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Abstract

A Fredholm operator exists which maps the solutions of a system of linear partial
differential equations of the form du/dt = DLu + Au coupled by a matrix A onto those
solutions of a similar system coupled by a matrix B which have the same initial values.
The kernels of this operator satisfy a hyperbolic system of equations. Since these
equations are independent of the linear partial differential operator L, the same operator
serves as a mapping for a large class of equations. If B is chosen diagonal, the solutions of
a coupled system with matrix A may be obtained from the uncoupled system with matrix
B.

1. Introduction

Hill [3] considered the coupled system

-^- = dxLux - axux + b1u1, u^x.O) = f^x),

-^j- = d2Lu2 + b2ux - a2u2, u2(x,0) = / 2 (x ) ,

where L denotes a linear constant coefficient differential operator involving
spatial derivatives only. He showed that if hv h2 are solutions of the uncoupled
system,
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504 A. McNabb [21

then a solution of the coupled system is given by

Ul(x, t) = e-vhiix, dxt) + ' (+' e-

u2(x, t) = e-a*'h2{x, d2t)

where

X = (0^2 - a2dl)/{dl - d2), ft = (ax - a2)/(d1 - d2),

and /0 and /j are modified Bessel functions.
A matrix formulation and generalisation of this two variable case is studied in

this paper. Suppose A is a mapping from Rm+1 to RN satisfying

Yt
=DUl in{(x,r):xeflin/?"I,O<r<r}>

*(x,0) = / ( * ) , x^Q,

where D is a constant nonsingular diagonal matrix and the operator L commutes
with any B e 5^,(0, To), the set of regulated mappings from (0, T) into N X N
matrices with real y th dement Btj [1]. We show that, given A e 5^(0, To), there is
a / G 5^,(0, r0), and a pair of kernels k+(t, s), k~(t, s) such that

u(x, t) = Jh(x, t) + (' k+(t, s)h(x, s)ds + fT° k~{t, s)h(x, s) ds
Jo Jt

= (J + K)h(x,t). (1.2)

is a solution of the equations

^j = DLu + Au, «(x,0) = / ( * ) • (1-3)

If it is assumed such an operator/ + Sexists, then equations (1.1), (1.2) and (1.3)
imply / must satisfy an ordinary differential equation and commute with D, while
k+ and k~ satisfy a hyperbolic system of equations.

In Section 2 we describe these equations and show they have a unique solution
dependent only on D and A, and that the operator / + K so constructed does
indeed map solutions of (1.1) into solutions of (1.3). This operator / + K is
shown to be invertible on the space of regulated functions on (0, To) with an
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|3] Coupled partial differential equations 505

inverse J~l — H of similar form with kernels h+, h~ satisfying a hyperbolic
system of equations in a sense adjoint to those for k+, k~.

In Section 3 the hyperbolic systems are solved for the two-variable case and we
obtain the results given by Hill [3]. Results for the nonhomogeneous problem are
given in Section 4.

2. Fredholm operator and its inverse for homogeneous problem

Let fi c Rm denote a bounded domain and G the region {(x, t): x e fl,
0 < / < T(x) < To). Suppose v(x, /)( : G -> RN) is a solution of the linear
partial differential equation,

-£ = DLv inG, v(x,0)=f{x) in Q, (2.1)

where D is a constant, nonsingular, diagonal matrix with diagonal elements
dx > d2> • • • > dN, and the operator L satisfies the commutative relation

LB = BL
for all B e 5^(0, To), the set of regulated mappings from (0, To) into N X N
matrices.

THEOREM 1. Given a bounded matrix A c 5^(0, To) with ijth element denoted by
AtJ, let

(1) A0 G SN be such that A°j = Atj when dt = d; andA°u = 0 otherwise;
(2) / G SNbe the solution of the differential equation

% = A°J in(0,ro), /(0) = / , (2.2)

where I is the unit matrix in SN.
Then there is a unique pair of functions

k + (t,s): {(t,s): 0 < t < 7 0 ,0 < s < /} -» N X Nmatrices,

k~(t,s): {(t,s): 0 < s s£ r o , 0 < / < s) -> N X Nmatrices

which satisfy the hyperbolic equations

^ - + D ^ - D-1 = /1A:+ i n O < f < r o , O < * < / ,

9^- 9 £ -
-g— + ^ - g — D~l = ̂ ~ '«o < J < r o , o < / < 5 ,

and boundary conditions

k+(t,0) = k~(0,s) = 0,

[k+(t, t) - k~(t, t)] -D[k+(t, t) - k~(t, t)] D-1 = (A- A°)J(t)

(2.4)
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and the function u(x, t): G -» RN defined by

u(x,t) = J(t)v(x,t)+ (' k+(t,s)v(x,s)ds + fT° k~(t, s)v(x, s) ds
JQ Jt

= (J + K)o(x,t) (2.5)

is a solution of the differential equation

^- = DLu + AuinG, u(x,0)=f(x) (2.6)

for 0 < t < min, y (d , /^ ) r 0 .

