid during an equilibrium period
rcv radius of CV
rcap distance to centre of dissipation event
rcv,grav capillary length
Re roughness-scale Reynolds number (ρvcap hrough/μ)
Scv surface of CV
Scv,cir circumferential surface of CV
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Scv,end end surface of CV
Scv,br circumferential surface of CV at the bottom right containing compound solid interfaces
Scv,bl circumferential surface of CV at the bottom left containing compound solid interfaces
Scv,top circumferential surface of CV at the top containing interface type 12
Scv,fluid surface of CV within fluid phases
t time
t̂k start of dissipation period k
t̃k start of equilibrium period k
	̂tk duration of dissipation period k
	̃tk duration of equilibrium period k
T̄i energy term i corresponding to total analysis period
T̂i,k energy term i corresponding to dissipation period k
T̃i,k energy term i corresponding to equilibrium period k
V volume
Vcv volume of CV
Vcv,fluid volume of CV containing fluid phases←−
V volume swept by Scv,bl over advance duration−→
V volume swept by Scv,br over advance duration
v velocity
vcap speed of fluid movement during dissipation events
vcv speed of CV advance
vcv velocity of CV advance
ṽ velocity of fluids during equilibrium periods
v̂ velocity of fluids during dissipation periods
∇̃v velocity gradient within fluids during equilibrium periods
∇̂v velocity gradient within fluids during dissipation periods
We roughness-scale Weber number (ρv2

cap hrough/σ )
Xcv distance travelled by CV during total analysis period
xcv distance from start of CV travel
xcap location of dissipation event
xs,ij location of ij interface type

Greek
δ one-dimensional Dirac delta function
δS,ij surface delta function for ij interface type
	̂σ sum of change in surface energies occurring over all dissipation events
μ viscosity
Φ̂ gravitational potential function
ρ density
σ energy per unit area (interfacial tension)
σij energy per unit area (interfacial tension) of ij interface (between phases i and j)
σ2C compound energy per unit area of solid surface entering the CV from the right and under

phase©2
σ1C compound energy per unit area of solid surface leaving the CV on the left and under phase©1∑

i<j sum taken over all interface types (=∑j=1
∑j−1

i=1)
T M material stress tensor
T S interfacial stress tensor
τcap total duration of dissipation events occurring during CV advance
θa macroscopic advancing angle of phase©1 in phase©2
θr macroscopic receding angle of phase©1 in phase©2
θe equilibrium angle of phase©1 in phase©2

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.317.
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Appendix A. Properties of the surface delta function (δS)

In this appendix, we derive three properties of the surface delta function that are used in
§ 2 in the derivation of the MMEB.

A.1. Volume integral of the surface delta function
We start with some definitions: for an interface that lies between a specific combination of
immiscible materials, the surface delta function is given by Lafaurie et al. (1994)

δS(x) = δ(q1), (A1)

where q1 is the distance between x and the closest point on the interface surface, and δ is
the one-dimensional Dirac delta function. As δ = 0 when q1 /= 0, (A1) shows that δS is
non-zero only on the interface surface.

For the analysis that follows, we require a more specific relationship between x and q1
that is consistent with (A1): given that q1 = 0 defines the interface surface, we specify the
location of any point x that is near the surface via a series of coordinates q = (q1, q2, q3)
such that

x(q) = xS(q2, q3)+ q1 nS(q2, q3). (A2)

Here, q2 and q3 are a pair of convected surface coordinates (Aris 1962) that uniquely locate
a material particle at xS that lies on the interface surface, and nS is a unit normal to the
surface at xS that is (consistently) directed into one of the phases. As xS moves with the
material, when q2 and q3 are held constant, we have

dxS

dt
= v, (A3)

where v is the local material velocity.
Lines of constant q2 and q3 define the surface coordinate lines. As the surface

coordinates move with the material, the coordinate lines will not in general be orthogonal
to each other, even if they are initially. Provided that all material strain rates remain finite,
however, they will not become coincident. This is important as it means that provided xS
can be defined uniquely in terms of q2 and q3 at some particular time, a unique relationship
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ε

V

xS(q2, q3)

x(q)

â1= nSq1

â3

â4

â2

S

ε

Figure 6. The smooth interface surface S separates two immiscible materials within a volume V . Expressed
in terms of the convected surface coordinates (q2, q3), S is constant for all time.

between xS and (q2, q3) will be realisable for all time (on a smooth and continuous
surface).

To derive (2.3) and (2.7), we utilise a volume V that contains two immiscible materials
that are separated by such a single smooth and continuous interface – surface S (see
figure 6). The surface completely spans V such that the circumference of S occurs along
the boundary of V . As the velocity within S is equal to that of the material (by (A3)), the
boundary location of S is constant for all time when expressed in terms of the convected
surface coordinates q2 and q3. Formally, V is constructed by projecting both above and
below S in the direction of ns a distance ε. Hence within V , −ε < q1 < ε, and provided
that ε is small enough, the relationship between x and q expressed by (A2) will be unique.

