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Hyperbolically embedded subgroups
and quasi-isometries of pairs

Sam Hughes and Eduardo Martínez-Pedroza

Abstract. We give technical conditions for a quasi-isometry of pairs to preserve a subgroup being
hyperbolically embedded. We consider applications to the quasi-isometry and commensurability
invariance of acylindrical hyperbolicity of finitely generated groups.

1 Introduction

A group G is acylindrically hyperbolic if it admits a nonelementary, acylindrical action
on a hyperbolic space. An alternative characterization is that G is acylindrically
hyperbolic if and only if G contains a hyperbolically embedded subgroup H, denoted
H ↪h G, and we will give a characterization from [13] in Proposition 3.1.

The class of acylindrically hyperbolic groups generalizes the classes of nonele-
mentary hyperbolic and relatively hyperbolic groups while sharing many similar
properties [17]. In spite of this, there are still foundational questions that remain open,
for instance, it is known that a group being hyperbolic or relatively hyperbolic is
invariant under quasi-isometry [8, 9], but the corresponding question for acylindrical
hyperbolicity is still open.

Question 1.1 [17, Question 2.20(a)] Is the class of finitely generated acylindrically
hyperbolic groups closed under quasi-isometry?

Some partial results are known, for instance, acylindrical hyperbolicity passes to
finite-index subgroups and is preserved by quotienting out a finite normal subgroup
[15]. If the group is AH-accessible, then acylindrical hyperbolicity can be passed to
finite extensions [16]. The property of being AH-accessible also passes to finite-index
overgroups [3]. However, not every finitely presented acylindrically hyperbolic group
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isAH-accessible [1, Theorem 2.18]. Some experts in the field do not expect a complete
positive answer to Question 1.1.

This article relies on the notion of quasi-isometry of pairs, and our results provide
technical conditions to ensure that a quasi-isometry of pairs carries the property of
being a hyperbolically embedded subgroup.

Definition 1.1 (Quasi-isometry of pairs) Let X and Y be metric spaces, and letA and
B be collections of subspaces of X and Y, respectively. A quasi-isometry q∶X → Y is
a quasi-isometry of pairs q∶ (X ,A) → (Y ,B) if there is M > 0:
(1) For any A ∈ A, the set {B ∈ B∶hdistY(q(A), B) < M} is nonempty.
(2) For any B ∈ B, the set {A ∈ A∶hdistY(q(A), B) < M} is nonempty.
In this case, if q∶X → Y is an (L, C)-quasi-isometry, then q∶ (X ,A) → (Y ,B) is called
an (L, C , M)-quasi-isometry. If there is a quasi-isometry of pairs (X ,A) → (Y ,B),
we say that (X ,A) and (Y ,B) are quasi-isometric pairs.

We specialize the previous definition to the case of finitely generated groups with
finite collections of subgroups as follows.

Definition 1.2 (Quasi-isometry of group pairs) Consider two pairs (G ,P) and
(H,Q) where G and H are finitely generated groups with chosen word metrics distG
and distH . Denote the Hausdorff distance between subsets of H by hdistH . An (L, C)-
quasi-isometry q∶G → H is an (L, C , M)-quasi-isometry of pairs q∶ (G ,P) → (H,Q)
if the relation

q̇ = {(A, B) ∈ G/P ×H/Q∶hdistH(q(A), B) < M}

satisfies that the projections into G/P and H/Q are surjective.

Example 1.1 (Quasi-isometry of pairs and finite extensions) Let H be a finite index
normal subgroup of finitely generated group G, and let Q be a finite collection of
subgroups of H. Then the inclusion (H,Q) ↪ (G ,Q) is a quasi-isometry of pairs if
the collection {hQh−1∶ h ∈ H and Q ∈ Q} is invariant under conjugation by G (see
Proposition 4.1).

Recall that the commensurator of a subgroup P of a group G is the subgroup

CommG(P) = {g ∈ G∶ P ∩ gPg−1 is a finite index subgroup of P and gPg−1}.

Definition 1.3 (Refinements) Let P be a collection of subgroups of group G. A
refinement P∗ of P is a set of representatives of conjugacy classes of the collection
of subgroups

{CommG(gPg−1)∶ P ∈ P and g ∈ G}.

Example 1.2 (Refinements and qi of pairs) Let Q be a finite collection of subgroups
of a finitely generated group H, and letQ∗ be a refinement. If each Q ∈ Q is finite index
in CommH(Q), then the identity map on G is a quasi-isometry of pairs (H,Q) →
(H,Q∗).
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Example 1.3 (Refinements and finite extensions) Let A be a group, let H be an
almost malnormal collection of infinite subgroups, and let F ≤ Aut(A) be a finite
subgroup. If F acts freely on H and HF is a collection of representatives of F-orbits in
H, then a refinement of H in A⋊ F is HF .

Definition 1.4 (Reduced collections) A collection of subgroups P of a group G is
reduced if for any P, Q ∈ P and g ∈ G, if P and gQ g−1 are commensurable, then P = Q
and g ∈ P.

Our first result, Theorem A, describes a strategy to obtain positive results to
Question 1.1. For a group G with a generating set S, let �(G , S) denote the corre-
sponding Cayley graph (see Definition 2.3).

Theorem A (Theorem 3.1) Let q∶G → H be a quasi-isometry of finitely generated
groups, let P and Q be finite collections of subgroups of G and H, respectively, and let S
and T be (not necessarily finite) generating sets of G and H, respectively. Suppose that:
(1) q∶ (G ,P) → (H,Q) is a quasi-isometry of pairs and
(2) q∶�(G , S) → �(H, T) is a quasi-isometry.
The following statements hold:
(1) If P and Q are reduced collections in G and H, respectively, then P↪h (G , S) if

and only if Q↪h (G , T).
(2) If Q contains only infinite subgroups and Q↪h (H, T), then P∗ ↪h (G , S).