PROOF. The existence proof for k *(f, s) follows classical lines [2] and is merely
sketched here. Functions k^t, s) satisfying equations (2.3), (2.4) can be con-
structed iteratively as follows. Let

I kjAt, s j in 0 ^ / ^ 1 o, 0 ^ s < /,

k-j(t,s) inO^s^ r o , O < t < s,

and t = T, s — <j> + (dj/d^r, so that

dk>j _ v
g T

 T> ^ ,a aj T,

except on T = <J> + (dt/dj)T.

By integrating this equation along characteristics <|> = constant and using the
boundary conditions (2.4), we find: when /' < j and d{ > dj,

s > ̂ t, ktJ(t, s) = £ jT Aiakaj[e, s-^t-8)^ dd;

s < t, k,j(t, * ) = £ / ' ^teA:ai«, * - ^ ( / - 6)) dd;
a-l J'-(.dj/d) J \ dj )
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I s 1 Coupled partial differential equations 507

when / > j and dt < dj;

s > t, ku{t, s) = £ Jf' Alaka^6, s-^(t-O)^ d6;

t>s>%t,kij(t,s) = T±J £
J J ' a=l

^t>s,kiJ{t,s)= £ f Aiakje,s-^(t-e))d0;

when di = dj,
N

s> t, k,j(t, * ) = £ / ' AiakaJ{8, s- t + 6)d6;

N

s <t, ku(t, s) = £ f AiakaJ{0, s-t + 0)d8.

Replace ki} by k"j+l on the left and by k"j on the right side of all these equations,
set kfy = 0 and solve the system iteratively.

If

a = sup £ I^J , b = sup . \ \Jafi\ fort/, * dj,
a = l J '

then, by induction, |A:,".+1(', s) - k?At, s)\ < ban+1t"/n\, so that

n - l

converges uniformly to a solution Jfcfy(/, 5) of the integral equations.
This solution is unique, for if uu(t, s) = k]j - kjp the difference of any two

solutions k)j and kfj of the integral equations above, then it satisfies the
homogeneous equations derived from these by setting Jaj to zero.

Let U(T) = sup|w,7(r, s)\ for all /, j and l , j e (0, T). Suppose £/(7\) = 0,
where 0 < 7\ < To and U(T*) > 0 for any T* > 7\. Since U(T*) = |M,7(/, S)\ for
some /,y and t, s in (7\, r*] and

«,,(''*)= £
where c = greater of 0 and t - (dj/djs then it follows that

aU(T*) dd = aU(T*)(T* - 7\).
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But T* can be chosen so that a(T* — 7\) = \ in which case the inequality leads
to a contradiction. We must conclude U(T0) = 0, and only one solution exists.

Consider now the function u(x, t) defined by equation (2.5). Since 7(0) = / and
k~(0, s) = 0, we have

« ( * , O ) = I;(JC,O) = / ( * ) .

Moreover.

Y~ DLu- Au = (A0 -A)Jv+(JD - DJ)Lv + Dk + (t,0)D-1f(x)

+ (t, t) - k'(t, t)] - D[k + (t, t) - k~{t, t)] D-l}v

From the definition of A0 it follows that

DA0 - A°D = 0
a n d hence if <j> = DJ - JD, then </> = 0 at / = 0 and

^ = DA°J - A°JD = A°(DJ -JD)= A0<j>.

Thus

<J> = 0 .

Now k~(0, s) = 0 and the characteristics of the equations for k~(t, s) are lines
of the form

so that k~(t, s) = 0 in s > max over /, j of (dydj)t and hence k~(t, To) = 0 if
f < min over i,j of (dj/dt)T0.

These results, together with equations (2.3), (2.4) make the right side of
equation 2.7 vanish. Q. E. D.

If A commutes with D, then A = A0 and k(t, s) = k~(t, s) = 0. In this case

u = Jv, where -j- = AJ, J(0) = / .

The operator J + K maps regulated functions vv(/) on (0, To) into regulated
functions on (0, To), and at least for To small enough will have an inverse/"1 — H
such that (J + KXJ-1 - H) = / or

KJ-lw = JHw + KHw. (2.8)
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[7) Coupled partial differential equations 509

If we assume Hw is of the form

Hw = (' h + (t, s)w(s) ds + fT° h~(t, s)w(s) ds
Jo Jt

it will be sufficient to find kernels h*{t,s) satisfying the equations

<!> + (t,s) = k + (t,s)J-l(s) =J(t)h + (t,s)+ f k+{t,6)h-{0,s)dd
Jo

+ f k+(t, 6)h + (6, s) dO + [T° k~(t, 6)h + (6, s) d8, (2.9)

4>~(r, s) = k~(t, s)J~1(s) = J(t)h~(t, s) + [' k+(t, 6)h~{e, s) dO
Jo

+ f k~(t, 6)h-(6, s) dd + fT° k~(t, 0)h + {6, s) dO,
Jt Js

derived from the operator equation (2.8).