To derive (2.3), we integrate the surface delta function over V and express the integral
in terms of the new coordinate system q:∫

V
δS(x) dx =

∫
V

δ(q1)

[
∂x
∂q1

·
(

∂x
∂q2
× ∂x

∂q3

)]
dq. (A4)

As the Dirac delta function δ(q1) is non-zero only for q1 = 0, the Jacobian in this equation
(the term in square brackets) need be evaluated only for q1 = 0. Hence, utilising (A2) to
evaluate the partial derivatives, (A4) becomes∫

V
δS(x) dx =

∫ ε

−ε

δ(q1) dq1

∫
S

nS · (a2 × a3) dq2 dq3, (A5)

where

a2 = ∂x
∂q2

∣∣∣∣
q1=0
= ∂xS

∂q2
and a3 = ∂x

∂q3

∣∣∣∣
q1=0
= ∂xS

∂q3
(A6a,b)
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are two non-coincident vectors that are tangential to S at xS. By definition of the Dirac
delta function, the first integral on the right-hand side of (A5) is equal to 1 (as ε is a small
positive number). For the second integral, we note that the vectors a2 and a3 are both
orthogonal to nS, hence without loss of generality, we define

nS = a2 × a3

|a2 × a3| . (A7)

This allows the volume integral of δS to be written as∫
V

δS(x) dx =
∫

S

∣∣∣∣∂xS

∂q2
× ∂xS

∂q3

∣∣∣∣ dq2 dq3 =
∫

S
dS = A, (A8)

where A is the area of surface S (Kreyszig 2006, p. 454, § 10.6). Noting that any
volume containing arbitrary surfaces can be composed of volumes that contain smooth
and continuous surfaces and volumes that contain no surface (in which (A8) is trivially
satisfied), (2.3) from the main text results.

A.2. Surface delta function transport equation
To derive (2.7), we take the derivative of (A8) with respect to time. Recognising that the
boundary location of S is constant in terms of q2 and q3, the time derivative commutes
into the integral, giving

d
dt

∫
V

δS(x) dx =
∫

S

d
dt

[|a2 × a3|] dq2 dq3. (A9)

Performing the differentiation and (re)introducing the Dirac delta function leads to

d
dt

∫
V

δS(x) dx =
∫ ε

−ε

δ(q1) dq1

∫
S
A(q) |a2 × a3| dq2 dq3 (A10)

=
∫

V
δ(q1)A(q)

[
∂x
∂q1

·
(

∂x
∂q2
× ∂x

∂q3

)]
dq

=
∫

V
δS(x)A(x) dx, (A11)

where

A = a2 × a3

|a2 × a3|2 ·
[

da2

dt
× a3 + a2 × da3

dt

]
(A12)

is a function of the local surface geometry.
To simplify the expression for A, we recall from (A5) that the surface integral in (A10)

that contains A is evaluated under the condition q1 = 0. Assuming this condition, we
combine (A3) and (A6a,b) to derive the identity

da2

dt
= d

dt

(
∂xS

∂q2

)
= ∂

∂q2

(
dxS

dt

)
= ∂v

∂q2
= ∂x

∂q2
· ∇v

= ∂xS

∂q2
· ∇v = a2 · ∇v. (A13)
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Contact-angle hysteresis on rough surfaces

Substituting this and an analogous result for da3/dt into (A12) yields

A = β2(â2 × â3) · [(â2 · ∇v)× â3 + â2 × (â3 · ∇v)], (A14)

where

â2 = a2

|a2| and â3 = a3

|a3| (A15a,b)

are unit vectors in each of the two surface coordinate directions, and β = |â2 × â3|−1.
We now define a fourth unit vector â4 that is coplanar with â2 and â3 (and hence

tangential to S) such that the vectors (nS, â2, â4) form a right-handed coordinate system at
xS (as shown in figure 6). As the orientation of â4 obeys nS = â2 × â4, the new vector can
be expressed as

â4 = αâ2 + βâ3, or â3 = 1
β

(â4 − αâ2), (A16a,b)

where α is a finite scalar, and (A7) has been used. Substituting (A15a,b) into (A14) yields,
after some simplification,

A = (â2 × â4) · [(â2 · ∇v)× â4 + â2 × (â4 · ∇v)]. (A17)

Employing the identity (Bird et al. 2002, p. 814, § A.2)

[u× v] · [w× z] = (u · w)(v · z)− (u · z)(v · w), (A18)

and noting that â2 · â4 = 0, leads to

A = â2â2 : ∇v + â4â4 : ∇v = (I − nSnS) : ∇v, (A19)

where I is the unit tensor.
With A defined, we return to the development of (A11). Noting that for δS /= 0, the

boundary of V moves at the local material velocity v, the left-hand side of this equation
can be expanded using the Leibniz formula for differentiating a volume integral and the
Gauss–Ostrogradskii divergence theorem. On the right-hand side we substitute A from
(A19). These operations yield∫

V

∂δS

∂t
dx+

∫
V

∇ · (δSv) dx =
∫

V
δS(I − nSnS) : ∇v dx. (A20)

Equation (A20) is valid for a specific volume geometry that contains a single smooth and
continuous interface surface. However, (A20), like (A8), is trivially satisfied in volumes
that contain no interface surface. As any volume can be composed of volumes that contain
a smooth and continuous interface surface, and volumes that contain no interface surface,
(A20) must hold for any arbitrary volume. Hence (A20) must hold at all locations and (2.7)
from the main text results.

