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Abstract

A Fredholm operator exists which maps the solutions of a system of linear partial
differential equations of the form du/d: = DLu + Au coupled by a matrix 4 onto those
solutions of a similar system coupled by a matrix B which have the same initial values.
The kernels of this operator satisfy a hyperbolic system of equations. Since these
equations are independent of the linear partial differential operator L, the same operator
serves as a mapping for a large class of equations. If B is chosen diagonal, the solutions of
a coupled system with matrix 4 may be obtained from the uncoupled system with matrix
B.

1. Introduction

Hill [3] considered the coupled system

du
_atl = d,Lul — ayuy + bluZ’ ul(x,o) =f1(X),
du,
'a—t = d2Lu2 + bzul — aju,, uz(X,O) =f2(X),

where L denotes a linear constant coefficient differential operator involving
spatial derivatives only. He showed that if A,, h, are solutions of the uncoupled
system,

- =Lh,, h,(x,0)=f(x),
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then a solution of the coupled system is given by

At ¢
ul(x, t) = e‘allhl(x, dlt) + (dl_—e_d;j;dlt e—Ff
bb,(t - d,t))\"*
X [{ —@(%_3'—)} L(n)hy(x, §) + byIo(n)hs(x, s)] at,

At
uy(x, 1) = e=%h,(x, dyt) + -(ﬁ;j;dﬂ e M
1 2 2t

[l

A =(ad, - a,dy)/(d, — d,), p=(a,—a,)/(d, - d,),

n = 2[b,b,(dyt — £)(£ - dz’)]l/z/(dl - d,),
and I, and I, are modified Bessel functions.
A matrix formulation and generalisation of this two variable case is studied in
this paper. Suppose 4 is a mapping from R™*! to R¥ satisfying

2—':=DLh in{(x,1): x€QinR™",0<t<T},

h(x,0) = f(x), x<Q,

where D is a constant nonsingular diagonal matrix and the operator L commutes
with any B € S, (0, T;), the set of regulated mappings from (0, T') into N X N
matrices with real jth element B, (1] We show that, given 4 € Sy (0, T;), there is
aJ € Sy(0, T,), and a pair of kernels k*(¢, s), k (¢, s) such that

u(x, 1) = Jh(x, 1) +f0' K1, s)h(x, s) ds + [ k™(1,5)h(x, ) ds

Li(n)hy(x, &) + byIo(n)hy(x, 5):| d§,

where

(1.1)

= (J + K)h(x,1). (1.2)
is a solution of the equations
%lti = DLu + Au, u(x,0)=f(x). (1.3)

If it is assumed such an operator J + K exists, then equations (1.1), (1.2) and (1.3)
imply J must satisfy an ordinary differential equation and commute with D, while
k* and k~ satisfy a hyperbolic system of equations.

In Section 2 we describe these equations and show they have a unique solution
dependent only on D and A, and that the operator J + K so constructed does
indeed map solutions of (1.1) into solutions of (1.3). This operator J + K is
shown to be invertible on the space of regulated functions on (0, 7,) with an
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inverse J-! — H of similar form with kernels k%, h
system of equations in a sense adjoint to those for k*, k™,

In Section 3 the hyperbolic systems are solved for the two-variable case and we
obtain the results given by Hill [3]. Results for the nonhomogeneous problem are
given in Section 4.

satisfying a hyperbolic

2. Fredholm operator and its inverse for homogeneous problem

Let € € R™ denote a bounded domain and G the region {(x,?): x € Q,
0 <1< T(x)< Ty). Suppose v(x,t)( : G—> R™) is a solution of the linear
partial differential equation,

L =Dl inG, o(x0)=f(x) ing, 2.1)
where D is a constant, nonsingular, diagonal matrix with diagonal elements
dy>d,> -+ > dy, and the operator L satisfies the commutative relation

LB = BL
for all B € S, (0, Ty), the set of regulated mappings from (0, 7;) into N X N
matrices.