THEOREM 2. There exists a unique pair of functions h+(t, s), h~(t, s) which satisfy
the hyperbolic equations

-^- + D^—D-1 + Dh+DlA = 0 in 0 < / < To, 0 < s < t,

dh~ dh~ ( 2 1 0 )

-g— + D-r—D-1 + Dh~D-lA =0 in 0 < s < To, 0 < t < s,
and boundary conditions

[h + (t, t) - h-(t, /)] -D[h + (t, t) - h-{t, t)) D-1 = J-\A - A0).

(2.11)

These functions also satisfy equations (2.9), and if u satisfies equations (2.6) in
(0, To), the function v = (J'1 - H)u satisfies equation (2.1) for 0 < t <

PROOF. Integral equations analogous to those for k *(/, s) may be constructed
and solved interatively for h *(;, s) for all To. It is readily shown that both sides of
equations (2.9) satisfy the hyperbolic system

-i = A*-i = A**-

and boundary conditions

[4>+{t, t) - * - ( / , / ) ] - D[^{t, t) - * " ( * , 0 ] D - 1 = A - A0.

This system.has a unique solution.
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In similar fashion we find v = (J'1 — H)u satisfies equation (2.1) if h~(t, T°)
= 0 and this holds if 0 < t < min, y((/I/d>)r0. Q.E.D.

There is an interesting relationship between equations (2.3), (2.4) for k *(/, s)
and equations (2.10), (2.11) for the resolvent kernels h^t, s). If A' denotes the
transpose of a matrix A e SN and h\t, s) denotes the transpose matrix of h(t, s)
and if B = -A', J* = J'~\ then

z + (t, s) = -D'-lh'-\s,t)D' <mt>s,

z~(t,s) = -D'-lh' + (s,t)D' o n / < s

satisfies the equations

^r- + D'-^—D'-1 = -A'z~= Bz~, on 0 < s < To, 0 < t < s,
at as

^ - + D'^-D'-1 = -A'z + = Bz+, on 0 < / < To, 0 < J < t,
at as

(z + (t, t)-z (t, 0 ) - D'(z + (t, t) - z~(t,

= -(A' - A°')J'-X = (B - B0)J*.

Since

^ = A°J, J(0) = I,

we have

^J"1 = (-A'°)J'-\ J'-^O) = / ,

or

=£- = B°J*, /*(0) =/.

Thus for a pair of kernels generated by a matrix A, we derive the kernels of its
inverse from the system generated by a matrix B = -A'. Specifically,

If A is skew symmetric, then B = A and z *(*, s) = k *(/, s) while/ = /.
For each bounded matrix A we have operators J + K and J'1 - H and to

identify the operator with A we can write it as JA + KA etc. Evidently, if

w = (JB + KB){JA
1 - HA)u = (J* + K*)u

and if u satisfies equations (2.6), then w satisfies the same equation with A
replaced by B. We find that / * = JBJA

l satisfies the system

^ = B0J*-J*A0, /*(0) = / , (2.13)
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while k* *(*, s) satisfy the hyperbolic system

0/ OS

and boundary conditions

t, t) - k*~(t, t)] -D[k* + (t, t) - k*~(t,

= ( B - B°)J* -J*(A -A0).

511

(2.14)

(2.15)

3. Kernels for two variable case

Since the differential operators o/ot and d/ds commute with constants, the
hyperbolic equation for k+(t, s) and k~(t, s) may, in the case where A and D are
constant, be written in the matrix form

(3.1)

where kf is they'th column of k±. If this equation is multiplied by the matrix
adjugate operator we see that each element k,j of the vector kj satisfies the
differential equation

= o, (3.2)

where |JS| denotes the formal determinant of the matrix B.
In the case where A is triangular this differential equation has a simple form:

dt d: ds
d__d±d_
dt d, ds

d, 9

eNN dt

an ~ a7 ~

h*
= 0.

and the kernels k ± are also triangular.
In the case iV = 2,j = 1, this equation is

9
9/

a21

9
ds

a

c

9
22 9/ ds

(3.3)
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Introduce new variables

A. McNabb

«22T1

d2t

' Cl ~ l ~ d '

and assume dx > d2 > 0. Equation (3.3) for <j> gives rise to the equation

-Ci

a,, - c ,

(3.4)

for yp. Since d2/dx < 1, /cx = 0 and hence on / = s or TX = 0,

clk£(t,t) = ((A-A0)Jl(t))2l = a2le'»', and ^i(x.O) = fl21/Cl.