A.3. Surface integral of the surface delta function
In order to apply the mechanical energy balance of (2.10), we also need to be able to
evaluate the integral of the surface delta function over a surface. In the following, we
derive (2.4) that is given in the main text for this purpose.

The derivation is based on a small amount of interfacial area, 	A, that has a length of
	l, and that is contained within a small element of volume 	V . The volume element is
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δS

n
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�l

�V �S

ε
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δS

n

nS

�V

�S

ε

�A

(a)

(b)

Figure 7. The two-dimensional integral of the delta function.

thin in the direction of n, having a thickness of ε in this direction, so that 	V = ε 	S,
where 	S is a small part of a larger surface S. Figures 7(a,b) describe this geometrical
system using a projection and cross-section, respectively.

The starting point for the analysis is the definition of the surface delta function, i.e. (2.3),
applied to the small volume 	V . This gives

	A =
∫

	V
δS dV =

∫ ε/2

−ε/2

∫
	S

δS dS dxn ≈ ε

∫
	S

δS dS, (A21)

where xn is a coordinate in the direction of n centred on 	A. The last equality holds true
for small ε. Meanwhile, for small 	A, nS is approximately uniform over 	A, and the
geometry of the intersecting surfaces gives (see figure 7b)

	A = 	l ε√
1− (nS · n)2

. (A22)

Equating (A21) and (A22) leads to∫
	S

δS dS = 	l√
1− (nS · n)2

. (A23)

Finally, recognising that 	S is a small section of a larger surface S, and that 	l is a
small section of the entire intersection between S and δS that has length l, (A23) can be
generalised in the limit 	l→ 0 to∫

S
δS dS =

∫ l

0

dl′√
1− (nS · n)2

, (A24)

where l′ is a path length parametrisation of the curve that is defined as the intersection
between S and δS, and nS · n is a function of l′. Equation (A24) is the most general form
of this surface delta identity; however, by assuming that nS · n is independent of the path
length l′, (2.4) from the main text results.
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Contact-angle hysteresis on rough surfaces

Appendix B. Examining each term in the contact-line energy balance

The objective in this appendix is to apply the physical system and material dynamics
models defined in §§ 3.1 and 3.2 to each term in the contact-line energy balance of (3.25),
finding either its analytical expression or order of magnitude.

B.1. Examining term T̄0

This term represents the change in mechanical energy within the CV between the start and
end of the advance. Defining the notation 	a = a(t = τ)− a(t = 0), T̄0 can be expressed
using (3.11) and (3.12) as

T̄0 = 1
Acv

	E

= 1
Acv

∫
Vcv

1
2

	(ρv2) dV + 1
Acv

∫
Vcv

�	ρ Φ̂ dV +
∑
i<j

σij 	Aij

Acv
. (B1)

The first term on the right-hand side of this equation captures changes to the kinetic
energy within the CV between the start and end of the advance. As both t = 0 and
t = τ are within equilibrium periods, changes to ρv2 within the CV between t = 0
and τ will be limited to a fluid volume that is within O(hrough) of the solid surface.
Further, as fluid velocities are O(vcv) at both times, the first term can be evaluated as
O(ρv2

cv hrough rcv/Xcv) after cancelling lcv . Similarly, for the second gravitational potential
energy term, changes to ρ are also limited to the same volume within O(hrough) of the
solid. Recognising that the gravitational potential function satisfies Φ̂ = g · x, a maximum
magnitude for this potential function within the CV is Φ̂ = O(glcv), where g = |g| is the
gravitational constant. Finally, for the third term in (B1), which represents the change
in surface potential energy within the CV between the start and end of the advance, the
change in area of each interface will be of O(hrough lcv), being composed of changes to
interfacial areas that occur around the TPCL, as well as changes to the average of each Aij
associated with solid interfaces under each of the fluid phases due to the (possibly) random
nature of the surface defects.

With these assumptions, the change in mechanical energy over the duration of the
advance is evaluated as

T̄0 = O

(
ρv2

cvrcv hrough

Xcv

)
+ O

(
ρgrcvlcv hrough

Xcv

)
+ O

(
σ hrough

Xcv

)

= O(ρv2
cv hrough)+ O(ρglcv hrough)+ O

(
σ hrough

Xcv

)
, (B2)

where in the last line we have used O(rcv) = O(Xcv).