1.1 Qi-characteristic collections

The first numbered hypothesis of Theorem A raises the following general prob-
lem: Given a finite collection of subgroups Q of a group H and a quasi-isometry
q∶G → H of finitely generated groups, is there a collection P of subgroups of G such
that q∶ (G ,P) → (H,Q) is a quasi-isometry of pairs?

This problem was studied in [14] where the notion of qi-characteristic collection is
introduced and it is proved that if the collection Q is qi-characteristic in H, then any
quasi-isometry of finitely generated groups induces a collection P.

Definition 1.5 (Qi-characteristic [14]) A collection of subgroups P of a finitely
generated group G is quasi-isometrically characteristic (or shorter qi-characteristic)
if P is finite; each P ∈ P has finite index in its commensurator; and for every L ≥ 1
and C ≥ 0, there is M = M(G ,P, L, C) ≥ 0 such that every (L, C)-quasi-isometry
q∶G → G is an (L, C , M)-quasi-isometry of pairs q∶ (G ,P) → (G ,P).

Example 1.4. The argument by Behrstock, Druţu, and Mosher proving quasi-
isometric rigidity of relative hyperbolicity with respect to nonrelatively hyperbolic
groups (NRH groups) shows that if H is hyperbolic group relative to a collection Q

of NRH subgroups, then Q is qi-characteristic [4, Theorems 4.1 and 4.8]. Another
example is provided by mapping class groups. Ruling out a few surfaces of low
complexity, any self-quasi-isometry of the mapping class group is at uniform distance
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from left multiplication by an element of the group (see the work of Behrstock,
Kleiner, Minsky, and Mosher [6, Theorem 1.1]). As a consequence, the hyperbol-
ically embedded (virtually cyclic) subgroup generated by a pseudo-Anosov is qi-
characteristic. More generally, any finite collection of subgroups of such mapping class
groups are qi-characteristic.

Corollary B Let G and H be finitely generated groups, let T be a generating set of H,
let Q be a finite collection of subgroups of H such that Q↪h (H, T), and let q∶G → H
be a quasi-isometry. If:
(1) Q is a qi-characteristic collection of subgroups of H and
(2) there is a generating set S ⊂ G such that q∶�(G , S) → �(H, T) is a quasi-

isometry,
then there is a finite collection P of subgroups of G such that P↪h (G , S) and
q∶ (G ,P) → (H,Q) is a quasi-isometry of pairs.

Proof Without loss of generality, assume that all subgroups in Q are proper
infinite subgroups. Note that removing finite subgroups from Q preserves being qi-
characteristic and that Q↪h (H, T). On the other hand, if Q contains H, then the
theorem is trivial by taking P the collection that contains only G and S any finite
generating set of G. Since Q is qi-characteristic, the quasi-isometry q∶G → H induces
a finite collection P such that q∶ (G ,P) → (H,Q) is a quasi-isometry of pairs, and
this is precisely [14, Theorem 1.1]. Then the second statement of Theorem A and
Q↪h (H, T) imply that P∗ ↪h (G , S). ∎

1.2 Uniform quasi-actions

The second numbered hypothesis of Theorem A raises the problem: Given a group H
with a generating set T and a quasi-isometry q∶G → H of finitely generated groups,
is there a generating set S ⊂ G such that q∶�(G , S) → �(H, T) is a quasi-isometry of
Cayley graphs?

We show that a positive answer to this question is equivalent to asking that
the quasi-action of G on H induced by q is T-uniform in the following sense (see
Proposition C).

Definition 1.6 (Uniform induced quasi-action) Let G and H be finitely generated
groups, and let q∶G → H be a quasi-isometry with quasi-inverse q̄. Let T ⊂ H be a
generating set (possibly infinite). We say that the quasi-action of G on H induced
by q is uniform with respect to T if there are constants L ≥ 1, C ≥ 0 such that, for
each g ∈ G, the function qg ∶H → H given by qg(h) = q(g ⋅ q̄(h)) is an (L, C)-quasi-
isometry qg ∶�(H, T) → �(H, T).

Example 1.5 (Uniform quasi-action and finite extensions) Let H be a finite index
normal subgroup of finitely generated group G, and let T be a generating set of H
invariant under conjugation by G. The G-action by conjugation on H preserves the
word metric induced by T. On the other hand, any transversal R of H in G induces
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a quasi-isometry q∶G → H given by q(hg) = h for h ∈ H and g ∈ R. In this case, the
quasi-action of G on H induced by q is uniform with respect to T (see Lemma 2.1).

Proposition C (Proposition 2.1) Let G and H be groups with finite generating sets S0
and T0, and let q∶�(G , S0) → �(H, T0) be a quasi-isometry. Let T ⊂ H containing T0.
The following statements are equivalent:
(1) The quasi-action of G on H induced by q is uniform with respect to T.
(2) There is S ⊂ G containing S0 such that q∶�(G , S) → �(H, T) is a quasi-isometry.

Corollary D Let G and H be finitely generated groups with finite collections of infinite
subgroups P and Q, respectively. Suppose that q∶ (G ,P) → (H,Q) is a quasi-isometry
of pairs inducing a T-uniform quasi-action of G on H. If Q↪h (H, T), then P∗ ↪h G.