THEOREM 1. Given a bounded matrix A C Sy (0, T) with i jth element denoted by

i i let

ijs

(1) A° € S, be such that AJ; = A, ;when d; = d; and A}, = 0 otherwise;

(2) J € Sy, be the solution of the differential equation

%=AW in(0,T,), J(0)=1, (2.2)
where I is the unit matrix in S,.
Then there is a unique pair of functions

k*(t,5): {(t,5):0<1<Ty,0 <5<t} = N X N matrices,
k=(t,5): {(t,5):0<s<Tp,0<1<

which satisfy the hyperbolic equations

A

t < s} = N X N matrices

+ +
agt +Da§s D'=4k* in0<t<T,,0<s<t,
ok~ ok~ (23)
T+D—5;—D'1=Ak" in0<s<T,,0<t<s,

and boundary conditions
k*(1,0) = k~(0, s) = 0,

[k*(t,8) =k~ (1,8)] = D[k*(t,8) = k=(1,2)] D' = (A4 — 4%)J(2)
(2.4)
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and the function u(x, t): G — RY defined by

u(x,t) =J(t)v(x,t) + f‘ k*(t,s)v(x,s)ds + /‘76 k=(t,s)v(x,s)ds
Q t
= (J + K)v(x,1) (2.5)
is a solution of the differential equation

%=DLu+Auin G, u(x,0)=/f(x) (2:6)

for 0 <t < min; ,(d,/d))T,.

ProoF. The existence proof for k (¢, s) follows classical lines [2}] and is merely
sketched here. Functions k (¢, s) satisfying equations (2.3), (2.4) can be con-
structed iteratively as follows. Let

ki(t,s) m0<t<Ty,0<s<t,
(1, 5) = ki(t,s) in0<s<Tp0<t<s,
andt=1,5=¢ + (d,-/dj)’r, so that
dk,; N
aTI(T’ ¢) = Z Aiakaj(T’ ¢)

a=1

excepton T = ¢ + (d;/d;)7.

By integrating this equation along characteristics ¢ = constant and using the
boundary conditions (2.4), we find: wheni < jandd, > d,

5 4 k, ( —% ‘A k8,5 - (- 8)) ab;
s djt’ ij t’s)_ _/(; ia™ aj > § dj(t ) ’

a=1

d. d, X dit—ds
t<s<tk(t,s) =55 ¥ (A,,—4%)J (——’—)

dj dj_dia=1 i di—dj
N d
+ Y Aiky;|0,s——(1—0))de;
a=1 "t—(d;/d)s d/
Non d,
s<t,k(t,s)=Y Aok 0,s—;’(t—0) de;
a=1 "1—(d;/d})s J
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wheni >jandd; <d,

s>tk (t,s)= Z fAm "J( s—%(l—ﬂ)) de;

a=1 J

d, N o dit —ds
t>S>7jt,k,-,-(l,S)= d Z( — 4; )Ja,-(rdj

J'

+ {‘, fA.a a,( —7;(1—0)) de;

N

d.
—It>S,k‘--(t,S) Z ia a (
d; J os fr (d;/d,)s /

whend; = d,

d,
s — .‘Z(t - 0)) df

N
s>t k(t,s)= X f’Am 0(0,5—t+0)do;
a=1"0

N
s <t k(t,s)= Z [’ Ak, (0,5 —1+6)de.
Replace k;; by k"+1 on the left and by k7 on the right side of all these equations,
set k), =0 ‘and solve the system 1terat1ve1y
If

N d.
a=sup Y |4,), b= sup - - 7 [gl ford,+d,,
j i

a=1

then, by induction, |k/*(¢, 5) — k[ (¢, s)| < ba™*'t"/n!, so that

o0
Zl (kz(t,s) — k5741, 5))
converges uniformly to a solution k, (¢, s) of the integral equations.

This solution is unique, for if u;,(#, s) = k;; — k2, the difference of any two
solutions k}j and k,-zj of the integral equatnons above, then it satisfies the
homogeneous equations derived from these by setting J,; to zero.

Let U(T) = suplu,;,(¢, s)| for all i, j and ¢, s € (0, T). Suppose U(T}) =0
where 0 < Ty < Ty and U(T*) > O for any T* > T,. Since U(T™*) = |u, (¢, 5)| for
some i, jand ¢, s in (T}, T*] and

u,,(t,5) = Z/A.a ( —%(r—o))do,

a=1 "¢

where ¢ = greater of 0 and ¢ — (d;/d,)s then it follows that
U(r*) < [ aU(T*) d6 = aU(T*)(T* - T).
T

1
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But T* can be chosen so that a(T* ~ T,) = 1 in which case the inequality leads
to a contradiction. We must conclude U(T,) = 0, and only one solution exists.

