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LOGICAL ASPECTS OF COMBINATORIAL DUALITY 

BY 

T. A . M c K E E 

ABSTRACT. D. R. Woodall has introduced closely-related notions 
of Menger and Kônig duals which can be applied to a broad range 
of combinatorial contexts. The present paper considers these two 
notions for finite ground sets in terms of syntactic duality principles. 
Specific graph-theoretic interpretations are cited. 

0. Introduction. The notions of Menger and Kônig duals were introduced by 
D. R. Woodall in [10] and [11] as points of departure for a number of 
well-known results including Menger's theorem from graph theory, the Ford-
Fulkerson max-flow min-cut theorem for network flows, and the duality 
theorem of linear programming. In particular, Menger duality generalizes 
matroid duality, which itself generalizes the familiar cycle/cocycle duality of 
graph theory. We shall view these dualities in terms of syntactic duality 
principles based on quantifiers appropriate to the combinatorial contexts. 

Suppose S is a given set of elements, with a subset of S being called 
nontrivial whenever it contains at least two elements. A nonempty family 9* of 
subsets (called blocks of 2F) will be called a set system whenever both the 
following hold. 
(0.1) No block of 9> properly contains another block of 9>. 
(0.2) All blocks of 9? are nontrivial. 
The first axiom makes 2F a "clutter" (or "Sperner family"). The second is 
nonstandard, but serves to simplify the subject from our point of view and 
removes only very special or trivial cases. 

A set system 9*' is the Menger dual of 9* whenever its members are precisely 
the minimal nontrivial subsets of S having at least one element in common with 
each block of 9*. Similarly, a set system 9*' is the Kônig dual of 9* whenever its 
members are precisely the maximal nontrivial subsets of S having at most one 
element in common with each block of SF. 

As a simple, but not too combinatorial, example, let S be the point set of the 
Cartesian plane R x R , f the family of all vertical lines (viewed as subsets of 
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S), and &' the family of all functions having domain R. Then & and &' are 
each both Menger and Kônig duals of each other. 

In the following sections we shall restrict our attention to finite sets S and 
develop a more significant graph-theoretic example which illustrates practical 
uses of our logical orientation. 

1. Menger duality. We shall use lower-case variables (x, y , . . . ) and con
stants (a, b,...) for elements of S and upper-case variables (X, Y, . . . ) and 
constants (A, B , . . . ) for blocks of set systems. In addition to the usual logical 
connectives v for disjunction and —i for negation, and the universal (V) and 
existential (3) quantifiers, we shall freely use informal abbreviations such as 
(Vx e B) and ( 3 X G f ) . We shall let an element predicate (that is, a property of 
elements) such as P(x) correspond to a subset P of S; thus P(x) and x e P will 
be used interchangeably. For instance, ( 3 X G ^ ' ) ( V X G X ) P ( X ) will mean that 
each element of some block belongs to P. 

THEOREM 1. 3*' is the Menger dual of 3F if and only if the following 
equivalence holds for all predicates P : 

(1.1) ( 3 X e y ' ) ( V x e X ) P ( x ) iff ( V X e ^ ) ( 3 x e X ) P ( x ) . 

Proof. First assume 2F' is the Menger dual of oF. The left side of (1.1) implies 
the existence of B e&*' such that B c P . By assumption, B must meet each 
block of 2F at least once, and so P must also, as required by the right side. 
Conversely, since S is assumed to be finite, the right side of (1.1) together with 
the assumed Menger duality forces P to contain some block of 2F', as asserted 
by the left side. 

Now suppose (1.1) and B e ^ ' , towards showing that &?' is the Menger dual 
of 3. So ( 3 X e S '̂XVx G x ) (x e B), and so by (1.1) B meets each block of & at 
least once. To show B's minimality, suppose B'<^B such that B' meets each 
block of & at least once. So (VXe ^ ) ( 3 X G X ) ( X G B ' ) , and so by (1.1) there 
exists some block B" of &' such that B"^B\ Since B"c=B'c=B, (0.1) implies 
B' = B. Thus SF' is a subset of the Menger dual of £F. Suppose B is any block in 
the Menger dual of £F, so ( V X G ^ ) ( 3 X G X ) ( X e B). By (1.1), there exists some 
block B' of 2F' (and so of the Menger dual) such that B'czJB. By minimality, 
B =B' and so B is in £F; thus &' is the Menger dual. 