Proof Since the quasi-action of G on H induced by q is T-uniform, Proposition C
implies that there is a generating set S of G such that q∶�(G , S) → �(H, T) is a quasi-
isometry. Then the second statement of Theorem A and Q↪h (H, T) imply that
P∗ ↪h (G , S). ∎

Let us remark that for this last corollary, in the case that T is finite, then there
is a finite S ⊂ G such that P↪h (G , S); this case is implied by the results on quasi-
isometric rigidity of relative hyperbolicity in [4].

1.3 Finite extensions

The following application is a particular instance of Theorem 4.1 in the main body of
the article.

Theorem E (Theorem 4.1) Let H be a finite index normal subgroup of a finitely
generated group G, and let Q be a finite collection of infinite subgroups of H such that
Q↪h (H, T). Suppose that:
(1) The set T is invariant under conjugation by G.
(2) The collection {hQh−1∶ h ∈ H and Q ∈ Q} is invariant under conjugation by G.
If Q∗ is a refinement of Q in G, then Q∗ ↪h G.

Example 1.6. Let G = ⟨a, b, t∶ tat−1 = b, t2 = 1⟩ ≅ F2 ⋊Z2, let H = ⟨a, b⟩, and let
Q = {⟨a⟩, ⟨b⟩}. Note that Q↪h H, and, for instance, one can take Q∗ = {⟨a⟩} and
observe that Q∗ ↪h G. In contrast, for Q0 = {⟨a⟩} ↪h H, the theorem does not
apply since the conjugates of ⟨a⟩ in H are not invariant under conjugation by
elements of G.

The next result illustrates concrete examples where Theorem E applies.

Theorem F (Theorem 5.1) Let A be a finitely generated group with a (not necessarily
finite) generating set T, and let H be a finite collection of infinite subgroups such that
H ↪h (A, T). If F ≤ Aut(A) is finite, T and H are F-invariant, and the F-action on H

is free, then HF ↪h (A⋊ F , T ∪ F) where HF is collection of representatives of F-orbits
in H.
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Example 1.7. Let A = ∗n
i=1 B i with each B i isomorphic to a fixed finitely generated

group B. Let F = Zn act on A by cyclically permuting the copies of B. Consider
the generating set of A given by T = ⋃n

i=1 B i/{1}, then T is F-invariant. Now, the
collection H = {B1 , . . . , Bn} is hyperbolically embedded into (A, T) and F acts freely
by conjugation onH. All of the hypotheses of the previous theorem have been verified,
so we conclude that B1 ↪h (A⋊ F , T ∪ F).

1.4 Organization

The rest of the article is divided into five sections. Section 2 is on quasi-actions;
it contains the proof of Proposition C as well as some corollaries. The proof of
Theorem A is the content of Section 3. Then Sections 4 and 5 contain the proofs
of Theorems E and F, respectively. Finally, Section 6 contains some questions and
discussion about related to the results in this article and the definition of a quasi-
isometry of pairs.

2 Uniform quasi-actions

Definition 2.1 (Uniform quasi-action) Let G be a group, and let X be a metric space.
Let QI(X) denote the set of quasi-isometries X → X. A function G → QI(X), g ↦ fg ,
is a quasi-action if there is K ≥ 0 such that for any g1 , g2 ∈ G:
(1) the map fg1 g2 is at distance at most K from the map fg1 ○ fg2 in the L∞-distance

and
(2) the map fg1 ○ fg−1

1
is at distance at most K from the identity.

The quasi-action G → QI(X) is uniform if there are constants L ≥ 1 and C ≥ 0 such
that, for any g ∈ G, the map fg is an (L, C)-quasi-isometry.

It is well known that a quasi-isometry q∶G → H of finitely generated groups
induces a uniform quasi-action of G on H:

Definition 2.2 (Uniform quasi-action induced by a quasi-isometry) Let G be a
group with a word metric induced by a finite generating set, let X be a metric space,
and let q∶G → X and q̄∶X → G be (L0 , C0)-quasi-isometries such that q ○ q̄ and q̄ ○ q
are at distance less than C0 from the identity maps on X and G, respectively. For g ∈ G,
let

Lg ∶G → G , x ↦ gx ,

and let

qg ∶X → X , qg = q ○ g ○ q̄.

It is an exercise to verify that there are constants L ≥ 1 and C ≥ 0 such that:
• For g ∈ G, qg ∶X → X is an (L, C)-quasi-isometry.
• (G quasi-acts on X) For g1 , g2 ∈ G, the map qg1 g2 is at distance at most C from the

map qg1 ○ qg2 , and the map qg1 ○ qg−1
1

is at distance at most C from the identity.

https://doi.org/10.4153/S0008439523000012 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000012


Hyperbolically embedded subgroupsand quasi-isometries of pairs 833

• (G acts C0-transitively on X) For every x , y ∈ X, there is g ∈ G such that
distG(x , qg(y)) ≤ C.

The map G → QI(X) given by g ↦ qg is called the uniform quasi-action of G on X
induced by q and q̄.

Remark 2.1 (Equivalence of Definitions 1.6 and 2.2) In the context of Definition
1.6, if the induced quasi-action of G on H is uniform with respect to T, then G →
QI(�(H, T)) given by g ↦ qq is a uniform quasi-action in the sense of Definition
2.2. Indeed, since T contains a finite generating set of H, there is M > 0 such that
dist(H ,T) ≤ M dist(H ,T0). Hence, if two functions H → H are at finite L∞-distance
with respect to dist(H ,T0), then the same holds for dist(H ,T).