B.2. Examining term
∑N

k=1 T̂0,k

In a similar fashion to T̄0, but here concerned with each dissipation period, T̂0,k represents
the change in mechanical energy within the CV occurring over the period of the kth
dissipation event. Defining 	̂ak = a(t = t̂k + 	̂tk)− a(t = t̂k), this change in energy can
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be expressed as

T̂0,k = 1
Acv

	̂Ek

= 1
Acv

∫
Vcv

1
2

̂	(ρv2)k dV + 1
Acv

∫
Vcv

	̂ρk Φ̂ dV +
∑
i<j

σij 	̂Aijk
Acv

, (B3)

where 	̂Aijk is the change in area of interface ij that is contained within the CV and that
occurs over the kth dissipation event.

In order to evaluate the magnitude of the terms appearing in (B3), we return to our
conceptual model for how the fluid and interfaces behave during dissipation events.
During a dissipation event, an area of the TPCL ‘depins’ from a particular surface
defect and moves at a capillary-driven velocity to a new ‘equilibrium’ interface position.
These dissipation events cause interfacial areas to change by O(h2

rough), and as interfacial
curvatures resulting from the roughness extend by O(hrough) into the fluid, cause fluid
properties to change within a volume of O(h3

rough) near the TPCL. Hence changes to the
kinetic energy and density within a volume of O(h3

rough) caused by each dissipation event
will contribute to the first two terms on the right-hand side of (B3), while changes of
O(h2

rough) to the interfacial areas of each phase combination due to each dissipation event
will contribute to the third term on the right-hand side of this equation.

Concurrently, over the duration of each dissipation event (	̂tk), continuous movement
of the TPCL still occurs across the rough surface, and this movement also contributes
to the terms on the right-hand side of (B3). Specifically, within O(hrough) of the TPCL,
or a volume of O(	̂tk vcvlcv hrough), there will be a change in kinetic energy and density
of the fluid occurring due to the continuous TPCL movement that will add contributions
to the first two terms on the right-hand side of (B3). Similarly, for the third term on the
right-hand side of (B3), there will also be a change in interfacial areas of O(	̂tk vcvlcv)
due to the continuous TPCL movement that also needs to be included.

Hence, summing changes due to both the specific dissipation event and continuous
TPCL movement occurring during each dissipation period, the magnitude of T̂0,k can be
expressed as

T̂0,k = O

(
ρv2

cv h3
rough

Xcvlcv

)
+ O

(
ρv3

cv hrough 	̂tk
Xcv

)

+ O

(
ρg h4

rough

Xcvlcv

)
+ O

(
ρglcvvcv hrough 	̂tk

Xcv

)

+ O

(
σ h2

rough

Xcvlcv

)
+ O

(
σvcv 	̂tk

Xcv

)
, (B4)

where the three pairs of terms correspond to the first, second and third terms appearing
on the right-hand side of (B3), respectively, with the first of each pair corresponding
to changes caused by the specific capillary-driven dissipation event, and the second
corresponding to the changes due to continuous TPCL movement that occurs during each
dissipation event period.
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Contact-angle hysteresis on rough surfaces

Returning to (3.25), it is actually the sum of T̂0,k from all N dissipation events that is
required in the contact-angle mechanical energy balance. Performing this sum on (B4),
while noting

∑N
k=1 	̂tk = τcap, N = O(Xcvlcv/h2

rough) and vcvτ = Xcv , leads to

N∑
k=1

T̂0,k = O(ρv2
cv hrough)+ O

(
ρv2

cv hrough
τcap

τ

)
+ O(ρg h2

rough)+ O
(
ρglcv hrough

τcap

τ

)
+ O(σ )+ O

(
σ

τcap

τ

)
. (B5)

Noting from (3.6) that O(τcap/τ)� 1, terms involving this ratio can be neglected in
comparison to other terms, and recognising that the O(σ ) term in the above originated
from the final term of (B3), we arrive at

N∑
k=1

T̂0,k = O(ρv2
cv hrough)+ O(ρg h2

rough)+ 	̂σ . (B6)

The specific dissipation event surface energy change per area traversed (	̂σ ) is defined
using (3.31) in the main text.

The next six terms all correspond to energy transfers that occur during the equilibrium
stages of the advance.