Notice that we have proved something stronger than Theorem 1: The "only 
if" ( = left-to-right) implication in (1.1) corresponds to the "at least one" 
portion of the definition of Menger duality; the "if" implication, to the 
"minimal" portion. 

The importance of (1.1) as a duality principle is best shown by a graph-
theoretic example. Consider a two-port connected multigraph, the "ports" 
being distinguished source and sink vertices. The edge set is taken as S, with 
the blocks of & being tiesets—minimal paths connecting the source to the 
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sink—and the blocks of 3*' being cutsets—minimal sets of edges whose removal 
would disconnect the source from the sink. In accord with axiom (0.2), we 
forbid tiesets or cutsets having only one edge. The set systems SF and 3*' are 
Menger duals of each other, and so (1.1) is applicable. 

If a distinguished source-sink edge is added, tiesets and cutsets become 
(respectively) cycles and cocycles. This cycle/cocycle duality is studied in [4] 
using (1.1) which is shown to correspond to this duality in so far as, as is 
sometimes claimed, graph-theoretic duality is explained by matroid duality. 
This correspondence rests on a self-dual axiomatization of matroids quoted in 
[2, page 41]: axiom 2 there corresponds to our (0.1), while the two very 
different axioms 1 and 3 there correspond to the two converse implications 
which make up (1.1). (See [4] for details and [7] for a strengthened duality 
principle.) Duality principles such as (1.1) allow statements which have been 
suitably expressed in terms of tiesets to be equivalently stated in terms of 
cutsets. When recast as an exclusive disjunction, equivalence (1.1), now under 
the name of "Minty's theorem", occurs repeatedly in combinatorial mathema
tics and its applications; for instance, [9] describes its role in circuit theory, and 
[5] and [6] describe additional interpretations. 

It is natural to think of ( 3 X e 3^')Çix e X)P(x) as determining a quantifier on 
P(x), asserting that P(x) holds "for all x in some block of £F\" We shall 
abbreviate the left side of (1.1) as (=>Q'x)P(x), a generalized quantifier (in the 
sense of [3, pages 100-101]) corresponding to the family ^3*' of all supersets 
of blocks of 3*'\ (=>Qx)P(x) will correspond to =>^, defined similarly. Equival
ence (1.1) can now be expressed as 

( D Q ' X ) P ( X ) iff - I ( = > Q X ) - I P ( X ) , 

and so can be viewed as asserting that the quantifier => Q is the logical dual of 
=>Q'. (This connection with Boolean duality is also mentioned, in different 
terms, in [1, page 303].) 

2. Kônig duality. We begin by reexamining the traditional universal and 
existential quantifiers when restricted to subsets of S. Each can be viewed as 
containing an unstated "at least": (Vx eB)P(x) means P holds "for at least all 
x G B " and possibly x outside of B as well; (3x e B)P(x) means P holds "for at 
least one x e B " . Replacing "at least" with "at most" produces a useful pair of 
converse quantifiers. We shall use ( Ç V X G B ) P ( X ) to mean that P holds "for at 
most all x in B " ; that is, P holds "for no x outside of B " ; that is, P^B. 
Similarly, ( ^ 3 x eB)P(x) will mean that P holds "for at most one x e B " ; that 
is, that the cardinality of PDB is at most one. 

THEOREM 2. 3*' is the Kônig dual of 3* if and only if the following equivalence 
holds for all predicates P : 

(2.1) (3Xe^ ' ) (ç=VxeX)P(x) iff (VXe^)(ç=3xeX)P(x) . 
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We omit the proof, which is almost the same as for Theorem 1, except for 
noting that the "only if" implication in (2.1) corresponds to the "at most one" 
portion of the definition of Kônig duality; the "if" implication, to the "maxi
mal" portion. 

Kônig duality differs from Menger duality in a very major way. Taking the 
contrapositive of (1.1) produces the equivalent principle 

( 3 X G ^ ) ( V X G X ) P ( X ) iff (VXGf ' ) (3xeX)P(x) . 