Definition 2.3 (Cayley graph) Let G be a group with a generating set S. The Cayley
graph �(G , S) of G with respect to S is the G-graph with vertex set G and edge set
{{g , gs}∶ g ∈ G , s ∈ S}.

Proposition 2.1 (Proposition C) Let G and H be groups with finite generating sets S0
and T0, and let q∶�(G , S0) → �(H, T0) be a quasi-isometry. Let T ⊂ H containing T0.
The following statements are equivalent:
(1) The quasi-action of G on H induced by q is uniform with respect to T.
(2) There is S ⊂ G containing S0 such that q∶�(G , S) → �(H, T) is a quasi-isometry.

Proof That the second statement implies the first one is immediate. Conversely,
suppose that q and q̄ are (L0 , C0)-quasi-isometries �(G , S0) → �(H, T0) and
�(H, T0) → �(G , S0), respectively. Without loss of generality, assume that q(e) = e
and q̄(e) = e where e denotes the identity in each corresponding group.

Let K0 = L0 + C0 + 1 and define

S = { f −1 g ∈ G∶ there are h ∈ H and t ∈ T such that
dist(H ,T0)(q( f ), h) ≤ K0 and dist(H ,T0)(q(g), ht) ≤ K0}.

Note that S0 ⊂ S since q∶�(G , S0) → �(H, T0) is an (L0 , C0)-quasi-isometry. In
particular, S is a generating set of G.

Let L1 ≥ 1 and C1 ≥ 0 be such that the G-action on H induced by q is (L1 , C1)-
uniform with respect to T. In particular, for every g ∈ G, the function qg ∶H → H is
an (L1 , C1)-quasi-isometry �(H, T) → �(H, T).

Now, we prove that if the induced quasi-action of G on H is uniform with respect
to T, then q∶�(G , S) → �(H, T) is a quasi-isometry. Observe that every vertex of
�(H, T) is at distance at most C0 from q(G)with respect to dist(H ,T0) and hence with
respect to dist(H ,T). Below, we prove inequalities (2.1) and (2.2), which will conclude
proof.

Claim There is constant L̄ such that

dist(H ,T)(q(a), q(b)) ≤ L̄ dist(G ,S)(a, b),(2.1)

for any a, b ∈ G.
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Proof of claim Let s ∈ S. Then there are f , g ∈ G, h ∈ H, and t ∈ T such that s =
f −1 g and

dist(H ,T0)(q( f ), h) ≤ K0 , dist(H ,T0)(q(g), ht) ≤ K0 .

It follows that

dist(H ,T)(q f (e), qg(e)) = dist(H ,T)(q( f ), q(g)) ≤ 2K0 + 1.

Since the quasi-action of G on �(H, T) is (L1 , C1)-uniform, the previous inequality
implies that

dist(H ,T)(e , q(s)) = dist(H ,T)(qe(e), q f −1 g(e))
≤ L1 dist(H ,T)(q f ○ qe(e), q f ○ q f −1 g(e)) + C1

≤ L1 dist(H ,T)(q f (e), qg(e)) + 3C1

≤ L1(2K0 + 1) + 3C1 =∶ L̄0 .

For any g ∈ G and s ∈ S, we have that

dist(H ,T)(q(g), q(gs)) = dist(H ,T)(qg(e), qgs(e))
≤ L1 dist(H ,T)(qg−1 ○ qg(e), qg−1 ○ qgs(e)) + C1

≤ L1 dist(H ,T)(e , qg−1 gs(e)) + 3C1

≤ L1 dist(H ,T)(q(e), q(s)) + 3C1 ,

and hence

dist(H ,T)(q(g), q(gs)) ≤ dist(H ,T0)(q(g), q(gs)) ≤ L̄,

where L̄ = L1(L̄0) + 3C1. If a, b ∈ G and [u0 , . . . , u�] is a geodesic in �(G , S) from a
to b, then the triangle inequality implies inequality (2.1). ∎

Claim For any a, b ∈ G, we have

dist(G ,S)(a, b) ≤ dist(H ,T)(q(a), q(b)).(2.2)

Proof of claim Suppose that [h0 , . . . , h�] is a geodesic in �(H, T) from q(a) to
q(b). Since q∶�(G , S0) → �(H, T0) is an (L0 , C0)-quasi-isometry, for each i, there
is g i ∈ G such that dist(H ,T0)(q(g i), h i) ≤ C0. Let g0 = a and g� = b. Observe that
g−1

i g i+1 ∈ S for 0 ≤ i < �, and hence dist(G ,S)(g i , g i+1) ≤ 1. Now, [g0 , . . . , g�] is a path
in �(G , S) from a to b and therefore dist(G ,S)(a, b) ≤ dist(H ,T)(q(a), q(b)) proving
inequality (2.2). ∎

∎

Corollary 2.1 Let G and H be groups with finite generating sets S0 and T0. Let
q∶G → H be a group homomorphism which is also an (L0 , C0)-quasi-isometry
q∶�(G , S0) → �(H, T0). If T ⊂ H contains T0, then there is S ⊂ G containing S0 such
that q∶�(G , S) → �(H, T) is a quasi-isometry.

Proof Let q̄∶H → G be a quasi-inverse of q and, by increasing L0 and C0 if neces-
sary, assume that q̄∶�(H, T0) → �(G , S0) is an (L0 , C0)-quasi-isometry. Moreover,
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suppose q ○ q̄ and q̄ ○ q are at distance at most C0 from the corresponding identity
maps with respect to dist(H ,T0) and dist(G ,S0). Note that for any g ∈ G,

qg(h) = q(g ⋅ q̄(h)) = q(g) ⋅ q(q̄(h)).