B.3. Examining term
∑N+1

k=1 T̃1,k

This term represents transport of surface potential energy through the boundary of the CV
during the equilibrium stages due only to movement of the CV. Introducing the shorthand
notation

∫
	̃tk

dt = ∫ t̃k+	̃tk
t̃k

dt, applying (3.13) over 	̃tk gives

N+1∑
k=1

T̃1,k = 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv

∑
i<j

σijδS,ijncv · vcv dS dt. (B7)

Further, noting that ncv · vcv on the ends of the CV (Scv,end), and that σij is non-zero only
within three thin regions on the circumference of the CV (Scv,cir) where the interfaces
cross its boundary, (B7) can be written as the sum of three terms

N+1∑
k=1

T̃1,k = 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv,top

σ12δS,12ncv · vcv dS dt

+ 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv,bl

∑
i<j

σijδS,ijncv · vcv dS dt

+ 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv,br

∑
i<j

σijδS,ijncv · vcv dS dt. (B8)

Here, as indicated in figure 8, Scv,top, Scv,bl and Scv,br are the three thin regions mentioned
above that just contain the fluid interface (top), interfaces associated with the solid surface
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Scv,br
Scv,bl

Scv,top

Scv,end

Scv,cir

Scv,end
θa

1

2

S

vcv

Figure 8. Three thin regions on the circumference of the CV (Scv,cir) are defined that contain all of the phase
interfaces that intersect with this boundary.

under phase ©1 (bl, bottom left) and interfaces associated with the solid surface under
phase©2 (br, bottom right), respectively.

For the first term on the right-hand side of (B8), as ncv = − cos θa e1 + sin θa e3
where the fluid interface crosses the CV boundary at Scv,top, and as vcv = vcve1,
ncv · vcv = −vcv cos θa at this location. Further, following the interface description
outlined in § 3.1, ncv · nS,ij = 0 at this location at all times, and as Scv,top is infinitely
thin in the circumferential direction at this location, (2.4) shows that

∫
Scv,top

δS,ij dS = lcv .
Hence the first term on the right-hand side of (B8) becomes

1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv,top

σ12δS,ijncv · vcv dS dt = −σ12vcv cos θa

Xcv

N+1∑
k=1

	̃tk

= −
(

1− τcap

τ

)
σ12 cos θa. (B9)

The second and third terms on the right-hand side of (B8) represent the transport
of surface potential energy associated with the rough solid surface out of, and into,
respectively, the CV as it advances across the solid. Note that these surface energies
may include contributions from micro-droplets or bubbles confined within the surface
roughness, as well as from the surface energy between the solid and adjacent bulk fluid
phase.

Focusing our explanation on the second term on the right-hand side of (B8), which
involves an integral over Scv,bl, we first note that as Scv,bl only has to include phase
interfaces that are associated with the surface roughness, the circumferential height of
Scv,bl is only of O(hrough). Further, as hrough � rcv (via (3.1)), we have ncv = −e1 at this
location, and consequently ncv · vcv = −vcv . Splitting the temporal integration using (3.3)
leads to

1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv,bl

∑
i<j

σijδS,ijncv · vcv dS dt
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Contact-angle hysteresis on rough surfaces

= − vcv

Xcvlcv

∑
i<j

σij

∫ τ

0

∫
Scv,bl

δS,ij dS dt

− vcv

Xcvlcv

∑
i<j

σij

N+1∑
k=1

∫
	̂tk

∫
Scv,bl

δS,ij dS dt. (B10)

For the first term on the right-hand side of this equation, we define a new volume
←−
V

that is created by sweeping Scv,bl over the solid surface for the duration of the advance.
Formally, we define a coordinate xcv = tvcv that increases in the direction of e1 and
measures the progress of the CV as it moves over the solid surface, giving

vcv
∑
i<j

σij

∫ τ

0

∫
Scv,bl

δS,ij dS dt =
∑
i<j

σij

∫ Xcv

0

∫
Scv,bl

δS,ij dS dxcv

=
∑
i<j

σij

∫
←−
V

δS,ij dV

=
∑
i<j

σij A1C,ij, (B11)

where A1C,ij is the area of each interface type ij associated with the rough solid surface
that leaves the CV during its advance over the solid.

For the second term on the right-hand side of (B10), we calculate its order of magnitude
rather than deriving an expression, noting that

∑N
k=1 	̂tk = τcap and

∫
Scv,bl

δS,ij dS =
O(lcv). Incorporating these expressions and (B11) back into (B10) gives

1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv,bl

∑
i<j

σijδS,ijncv · vcv dS dt = −
∑
i<j

σij
A1C,ij

Acv
+ O

(τcap

τ
σ
)
, (B12)

completing the evaluation of the second term on the right-hand side of (B8).
Finally, performing an analogous calculation for the third term on the right-hand side of

(B8) for the solid surface interfaces A2C,ij that lie under phase ©2 and that enter the CV
through Scv,br during the advance, and noting again as per (3.6) that terms involving the
factor τcap/τ can be neglected relative to those that do not include this term, the surface
potential energy transport term from (B8) can be written as

N+1∑
k=1

T̃1,k = −σ12 cos θa + σ2C − σ1C, (B13)

where the compound surface energies associated with the solid interface that is leaving
(σ1C) and entering (σ2C) the advancing CV are defined by (3.30) in the main text.