Consider now the function u(x, ¢) defined by equation (2.5). Since J(0) = I and
k=0, s) = 0, we have

u(x,0) = v(x,0) = f(x).
Moreover,

%§—zmu-Au_(A°-Ayw+(u> DJ)Lo + Dk*(1,0) D~Yf(x)

+{[k*(t,0) —k=(1,6)] = D[k*(t,2) = k=(¢,1)] D'}
- Dk~ (1, TO)D'lv(x T,)

+f (3k+ D_Dl Ak+)(t,0)v(x,0)d0 (2.7)

ok k™,
+f, (az + DD — Ak~ )(t,ﬂ)v(x,o)da.

From the definition of 4° it follows that

DA® - A°D =0

and hence if ¢ = DJ — JD, then¢ = 0 at? = 0 and
‘2‘5’ DA% - A%D = A%(DJ — JD) = A%.
Thus
¢=0.
Now k7(0, s) = 0 and the characteristics of the equations for k (¢, s) are lines

of the form

§= 5 +(di/d')’

so that k7(¢, s) = 0 in s > max over i, j of (d,/d;)t and hence k7(¢, T;) = 0 if
t < min over i, j of (d,/d)T,.

These results, together with equations (2.3), (2.4) make the right side of
equation 2.7 vanish. Q.E.D.

If A commutes with D, then 4 = A%and k(¢, s) = k7(¢, 5) = 0. In this case

u = Jv, where % =AJ, J(0) =1

The operator J + K maps regulated functions w(¢) on (0, T) into regulated
functions on (0, 7,), and at least for T, small enough will have an inverse J ! — H
suchthat (J + K)}J'= H)=1or

KJ'w = JHw + KHw. (2.8)

https://doi.org/10.1017/50334270000004689 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000004689

{71 Coupled partial differential equations 509

If we assume Hw is of the form
Hw = ["h* (1, )w(s) ds + [ b= (1, s)w(s) ds
(i t
it will be sufficient to find kernels A (¢, s) satisfying the equations
$*(t,5) = k*(1,5)T7(s) = J()h* (¢, 5) + [ k*(1,8)h™(8, ) db
0

+ [ k¥ (1,0)h*(8,5) d8 + [ k(1,0)h*(6,5) db,  (29)
o= (t,8) = k~(1,5)T(s) = J()h~ (2, 5) +j0’ k*(t,0)h=(8,s) do

+ [k (1,0)h(6,5) db + [ k(1,0)r" (8, 5) a8,

derived from the operator equation (2.8).

THEOREM 2. There exists a unique pair of functions h*(t, s), h™(t, s) which satisfy
the hyperbolic equations

ot ah+ -1 F -l .

T+ 35 D> +Dh"D"4A=0 in0<t<T,,0<s<1t,

oh~ oh~ (2.10)
o +Da—D‘1+DthA—0 in0<s<T,,0<t<s,

and boundary conditions
h*(t,0)=h=(0,s) =0,
[(R*(e,t) =B (t, )] =D[n*(t,t) =R (t, )] Dt =T }(A4 — A°).
(2.11)
These functions also satisfy equations (2.9), and if u satisfies equations (2.6) in

0, Ty), the function v = (J' — H)u satisfies equation (21) for 0 <t <
min; (d,/d)T,.

ProOF. Integral equations analogous to those for k (¢, s) may be constructed
and solved interatively for 2 (¢, s) for all T;,. It is readily shown that both sides of
equations (2.9) satisfy the hyperbolic system

dpt 9o p-1

ot +Da

and boundary conditions

= A¢p*— Dp*D7'A°

¢*(1,0) =9¢7(0,5)=0
[o*(t,t) =0 (t,2)] = D[op*(t,t) — ¢ (1,)] D1 = 4 — A°.
This system.has a unique solution.
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In similar fashion we find v = (J ! — H)u satisfies equation (2.1) if 2 ~(¢, T°)
= O and this holds if 0 < ¢t < min, ;(d,/d;)T,. Q.E.D.

There is an interesting relationship between equations (2.3), (2.4) for k (¢, 5)
and equations (2.10), (2.11) for the resolvent kernels 2 (¢, s). If A’ denotes the
transpose of a matrix A € S and h'(z, s) denotes the transpose matrix of h(, s)
and if B = —A’,J* = J'"}, then

z*(t,s) = -D"'"WY(s,t)D’ ont>s,
z7(t,s)=-D""W*(s,t)D’ ont<s

satisfies the equations

9z‘§T+D’aaZ—SD"‘ =-Az"=Bz", on0<s<Ty,,0<t<s,
+ +
aaz—t + D'aaz—sD"1 =-Az*=Bz*, on0<t<T,0<s<1,

z27(0,s) =z*(¢,0) =0,

(z¥(t,t) =z (2,1)) - D'(z*(t,t) —z (¢, ¢)) D't
= (A4~ A%)Jt = (B - B,)J*.