Hence, qg is a (1, C0)-quasi-isometry since it is the composition of q ○ q̄ followed by
the isometry given by multiplication on the left by q(g). Then the proof concludes by
invoking Proposition 2.1. ∎

The following result is the particular case of Corollary 2.1 in which H is a finite
index subgroup of G. In this case, one can give a more algebraic description of the
generating set S. The proof follows the same lines as the previous argument modulo
Lemma 2.1.

Proposition 2.2 Let H be a finite index normal subgroup of a finitely generated
group G. Let T be a generating set of H, let R be a right transversal of H in G, and let
S = T ∪ R. If the G-action by conjugation on H is a uniform quasi-action on �(H, T),
then the inclusion �(H, T) ↪ �(G , S) is a quasi-isometry.

We divert the proof of the proposition after the following lemma.

Lemma 2.1 Let H be a finite index normal subgroup of a finitely generated group G.
Let T be a generating set of H containing a finite generating set T0, let R be transversal
of H in G, let S0 be a finite generating set of G, and let q∶�(G , S0) → �(H, T0) be the
quasi-isometry defined by q(hg) = h for h ∈ H and g ∈ R. The following statements are
equivalent:
(1) The G-action by conjugation on H is a uniform quasi-action on �(H, T).
(2) The quasi-action of G on H induced by q is uniform with respect to T.

Proof Take as the quasi-inverse of q the inclusion H ↪ G. For h ∈ H, let Lh ∶H → H
be given by Lh(x) = hx, i.e., multiplication on the left. Note that Lh ∶�(H, T) →
�(H, T) is an isometry for every h ∈ H.

Let g ∈ G and suppose that g = h∗g∗ where h∗ ∈ H and g∗ ∈ R. Then

qg(h) = q(gh) = q(ghg−1h∗g∗) = ghg−1h∗ = h∗g∗hg−1
∗ h−1
∗ h∗ = h∗g∗hg−1

∗

and hence

qg = Lh∗ ○Ad(g∗),

where Ad(g∗) is conjugation by g∗. It follows qg ∶�(H, T) → �(H, T) is an (L, C)-
quasi-isometry for all g ∈ G if and only if Ad(g∗)∶�(H, T) → �(H, T) is an (L, C)-
quasi-isometry for all g∗ ∈ R. In particular, the first statement implies the second by
Remark 2.1, and the second statement implies the first since the constants L and C
hold for all conjugations. ∎

Proof [Proof of Proposition 2.2.] Let T0 ⊂ T be a finite generating set of H, and let
S0 = T0 ∪ R. Note that S0 is a finite generating set of G. Then q∶�(G , S0) → �(H, T0)
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is an (L0 , C0) quasi-isometry for some L0 ≥ 1 and C0 ≥ 0, and the quasi-inverse q̄ can
be taken as the inclusion �(H, T0) ↪ �(G , S0).

Observe that, in �(G , S), the vertices g = hr and q(g) = h are adjacent since r ∈ S.
Therefore, if [v0 , . . . , v�] is a geodesic path in �(H, T) from q(a) to q(b), then
[a, v0 , . . . , v� , b] is a path in �(G , S) from a to b, and hence

dist(G ,S)(a, b) ≤ dist(H ,T)(q(a), q(b)) + 2.

We now prove the other inequality. Since the G-action on H by conjugation is a
uniform quasi-action on �(H, T), Lemma 2.1 implies that the quasi-action of G on H
induced by q is (L1 , C1)-uniform with respect to T, for some L1 ≥ 1 and C1 ≥ 0.

Let K0 = L0 + C0 + 1. Observe that

S ⊆ { f −1 g ∈ G∶ there are h ∈ H and t ∈ T such that
dist(H ,T0)(q( f ), h) ≤ K0 and dist(H ,T0)(q(g), ht) ≤ K0}.

Indeed, let s ∈ S = T ∪ R, and there are two cases. First, if s ∈ T , let f = h = e and
g = t = s, and second, if s ∈ R, let f = h = e, g = s, and t be any element of T0. Then,
exactly as in the first claim in the proof of Proposition 2.1, one defines a constant
L̄ = L̄(L1 , C1 , K0) and deduces the inequality

dist(H ,T)(q(a), q(b)) ≤ L̄ dist(G ,S)(a, b).(2.3)

It remains to show that

dist(G ,S)(a, b) ≤ dist(H ,T)(q(a), q(b)) + 2,(2.4)

for any a, b ∈ G, concluding the proof. This is clear since �(H, T) is a subgraph of
�(G , T) and distG ,S(g , q(g)) ≤ 1 for any g ∈ G. ∎

The following example by Minasyan and Osin illustrates the need for the hypoth-
esis relating to the conjugation action in Corollary 2.2.

Example 2.1 [16] Let H = ⟨a, b⟩ be the free group of rank 2, let G = ⟨a, b, t∶ tat−1 = b,
t2 = e⟩, let T = {b, a, a−1 , a2 , a−2 , . . .}, and let S = T ∪ {t}. The inclusion �(H, T) →
�(G , S) is not a quasi-isometry. Indeed, in G, we have tan t−1 = bn , and hence
dist(G ,S)(e , bn) = 3, but dist(H ,T)(e , bn) = n for every n. In particular, the map
�(H, T) → �(H, T) given by h ↦ tht−1 is not a quasi-isometry, and hence the G-
action on H by conjugation is not an action by quasi-isometries.