B.4. Examining term
∑N+1

k=1 T̃2,k

This term represents the transport of kinetic energy into the CV during the equilibrium
stages, and is given by

N+1∑
k=1

T̃2,k = 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv

ncv · 1
2

ρv2(vcv − v) dS dt. (B14)
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Noting from § 3.2 that velocities are zero within the solid phase and within the equilibrium
stages within the fluid are ṽ = O(vcv), and that the fluid areas of Scv,cir and Scv,end have
areas of O(rcvlcv) and O(r2

cv), respectively, the magnitude of this term is given by

N+1∑
k=1

T̃2,k = O
(

(τ − τcap)ρv3
cv

r2
cv + lcvrcv

Xcvlcv

)
= O(ρv2

cvrcv). (B15)

In deriving the final term in this expression, we have used O(lcv) = O(rcv) and neglected
a term containing τcap/τ relative to one that does not, consistent with (3.6).

B.5. Examining term
∑N+1

k=1 T̃3,k

This term represents the transport of gravitational potential energy into the CV during the
equilibrium stages, and is given by

N+1∑
k=1

T̃3,k = 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv

ncv · ρ Φ̂(vcv − v) dS dt. (B16)

In a very similar fashion to the last term, this term has a magnitude given by

N+1∑
k=1

T̃3,k = O
(

(τ − τcap)ρvcvg
r2

cv

Xcv

)
= O(ρgr2

cv), (B17)

where we have additionally assumed that Φ̂ = O(grcv) over Scv,cir, and Φ̂ = O(glcv) over
Scv,end.

B.6. Examining term
∑N+1

k=1 T̃4,k

This term is a contributor to the work that the interfaces outside the CV do on the material
inside the CV. Using (3.16) and (3.20), this term is given by

N+1∑
k=1

T̃4,k = − 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv

∑
i<j

σijδS,ijnS,ijnS,ij : vncv dS dt. (B18)

As the integral contains the surface delta function δS,ij, like T̃1,k, only four component
surfaces of Scv give non-zero contributions to the integral: namely, Scv,top, Scv,bl, Scv,br
and Scv,end. We evaluate nS,ijnS,ij : ṽncv on each of these surfaces.

On Scv,top, ncv · nS,ij = 0 as here the fluid interface is perfectly flat and normal to the
CV boundary (as discussed in § 3.1), so this surface makes no contribution to (B18). For
Scv,bl and Scv,br, the interfaces associated with these surface areas have v = 0 (the solid
velocity) at the CV circumference, so these surfaces also make no contribution to T̃4,k.
Finally, over Scv,end, at distances from the TPCL that are much larger than O(hrough),
nS,ij · ncv = 0 because, as over Scv,top, here the fluid interface is flat and normal to the CV
boundary. However, at distances from the TPCL on Scv,end that are of O(hrough), nS,ij · ncv
is not zero as in this region the interface has curvature of O(1/hrough), as described in § 3.1.
Further, within this region, the fluid velocity is ṽ = O(vcv) as the TPCL may be advancing
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over the solid here during these equilibrium stages. Hence there is a contribution to the
integral in (B18) from the inner part of Scv,end only, giving overall

N+1∑
k=1

T̃4,k = O
(

(τ − τcap)σvcv
hrough

Xcvlcv

)
= O

(
σ

hrough

lcv

)
, (B19)

where, as per (3.6), a term involving the factor τcap/τ has been neglected.

B.7. Examining term
∑N+1

k=1 T̃5,k

This term represents the work that the material stresses T M are doing on the material inside
the CV. Using (3.17) and (3.20), this term is defined as

N+1∑
k=1

T̃5,k = 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv

T M : vncv dS dt. (B20)

Noting that within the solid v = 0 (as discussed § 3.2), and applying the fluid Newtonian
stress equation (3.4), this term can be written as

N+1∑
k=1

T̃5,k = − 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv,fluid

p̃ṽ · ncv dS dt

+ 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Scv,fluid

μ[∇̃v + (∇̃v)T] : ṽncv dS dt, (B21)

where we have used the identity I : ṽncv = ṽ · ncv , and Scv,fluid represents the surface of
the CV within the fluid phase. Equilibrium stage fluid properties p̃ and ∇̃v are relevant
during these time intervals and are substituted from the steady-state order of magnitude
expressions (3.9) and (3.7), respectively, as discussed in § 3.2, giving

N+1∑
k=1

T̃5,k = −τ − τcap

Xcvlcv

×
∫

Scv,fluid

[
O
(

ρv2
cv +

μvcv

max(r, hmol)
+ σ

hsurround
+ ρgrcv

)
+ p0

]
ṽ · ncv dS

+ τ − τcap

Xcvlcv

∫
Scv,fluid

O
(

μvcv

max(r, hmol)

)
: ṽncv dS. (B22)

For the term involving the reference pressure p0, as this is constant at any given time, it
can come out of the integral, leaving ṽ · ncv , which is zero when integrated over Scv,fluid
as the fluid is incompressible (using Gauss’ theorem). Hence this reference pressure term
does not contribute to T̃5,k. For the remainder, we gather like terms and evaluate in an
order of magnitude sense over the circumference and ends of the CV that are within the
fluid region:

N+1∑
k=1

T̃5,k = O

{(
1− τcap

τ

) 1
lcv

[∫
Scv,cir

(
ρv2

cv +
μvcv

max(r, hmol)
+ σ

hsurround
+ ρgrcv

)
dS
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+
∫

Scv,end

(
ρv2

cv +
μvcv

max(r, hmol)
+ σ

hsurround
+ ρgrcv

)
dS

]}

= O
{(

1− τcap

τ

) 1
lcv

[(
ρv2

cv +
μvcv

rcv
+ σ

hsurround
+ ρgrcv

)
rcvlcv

+ ρv2
cvr2

cv + ρgr3
cv +

∫ hmol

0

μvcv

hmol
r dr +

∫ rcv

hmol

μvcv

r
r dr + σ r2

cv

hsurround

]}
= O(ρv2

cvrcv)+ O(μvcv)+ O
(

σ rcv

hsurround

)
+ O(ρgr2

cv), (B23)

where for the last line we have used O(rcv) = O(lcv) and employed (3.1) and (3.6) to
neglect comparatively small terms.

B.8. Examining term
∑N+1

k=1 T̃6,k

This final term represents the rate of dissipation occurring within the CV during the
equilibrium periods, and is evaluated in a very similar manner to T̃5,k. Using (3.18) and
(3.20), this term is defined as

N+1∑
k=1

T̃6,k = − 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Vcv

T M : ∇vncv dV dt. (B24)

Noting again that within the solid v = 0, and applying the fluid Newtonian stress equation
(3.4), we find

N+1∑
k=1

T̃6,k = 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Vcv,fluid

p̃I : ∇̃v dV dt

− 1
Acv

N+1∑
k=1

∫
	̃tk

∫
Vcv,fluid

μ[∇̃v + (∇̃v)T] : ∇̃v dV dt. (B25)

For the pressure term, we use I : ∇̃v = ∇ · ṽ = 0 as the fluid is incompressible, removing
this entire integral. Substituting the equilibrium stage fluid velocity gradient from (3.7)
into the remaining dissipation integral and evaluating in an order of magnitude sense leads
to

N+1∑
k=1

T̃6,k = O

(
μ(τ − τcap)

Acv

∫
Vcv,fluid

v2
cv

[max(r, hmol)]2 dV

)

= O

[
μvcv

(
1− τcap

τ

)(∫ hmol

0

r

h2
mol

dr +
∫ rcv

hmol

1
r

dr

)]

= O
[
μvcv ln

(
rcv

hmol

)]
, (B26)

where again relatively small terms have been neglected via (3.1) and (3.6).
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Appendix C. Dissipation event order of magnitude energy analysis

As discussed in the main text, the objective of this appendix is to quantify in an order of
magnitude sense what energy terms are significant during the dissipation events so that we
can determine the ultimate destination for the specific surface energy 	̂σ that is liberated
from the dissipation events.

Summing the individual dissipation event energy balances expressed by (3.24) over all
N dissipation events and substituting the order of magnitude of

∑N
k=1 T̂0,k from (B6) gives

O(ρv2
cv hrough)+ O(ρg h2

rough)+ 	̂σ =
N∑

k=1

T̂0,k =
6∑

i=1

N∑
k=1

T̂i,k. (C1)

We now examine each of the six
∑N

k=1 T̂i,k terms on the right-hand side of this equation.
For T̂1,k, as for the equilibrium analysis ncv · vcv on Scv,end, so the only contribution

to this term comes from Scv,cir. However, on the circumference of the CV, the interface
is not affected by the dissipation event (as it is O(rcv) away from xcap) so that the value
of the surface integral is independent of whether the time is within an equilibrium or
dissipation stage. Noting then that

∑N
k=1

∫
	̂tk

dt = τcap and
∑N+1

k=1
∫
	̃tk

dt = τ − τcap, the
first dissipation term can be written as

N∑
k=1

T̂1,k = 1
Acv

N∑
k=1

∫
	̂tk

∫
Scv

∑
i<j

σijδS,ijncv · vcv dS dt

= τcap

τ − τcap

N+1∑
k=1

T̃1,k = O

(
τcap

τ

N+1∑
k=1

T̃1,k

)
, (C2)

where (3.6) has been utilised.
The second term on the right-hand side of (C1) is concerned with movement of kinetic

energy through the CV boundary during the dissipation periods. Using the stationary solid
model, this term is

N∑
k=1

T̂2,k = 1
Acv

N∑
k=1

∫
	̂tk

∫
Scv,fluid

ncv · 1
2

ρ |v̂|2(vcv − v̂) dS dt. (C3)

By recognising the separation of velocities vcv � vcap when using (3.32) in the above, for
order of magnitude purposes, products of vcv and vcap can be ignored, and the above term
written as a contribution from the continuous and dissipation interface movements as

