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A SIMPLE PROOF OF PITMAN'S 2M-X THEOREM

J. P. IMHOF,* University of Geneva

Abstract
Pitman has shown that if X is Brownian motion with maximum process M,
then 2M - X is a BESo(3) process. We show that this can be seen by
looking at finite-dimensional densities.
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1. Introduction

Pitman (1975) discovered the following striking fact: if X = {X" t ~ O} is a BMo
(one-dimensional Brownian motion starting at X 0 = 0) and M = {M" t ~ O} where M, =
sup {Xs : s ~ t}, then 'X reflected with respect to M' namely 2M - X = {2M, - X" t ~ O} is a
BESo (3) process, i.e. has the law of the distance to the origin of a three-dimensional
Brownian motion. An extension of this result to spectrally positive Levy processes has been
given by Bertoin (1991). Pitman's proof, via discrete approximations, is quite involved.
Tanaka (1989) gives another approach which applies also in the case of drift first considered
by Rogers and Pitman (1981). For zero drift a slightly more elaborate form of the result,
stated below, is proved by Ikeda and Watanabe «1981), Chap. III Sect. 4.3) and found also
in Revuz and Yor «1991), Chap. VI, (3.5)), where further approaches are mentioned (top of
p. 258). All of those use non-elementary tools from stochastic analysis. It seems therefore
useful to show that a simple proof can be given by obtaining and comparing finite-dimensional
densities of the pair (X, M) with those of (Z, F) where Z is a BESo(3) process and
F = {f;, t ~ O} its future minimum process, E = inf {Z,': s ~ t}. The conclusion is then the
following.

Theorem. The processes (2M - X, M) and (Z, F) have the same law.

As already mentioned, this holds also when X is BMo(<5) (that is, when {X, - <5T, t ~ O} is
BMo) with <5 > 0 and simultaneously Z is BES(3, <5). We shall write P6(·) for probabilities
relating to those processes and ~(.) when they are conditioned to initial value x =1= O. When
<5 = 0, we only need a few known densities which we recapitulate. For t > 0 and wEill,
p(t, w) =: (2.7t't)-112 exp {-w2/2t} and g(t; w) =: (Iwl/t)p(t; w). Then (Karatzas and Shreve
(1988), (8.2) p. 95 and (8.9) p. 97)

(1) Y(X, E dx', M, E dy) = 2g(t; 2y -x -x') dx' dy, y >x v x',

(2) Y(X, E dx', X, > 0 for 0 < s < t)/dx' = q(t; x, x') =: p(t; x - x') - p(t; x + x'), X 1\ x' > O.

For Z one has correspondingly (e.g. using (3.1) in Imhof (1984)) when z > 0 and
m, = min {Zs, s ~ t},

(3)

(4)

z'
F(Z, E dz', m, E df) --2g(t; z + z' - 2f) dz' df, O<f <z v z',

z

PZ(Z, E dz', m, > f) = z' q(t; z - f, z' - f) dz', O<f < Z 1\ z'.
Z
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The following are also well known:
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(5)

(6)

P(Z, e dz') = z'Zgt), z') dz', z' > 0,

PZ(lbedz') = (1/z)dz', O<z'<z.

2. Proof

To obtain the joint density for (X, M) at times 0 < II < ... < In, one uses the Markov
property at times 11' ... , In-I and must distinguish between the cases where the excursion of
X below M at time I; extends beyond 1;+1 (so M,; = M,;+) and those where it does not (so
M,; < M'i+). For (Z, F) the corresponding distinction is between Fe; = F';+l (so F,; is achieved
after 1;+1) and Fe; < Fei + 1

(so Fe; is the minimum achieved during (I;, 1;+1)). A last application of
the Markov property at time In, using (6), then takes care of Fen and ensures that all initial
factors coming from (5), then repeatedly (3) and (4) and finally (6) cancel two by two, which
in this elementary approach is the key to the theorem. This is illustrated well enough if one
considers only the case n =2. Writing for brevity dx? instead of dx 1 dx 2 , and similarly in
Y, ... , and agreeing that j always takes values 1 and 2, one has according to (1), for xj < Yj
and 0 <YI <Y2'

P(X'j e dx., M; e dYj)= 2g(II; 2YI - xI)2g(12- II; 2Y2 - Xl - X2) dx' dy".

If on the other hand 0 < Y =YI =Y2, (1) and (2) give

P(X'j e dx., M'l = M'2 e dy) = 2g(II; 2YI -XI)q(12- II;Y -Xl' Y -X2)dx? dy,

Changing variables from X'j to X,; = 2M'j - x; gives

(7) P(X,;e dx/, M; e dYj) = 2g(II; xi)2g(12- 11;xi + xi - 2YI) dx"? dy?

where 0 <» <x/ and 0 <YI <Y2' while if YI =Y2 =Y

(8) P(X; e dx]', M'l = M'2 e dy) = 2g(II; x:)q(12- II; X: - Y, xi - y) dx"? dy,

One can mention here that if marginalization with respect to YI is done in (7) and the result
added to (8), one easily deduces from the joint density for X;, M'2 thus obtained the uniform
conditional law of M'2 over (0, X~), given the Xi (and more generally given {Xi, 0~ I~ 12}).
This is a characteristic feature also resulting from (6) via the theorem.

We want to compare (7) and (8) with P(Z,. e dz., Fe. edt) and P(Z,. e dz., Fe = Fe e df).
Those densities are obtained by using, for the first, (5) over the time interval [0, (1), (3) over
[tI,12] and finally (6) over [t2'00]. For the second, one must use (4) over [II' 12]. After
simplification of the initial factors (successively ZI, z21ZI and IIZ2) the densities obtained are
precisely (7) and (8) written in terms of Zj, t instead of Xt ,Yj. The same routine extended to
arbitrary n proves the theorem when ~ = o.

It is now easy to take care of the case ~ > O. For (X, M) considered over [0, 12] , there is a
Radon-Nikodym factor which, replacing X2 with 2Y2 - x;*, gives on the right of (7) and (8) an
additional factor exp {-!~212 + ~(2Y2 - xi)}. For Z, the passage from P' to P~-densities in
(3) and (4) amounts to replacing the initial factor z'{z with exp {_!~21} sinh ~z' /sinh bz,
while in (5) the initial z' must be replaced with exp {_~~21} sinh bz'I ~ (Rogers and Pitman
(1981), formulas (10) and (12)). In addition, one computes easily that one has instead of (6)

~2(lb e dh) = (~/sinh ~Z2) exp {~(2h - Z2)}, 0 <h < Z2.

Thus after simplification we have

P,,(Z'j e dz., Fejedt) = exp {-!~212 + ~(2h - Z2)}P(Z'j e dz., Fejedt),

and a corresponding formula when Fel = F,2 e df. The finite-dimensional densities for (X*, M)
and (Z, F) are thus again the same.
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