3 Quasi-isometries and hyperbolically embedded subgroups

In this section, we will prove Theorem A. The theorem is obtained by putting together
a simple characterization of hyperbolically embedded subgroups in terms of coned-
off Cayley graphs which appeared in the work of Rashid and the second author (see
[13, Propositions 1.5 and 5.8]), some results about quasi-isometries of pairs from [11],
and some basic facts about hyperbolically embedded subgroups from [7]. Below, we
state these results and then we discuss the proof of Theorem 3.1.
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Definition 3.1 (Reduced collections) A collection of subgroups Q of a group H is
reduced if for any P, Q ∈ Q and g ∈ H, if P and gQ g−1 are commensurable subgroups,
then P = Q and g ∈ P.

Remark 3.1. An almost malnormal collection is reduced.

Definition 3.2 (Fine) Let � be a graph, and let v be a vertex of �. Let

Tv� = {w ∈ V(�) ∣ {v , w} ∈ E(�)}

denote the set of the vertices adjacent to v. For x , y ∈ Tv�, the angle metric∠v(x , y) is
the length of the shortest path in the graph �/{v} between x and y, with∠v(x , y) = ∞
if there is no such path. The graph � is fine at v if (Tv�,∠v) is a locally finite metric
space. The graph � is fine at C ⊆ V(�) if � is fine at v for all v ∈ C.

Definition 3.3 (Coned-off Cayley graph) Let G be a group, let P be an arbitrary
collection of subgroups of G, and let S be a subset of G. Denote by G/P the set of all
cosets gP with g ∈ G and P ∈ P. The coned-off Cayley graph of G with respect to P is
the graph �̂(G ,P, S) with vertex set G ∪G/P and edges are of the following type:
• {g , gs} for s ∈ S and
• {x , gP} for g ∈ G, P ∈ P, and x ∈ gP.
We call vertices of the form gP cone points.

Proposition 3.1 [13] Let P be a collection of infinite subgroups of G, and let S be a
subset of G. Then P↪h (G , S) if and only if the Coned-off Cayley graph �̂(G ,P, S) is
a connected hyperbolic graph which is fine at every cone vertex.

Proposition 3.2 [11, Proposition 5.6] Let G and H be groups, let S ⊂ G and T ⊂ H,
and let S0 ⊂ S and T0 ⊂ T be finite generating sets of G and H, respectively. Consider
collections P and Q of subgroups of G and H, respectively. Let q∶G → H be a function.

Suppose that q is a quasi-isometry �(G , S) → �(H, T), is a quasi-isometry of pairs
(G ,P, S0) → (H,Q, T0), and q̇ is a bijection G/P→ H/Q.
(1) Let q̂ = q ∪ q̇, then q̂ is a quasi-isometry �̂(G ,P, S) → �̂(H,Q, T).
(2) If �̂(H,Q, T) is fine at cone vertices, then �̂(G ,P, S) is fine at cone vertices.
(3) If Q↪h (H, T), then P↪h (G , S).

Items (1) and (2) of Proposition 3.2 are taken from [11, Proposition 5.6], and the
last item is a direct consequence of Proposition 3.1.

Proposition 3.3 [11, Proposition 5.12] Let q∶ (G ,P) → (H,Q) be an (L, C , M)-quasi-
isometry of pairs. Then:
(1) q̇ is a surjective function G/P→ H/Q if Q is reduced.
(2) q̇ is a bijection G/P→ H/Q if P and Q are reduced.

Proposition 3.4 [11, Proposition 6.2] Let P∗ be a refinement of a finite collection of
subgroupsP of a finitely generated group G. If P is a finite index subgroup of CommG(P)
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for every P ∈ P, then (G ,P) and (G ,P∗) are quasi-isometric pairs via the identity map
on G.

Proposition 3.5 [11, Proposition 6.7] Let q∶ (G ,P) → (H,Q) be a quasi-isometry of
pairs. If Q is an almost malnormal finite collection of infinite subgroups and P is a finite
collection, then any refinement P∗ of P is almost malnormal.

Proposition 3.6 [7, Proposition 4.33] Let P be a collection of subgroups of a group G.
If P↪h G, then P is an almost malnormal collection.

We are now ready to prove Theorem A.

Theorem 3.1 (Theorem A) Let q∶G → H be a quasi-isometry of finitely generated
groups, let P and Q be finite collections of subgroups of G and H, respectively, and let S
and T be (not necessarily finite) generating sets of G and H, respectively. Suppose that:
(1) q∶ (G ,P) → (H,Q) is a quasi-isometry of pairs and
(2) q∶�(G , S) → �(H, T) is a quasi-isometry.
The following statements hold:
(1) If P and Q are reduced collections in G and H, respectively, then P↪h (G , S) if

and only if Q↪h (H, T).
(2) If Q contains only infinite subgroups and Q↪h (H, T), then P∗ ↪h (G , S).

Proof For the first statement, since P and Q are reduced, Proposition 3.3 implies
that q̇∶G/P→ H/Q is a bijection. Then Proposition 3.2 implies that �̂(G ,P, S) is
hyperbolic and fine at cone vertices if and only if �̂(H,Q, T) is hyperbolic and fine at
cone vertices. Then Proposition 3.1 concludes the proof of the first statement.