N∑
k=1

T̂2,k = O

(
τcap

τ − τcap

N+1∑
k=1

T̃2,k

)
+ O

(
ρv3

capτcap h3
rough

Acvlcv

)

= O

(
τcap

τ

N+1∑
k=1

T̃2,k

)
+ O

(
ρv2

cap h2
rough

lcv

)
. (C4)

986 A17-45

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

31
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.317


D.J.E. Harvie

In evaluating the dissipation event term on the first line of this equation (the second on
the right-hand side), consistent with the dissipation fluid model of (3.32), v̂ is significant
only within an area of O(h2

rough) on each end of the CV, and as the dissipation events
are evenly distributed over the length lcv of the CV, only a proportion O(hrough/lcv) of
the dissipation events contribute to this surface integral. Further, from (3.6) we have used
τcapvcap = O(lcvXcv/hrough).

The third term on the right-hand side of (C1) represents transport of gravitational
potential energy over the CV boundary and is evaluated in a very similar fashion to the
second term. Recognising as previously that energy transport due to specific dissipation
movements only occurs over the central O(h2

rough) area of Scv,end, and that during these

events Φ̂ = O(ghrough), this term can be evaluated as

N∑
k=1

T̂3,k = 1
Acv

N∑
k=1

∫
	̂tk

∫
Scv,fluid

ncv · ρ Φ̂(vcv − v̂) dS dt

= O

(
τcap

τ

N+1∑
k=1

T̃3,k

)
+ O

(
ρg h3

rough

lcv

)
, (C5)

where assumptions consistent with those used for (C4) have been employed, and the
first and second terms on the right-hand side of the second line of this equation
represent contributions from the continuous and dissipation velocities occurring during
the dissipation periods, respectively.

Term
∑N

k=1 T̂4,k, like
∑N

k=1 T̂1,k, is concerned with interfacial behaviour at the CV
boundary. Recognising that only the interface between the two fluids can experience a
non-zero velocity, and that dissipation interfacial movements are again confined to an area
of O(h2

rough) on Scv,end, this term can be written as

N∑
k=1

T̂4,k = − 1
Acv

N∑
k=1

∫
	̂tk

∫
Scv,fluid

σ12δS,12nS,12nS,12 : v̂ncv dS dt

= O

(
τcap

τ

N+1∑
k=1

T̃4,k

)
+ O

(
σ

hrough

lcv

)
, (C6)

where τcapvcap has again been evaluated using (3.6).
The final two terms from the right-hand side of (C1) are concerned with material

stresses, specifically representing the boundary work and internal viscous dissipation
occurring on and within the CV, respectively. As per previously in the absence of
solid velocities, these terms only have contributions from the fluid regions. For the
boundary work term, we substitute the Newtonian stress equation (3.4) and dissipation
period velocity, velocity gradient and pressure expressions of (3.32), (3.33) and (3.34),
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respectively, into (3.17) applied over the dissipation periods, giving

N∑
k=1

T̂5,k = − 1
Acv

N∑
k=1

∫
	̂tk

∫
Scv,fluid

p̂v̂ · ncv dS dt

+ 1
Acv

N∑
k=1

∫
	̂tk

∫
Scv,fluid

μ[∇̂v + (∇̂v)T] : v̂ncv dS dt

= O

(
τcap

τ − τcap

N+1∑
k=1

T̃5,k

)
+ O

(
vcapτcap hrough

Acvlcv

×
∫

Scv,end,r<hrough

[
μvcap

max(r, hmol)
+ ρv2

cap +
σ

hrough

]
dS

)
. (C7)

The final integral in this equation is taken over the ends of the CV that are within O(hrough)
of its centreline, with r representing the distance to the centreline. Evaluating this integral
leads to

N∑
k=1

T̂5,k = O

(
τcap

τ

N+1∑
k=1

T̃5,k

)

+ O

(
ρv2

cap

h2
rough

lcv

)
+ O

(
μvcap

hrough

lcv

)
+ O

(
σ

hrough

lcv

)
. (C8)

The viscous dissipation term
∑N

k=1 T̂6,k is evaluated similarly. Noting that velocities within
the solid are zero, and that the fluid is incompressible, as for the corresponding equilibrium
term analysis, there is no contribution from the pressure term p̂, and the dissipation
velocity gradient can be integrated over a region of volume O(h3

rough) within the fluid,
giving

N∑
k=1

T̂6,k = − 1
Acv

N∑
k=1

∫
	̂tk

∫
Vcv,fluid

μ[∇̂v + (∇̂v)T] : ∇̂v dV dt

= O

(
τcap

τ

N+1∑
k=1

T̃6,k

)
+ O

(
μvcap ln

(
hrough

hmol

))
. (C9)

Equation (3.35) in the main text results from substituting (C2), (C4), (C5), (C6), (C8)
and (C9) into (C1).
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