Thus 2F' being the Menger dual of 9 is equivalent to each being the Menger 
dual of the other—i.e., ([10, Prop. 1], [11, Thm 7.1]) Menger duality is 
symmetric. But not so with Kônig duality. The alternative formulation 

(2.2) ( 3 X G f ) ( ç V x e X ) P ( x ) iff ( V X G ^ ' ) ( Ç 3 X G X ) P ( X ) 

is not equivalent to (2.1) without an additional assumption. Equivalence (2.2) is 
not the contrapositive of (2.1) because negation does not behave as simply on 
(çVx G X) and fe3x e X) as it does on (Vx e X) and (3x G X); in other words, 
these converse quantifiers are not logical duals of each other. The additional 
assumption needed is that 9 and 2F' are conformai (called "clique-complete" 
in [11]), where a set system is conformai whenever, for each subset P of S, the 
containment of each pair of elements of P in a common block implies that the 
entire set P is contained in a block. 

We can illustrate the use of (2.1) to prove the following observation of [10] 
and [11]: If 9' is the Kônig dual of SF, then 9' is conformai. To see this, 
suppose, for every a,beP, that ( 3 X e ^ ' ) ( ç V x G X ) ( x = a v x = l)). Equival
ence (2.1) then implies ( V X G ^ ) ( Ç 3 J C eX)(x - a vx = b) for all a,beP. So 
( V X G 3*0(Ç3X eX)P(X) and so by (2.1) again ( 3 X e &')(<^\tx eX)P(x) ; that is, 
P is contained in a block of £F'. 

THEOREM 3 [10, Prop. 2], [11, Thm 7.2]. If 9' is the Kônig dual of 9 and 9 
is conformai, then 9 is the Kônig dual of 9'. 

Proof. Suppose 9 is conformai, (2.1) holds for all predicates P, and a 
particular P is given, towards proving (2.2). Let a and b be arbitrary elements 
of P (noting that (2.2) is trivial if P has fewer than two elements). Then (2.1) 
implies 

(3XGf ' ) ( çVxGX)(x - a vx = b) iff ( V X G ^ ) ( Ç 3 X G X ) ( X = a vx = b). 

Negating both sides and paying careful attention to the meaning of (^Vx e X) 
and ( Ç 3 X G X ) shows 

(VXe^')(<=3xeX)(x = a v x = fc) iff (3Xe^)(ç=VxeX)(x = a v x = 6). 

This formulation is easily shown to be equivalent to (2.2), using the conforma-
lity of 9 for the "if" implication of (2.2). 
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The key point in this argument is that, when P has cardinality two, each of 
( Ç V X G X ) P ( X ) and (^BxeX)P(x) is the negation of the other. So while they 
are not logical duals, they are nicely related for such near-trivial P. This 
observation leads to the following. 

COROLLARY. TWO conformai set systems are Kônig duals of each other if and 
only if every pair of elements is in a common block of exactly one of the two set 
systems. 

While Woodall (with a more restricted objective) observes [11, page 259] 
that in practice, all the most interesting examples tend to be conformai, the 
families of tiesets and cutsets in our graph-theoretic example fail to be. But 
adding the assumption that every pair of edges is in either a common tieset or 
cutset, but not both, causes these families to become conformai and, indeed, 
each to be simultaneously the Menger and Kônig dual of the other. Within the 
more general cycle/cocycle context mentioned in Section 1, this assumption 
corresponds to the multigraph being series-parallel and nonseparable; see [8] 
for details. In fact, these two important graph-theoretic concepts correspond to 
the "only if" and "if" implications of (2.1) respectively, thereby showing that 
series-parallel and nonseparable are converses of each other in this very 
dual-like fashion. 

Since there are natural examples of joint Menger/Kônig duality, it is natural 
to seek a simple duality principle corresponding to the conjunction of (1.1) and 
(2.1). One possibility would be to replace each "at most" in (2.1) with 
"exactly", producing, in effect 

(2.3) Pe&' iff ( V X G ^ ) ( 3 ! X G X ) P ( J C ) . 

But while (2.3) follows simply from (1.1) and (2.1) (and so does hold in all 
examples of joint Menger/Kônig duality), and even though its "only if" 
implication implies the "only if" implications of (1.1) and (2.1), it is easy to find 
examples satisfying (2.3) without being Menger duals. 

The author wishes to thank the referee for his valuable and apt criticism. 
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