The second statement is a consequence of the first statement as follows. That Q↪h
H implies thatQ is an almost malnormal collection of subgroups in H (see Proposition
3.6). It follows that Q is reduced in H. Then, since Q contains only infinite subgroups,
Proposition 3.5 implies that P∗ is reduced. By Proposition 3.4, q∶ (G ,P∗) → (H,Q)
is a quasi-isometry of pairs. Then Q↪h H and the first statement of the proposition
imply that P∗ ↪ (G , S). ∎

4 Hyperbolically embedded subgroups and commensurability

In this section, we prove Theorem E. The argument uses the following proposition,
which is a strengthening of [14, Proposition 2.15]. It essentially follows from the proof
in the cited article, but we have included the proof for the convenience of the reader.

Proposition 4.1 Let H be a finite index subgroup of a finitely generated group G, and
let Q be a finite collection of subgroups of H. The following statements are equivalent:
(1) The inclusion H ↪ G is a quasi-isometry of pairs (H,Q) ↪ (G ,Q).
(2) For any Q ∈ Q and g ∈ G, there is Q′ ∈ Q and h ∈ H such thathdistG(gQ , hQ′) < ∞.
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Proof That (1) implies (2) is trivial. Assume statement (2). Since H is a finite index
subgroup of the finitely generated group G, assume that H ↪ G is an (L, C) quasi-
isometry. Since H is finite index in G, and Q is a finite collection, the H-action on
G/Q has finitely many orbits. For gQ ∈ G/Q, let

hdistG(gQ , H/Q) ∶=min{hdistG(gQ , hQ′)∶ hQ′ ∈ H/Q}.

LetR be a finite collection of orbit representatives of the H-action on G/Q. By hypoth-
esis, for gQ ∈ R, there is hQ′ ∈ H/Q such that hdist(gQ , hQ′) < ∞ and therefore

M =max{hdistG(gQ , H/Q)∶ gQ ∈ R} < ∞

is a well-defined integer since R is a finite set. Since the subset H/Q of G/Q is
H-invariant,

hdistG(gQ , H/Q) = hdistG(hgQ , H/Q)

for every gQ ∈ R and h ∈ H. SinceR is a collection of representatives of orbits of G/Q,

hdistG(gQ , H/Q) ≤ M

for every gQ ∈ G/Q. Hence, (H,Q) ↪ (G ,Q) is an (L, C , M) quasi-isometry of
pairs. ∎

Remark 4.1. Let G be a group, and let T and S generating sets with finite symmetric
difference. Then the identity map on G is a quasi-isometry �(G , T) → �(G , S).

Theorem 4.1 (Theorem E) Let H be a finite index normal subgroup of a finitely
generated group G, and let Q be a finite collection of infinite subgroups of H such that
Q↪h (H, T). Suppose that:
(1) The G-action by conjugation on H is a uniform quasi-action on �(H, T).
(2) The collection {hQh−1∶ h ∈ H and Q ∈ Q} is invariant under conjugation by G.
If Q∗ is a refinement of Q in G and R is a transversal of H in G, then Q∗ ↪h (G , T ∪ R).

Proof Since H is finitely generated, by adding a finitely many elements, we can
assume that T generates H. Note that this preserves Q↪h (H, T) by [7, Corollary
4.27], and the quasi-isometry type of �(H, T) by Remark 4.1. Under this assumption,
the conclusion will follow from the second statement of Theorem 3.1 applied to the
quasi-isometry of finitely generated groups given by the inclusion H ↪ G.

SinceQ↪h (H, T),Q is an almost malnormal collection (see Proposition 3.6). The
assumption that Q consists only of infinite subgroups implies that for any Q ∈ Q,

Q = CommH(Q) = CommG(Q) ∩H.

Since H is finite index in G, we have that Q is finite index in CommG(Q). Then
Proposition 3.4 implies that the identity map on G is a quasi-isometry of pairs
(G ,Q) �→ (G ,Q∗). On the other hand, since the collection {hQh−1∶ h ∈ H and
Q ∈ Q} is invariant under conjugation by elements of G, we have for any g ∈ G and
Q ∈ Q there is h ∈ H such that gQ g−1 = hQ′h−1 and hence

hdistG(gQ , hQ′) ≤ hdistG(gQ , Q g) + hdistG(Q g , (Q′)h) + hdist((Q′)h , hQ′) < ∞.
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Proposition 4.1 implies that H ↪ G is a quasi-isometry of pairs (H,Q) → (G ,Q).
It follows that H ↪ G is a quasi-isometry of pairs (H,Q) → (G ,Q∗) as it is the
composition (H,Q) ↪ (G ,Q) �→ (G ,Q∗). Let R be a transversal of H in G, and let
S = T ∪ R. Since the G-action by conjugation on H is uniform on �(H, T), Proposi-
tion 2.2 implies that H ↪ G is a quasi-isometry �(H, T) → (G , S). The hypothesis of
Theorem 3.1 has been verified, and therefore Q↪h (H, T) implies Q∗ ↪h (G , S). ∎

5 Semidirect products and hyperbolically embedded subgroups

In this section, we will prove Theorem F about semidirect products. The hypothesis
of the following proposition and theorem reflects the issues posed by the example of
Minasyan and Osin (Example 2.1).

Proposition 5.1 Let A be a group with (not necessarily finite) generating set T, let H
be a collection of subgroups, and let F ≤ Aut(A) be a finite subgroup. Suppose that T
and H are F-invariant and that the F-action on H is free. Let HF be a collection of
representatives of F-orbits in H. Then the inclusion A↪ A⋊ F induces:
(1) a quasi-isometry �(A, T) → �(A⋊ F , T ∪ F) and
(2) if A is finitely generated, a quasi-isometry of pairs (A,H) → (A⋊ F ,HF).