Thus,

* i i + >0 > ^ L

= 0 on
'21

This implies ^ ^ = 0 in the sector Xj < 0, so that

a 2i
^21 = 0 on xx = 0, »p21 = on ^x = 0,

ci

and this problem has a similarity solution

The first element Jtj^ of the vector A:̂  may be found from the relationships

where

The casey = 2 in analogous fashion shows

a12a21 I a l l T2
exp ^ ^ +
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1111 Coupled partial differential equations 513

where c2 = {d1/d2) - 1, x2 = (dx/d2)t — S,T2 = s — t, and

"12*22 +(«11 ~ C2faT]kl2 = 0.

Thus, for the second order case:

J(t) = e'°u 0

/Ql2^21^1 . L /fll2fl21

V Ti T V c?

where ax = ((an - a22)d1)/(dl - d2), & = (an</2 - a22d1)/(dl - d2), (3.5)

aulo\2

0

where a2 = ((an — a22)d2)/{dl — d2),^2 = ̂ l.

The kernels h \t, s) for the resolvent kernels of K may be constructed from its
adjoint properties derived in Section 2.

For the present case N = 2 and constant A this mapping (2.12) gives

0

a12a2l

c\

lai/Jr/^LxA
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where xl = t — (d^d^s, ft = s — t, x2 = (dx/d2)s — t, f2 = t — s. This agrees
with the expression derived by Hill [3].

The function

?*'! Tt>s'
(t, s) for/ < s

is bounded by baeaT for i < T, s < T (where a and b are the sup norms for K and
/ used in Section 2) and is discontinuous at only a finite set of points on any line
s = s0 > 0, t = t0 > O.lt therefore has a double Laplace Transform:

% = f°° e'p' f°° e-gsk(t,s)dtds, p > a,q> a,
Jo Jo

a n d

Jo Jo

so that

^Ak - p% - qDkD'1 = (°° C^-[e-p'-'isk] + ^-[De-<"-qskD-1] dt ds
JQ JQ at as

= f e-P'-^lk-"- k~] ds - De-p'-is{k + - k~)

= fX e-P'-"'(A -A°)J{t)dt
Jo

If kj denotes the single Laplace Transform f™ e~gskj(t, s) ds, then we find from
the expression for ~kj that

k. e > { e ,
in the case A° diagonal, aj is theyth diagonal element of A0 and Dj = D/dj.

The transform lc.j may be obtained in another way as follows. The operator
L = -ql commutes with A and D and the problems

D + A ( 0 ) / ^ D , v ( 0 ) = / ,

have solutions u = e'{A~Dq) and e'tDq.
The relationship

u = Jv + kv

gives the result

fT° k-(t,s)e-sDqds,
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[131 Coupled partial differential equations 515

and hence considering they th column only we have

f0 kit, s)e-s"'ds = [e'M-^'l - e'M.-«'o,l]
Jo

where q* = qdp Dj = D/dj and [B]j denotes they th column of B.

4. Nonhomogeneous problems

When D and A commute, the solutions of the nonhomogeneous problem

^ = DLu + Au + *(x,t), u(x,0)=f(x), (4.1)

can be expressed in the form

u = Jv, where ^ = AJ, 7(0) = / ,

where v satisfies the inhomogeneous problem

^ = DLv + +(x,t), 4,(x,t)=J-1<t>(x,t), o(x,0)=f(x). (4.2)

This result extends to the noncommuting case where D, L, and A have the
properties required in Theorem 1.

THEOREM 3. Ifv(x, t) satisfies the equation

^(x,t) = DLv(x,t) + t(x,t), v(x,0)=f(x), (4.3)

andJ(t), k ±(t, s) satisfy equations (2.2), (2.3), (2.4), then

u(x,t) = (J + K)v(x,t) (4.4)

satisfies the equations

-£- = DLu + Au + $ (4.5)

where

<j>(x,t) = D(J+K)D-\p{x,t). (4.6)
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516 A. McNabb [14]

PROOF. From equation (4.4) we have

~ - DLu - Au = {-A + A°)Jv +-/(y--

f *ir° ~ jfAkt" - f A"-° - jf " ' ^ i f - •)

' Dk+D~\p + f'° Dk~D-
Jt

(

= D(J

= <j>. Q.E.D.

It can be shown in analogous fashion if u satisfies equation (4.5) and v is
defined by

v +(J-1 - H)u (4.7)

where/""— H is the inverse of J + K, then v satisfies equation (4.3) where

4> = D{J~l - H)D-1<j>. Q.E.D. (4.8)
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