Proof To prove the first statement, let S = T ∪ F and let distT and distS be the
word metrics on A and A⋊ F induced by T and S, respectively. Let q∶A↪ A⋊ F
be the inclusion, and let q̄∶A⋊ F → A be such that for a ∈ A and f ∈ F, q̄(a f ) = a.
Note that q̄ is a well-defined A-equivariant map since each element of A⋊ F can be
expressed as a product a f in a unique way. Observe that q̄ ○ q is the identity on A, and
q ○ q̄ is at distance 1 from the identity map on A⋊ F with respect to distS . Since the
Cayley graph �(A, T) is a subgraph of �(A⋊ F , T ∪ F), it is immediate that for any
u, v ∈ A, distS(q(u), q(v)) ≤ distT(u, v). To conclude the proof of the statement, we
show that for any u, v ∈ A⋊ F, distT(q̄(u), q̄(v)) ≤ distS(u, v). Note that it is enough
to consider the case that distS(u, v) = 1. Let w1 , w2 ∈ A⋊ F such that distS(w1 , w2) = 1.
Then w1 = a1 f1 and w2 = a2 f2 and q̄(w i) = a i . It follows that g = (a1 f1)

−1a2 f2 ∈
T ∪ F. Observe that

g = f −1
1 a−1

1 a2 f2 = (a−1
1 )

f −1
1 f −1

1 a2 f2 = (a−1
1 )

f −1
1 a f −1

1
2 f −1

1 f2 = (a−1
1 a2)

f −1
1 f −1

1 f2 ∈ T ∪ F .

There are two cases, either g ∈ T or g ∈ F, since T ∩ F = ∅. We regard T ∪ F and F
as a subset and a subgroup of A⋊ F, respectively. If g ∈ T , then f1 = f2 and hence
(a−1

1 a2)
f −1

1 ∈ T ; since T is F-invariant, a1 and a2 are adjacent in �, and hence
distT(q̄(w1), q̄(w2)) = 1. If g ∈ F, then a1 = a2 and hence distT(q̄(w1), q̄(w2)) = 0.

For the second statement, suppose that A is finitely generated and let dist denote
word metric on A⋊ F induced by finite generating set, and let hdistA⋊F be the induced
Hausdorff distance. Let M =max f ∈F dist(1, f ). Since the inclusion A↪ A⋊ F is a
quasi-isometry of finitely generated groups and HF ⊂H, it is enough to prove that
for any H ∈H, there is a left coset in (A⋊ F)/HF at Haudorff distance at most M in
A⋊ F. Let H ∈H. Since the F-action on H by conjugation is free, there is a unique
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f ∈ F and a unique K ∈HF such that H = f K f −1. Observe that

hdist(H, f K) = hdist( f K f −1 , f K) ≤ dist(1, f −1) ≤ M ,

and this completes the proof. ∎

Theorem 5.1 (Theorem F) Let A be a finitely generated group with (not necessarily
finite) generating set T, and let H be a finite collection of infinite subgroups such that
H ↪h (A, T). If F ≤ Aut(A) is finite, T and H are F-invariant, and the F-action on H

is free, then HF ↪h (A⋊ F , T ∪ F), where HF is collection of representatives of F-orbits
in H.

Proof By Proposition 5.1, the inclusion A↪ A⋊ F induces a quasi-isometry
�(A, T) → �(A⋊ F , T ∪ F), and a quasi-isometry of pairs (A,H) → (A⋊ F ,HF).
SinceH ↪h A, the collectionH is almost malnormal in A; then the assumption that F
acts freely on H implies that a refinement of H in A⋊ F is HF , and this was observed
in Example 1.3. Since H contains only infinite subgroups and H ↪h A, Theorem 3.1
implies that HF ↪h (A⋊ F , T ∪ F). ∎

6 Concluding remarks

A positive answer to the following question would allow us to drop the first hypothesis
of Theorem A for the relevant groups.

Question 6.1. Let G be a finitely generated NRH acylindrically hyperbolic group.
Does G contain a qi-characteristic collection of hyperbolically embedded subgroups?

It is possible that AH-accessibility as defined in [1] may be necessary for a positive
answer to Question 6.1. Note that this property does not always hold (see [2]).

It is tempting to weaken the definition of a quasi-isometry of pairs q∶ (G ,P) →
(H,Q) to remove the uniform constant M bounding the Hausdorff distances on the
cosets and instead ask the relation

q̇ = {(A, B) ∈ G/P ×H/Q ∶ hdistH(q(A), B) < ∞}

satisfies that the projections into G/P and H/Q are surjective. We shall call the map q
in this modified definition an almost quasi-isometry of pairs following [10, Section 5].

Indeed, there is work of Margolis [12] where the main theorems do not require
this additional hypothesis. However, Margolis shows that the hypotheses assumed
in the main results of loc. cit. in fact imply that such a constant M exists (see [12,
Theorem 4.1]). Note that our results in this article rely on the existence of a constant
M—primarily due to the use of [11, Proposition 5.6]. Thus, we raise the following
question.

Question 6.2. Let G and H be finitely generated groups with finite collections of
subgroups P and Q, respectively. When is an (L, C)-almost quasi-isometry of pairs
q∶ (G ,P) → (H,Q) an (L, C , M)-quasi-isometry of pairs?
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Motivated by results of [5], the referee of the article suggested that it might be
interesting to investigate other relaxations of the definition of a quasi-isometry
of pairs (Defintion 1.1), for example, in the sense that the image of every element
of the collection A lies at uniform Hausdorff distance of the union of finitely
many elements in the collection B. Having a more general notion could allow
a broader strategy toward tackling Question 1.1 based on the methods in this
article.
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