Since
ar _ —
’ =A%, J(0)=1,
we have
i =1 _ (_ 470} yr-1 r-1 —_
S (—a®) g, o) = 1,
or
ﬂ_ Orx * —
dt_BJ' J*(0) = I.

Thus for a pair of kernels generated by a matrix 4, we derive the kernels of its
inverse from the system generated by a matrix B = —A’. Specifically,
h*(t,s)=-D7'2’"Ys,t)D, h~(t,s)=-D2’*(s,¢t)D. (2.12)
If A is skew symmetric, then B = A and z (¢, s) = k (¢, s) while J = I.
For each bounded matrix 4 we have operators J + K and J ™! — H and to
identify the operator with 4 we can write it as J, + K, etc. Evidently, if
w=(Jp+ K )(J;' — H)u=(J*+ K*)u
and if u satisfies equations (2.6), then w satisfies the same equation with A4
replaced by B. We find that J* = J,J ! satisfies the system
d]*

T = BoJt =Tty IM0) =1, (2.13)
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while k* ¥(1, 5) satisfy the hyperbolic system

* 1 * 1
k™2 o DT por gt prrrpoug, (2.14)
at as

and boundary conditions
k**(1,0) = k*(0,s) =0,
[k**(t,t) —k*(t,1)] — D[k**(t,t) — k*~(t,¢)] D!
= (B - B%)J* —J*(4 — A°). (2.15)

3. Kernels for two variable case

Since the differential operators 9/d¢ and 9/ds commute with constants, the
hyperbolic equation for k*(¢, s) and k(¢, s) may, in the case where 4 and D are
constant, be written in the matrix form

8 D3 .
[A —Ié—t—zas]kj -0, (3.1)

J

where k * is the jth column of k %. If this equation is multiplied by the matrix
adjugate operator we see that each element k,; of the vector k; satisfies the
differential equation

9 DO

‘A—15—3j$¢=0, (32)

where | B| denotes the formal determinant of the matrix B.
In the case where A is triangular this differential equation has a simple form:

3 D _ 3 _d 0 8 dy 3
‘A_I - ""(““ a1 d.as)("22 o d.as)

at d_jas

J and the kernels k * are also triangular.
In the case N = 2, = 1, this equation is

9 0
T T B ap
o d, d ¢ =0. (3.3)
an 92 "3 4, 3s
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Introduce new variables

a
Tn=1t—25, ¢=¢exp(

51

d,t d

2 2

xl =85 -5, Cl = — T3
d, 1
and assume d; > d, > 0. Equaiion (3.3} for ¢ gives rise io ihe equaiion

c 9 a

laxl 12

g =0 (3.9)
an -
ar

fory.Sinced,/d, <1,k;y=0and henceont =sort, =0,

ak3i(t, 1) = ((A4 = Ag)Ji(1))y = ane™, and ¢3(x,0) = ay/c,.

Thus,
92 a,,a -d T
+ 12421 , + . 2'1
Vo = Yo, onm >0, x> )
a'rlaxl c12 dl
—d,T a
o 21
Y5 =0 onx;=——, Y,,=—"= on7 =0.
d 51

This implies y3; = 0 in the sector x; < 0, so that
a
‘I’21=0 0nx1=0, ¢21=721' 01'1T1=0,
1

and this problem has a similarity solution

The first element k7 of the vector k; may be found from the relationships

a,,T ay,x
+ _ 2271 11%1
kit =¥n CXP( o + e ),
1 1
where

Yy

ayyn — € o1, =0.

The case j = 2 in analogous fashion shows

a a,,a a7 a,X
+_ - _ 4n 1292 1”2 22%X2
k3y=0, k”—_c 10(2 xz'rz)exp(———c +—),,

2

c3 2 )
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where ¢, = (d,/d,) —1,x,=(d,/dy)t — 5,7, =s — t,and
- a3, -
apky + (au - Czyr;)klz = 0.

Thus, for the second order case:

ORI LA )

0 e
A, X a,,a
12421% 1289

—— 1|2 ST X1 0

ems—Bi 1 lsh

k*(t,s) =
(#:5) G 1,87
anly|2,/ —5—xm 0
4

where a; = ((au - aZZ)dl)/(dl —d,), By = (ay,d, — aypd,)/(d, - d;), (3.5)

41289
0 a1210(2 —5T X
2

5
a,a,,X a,,a
12921 %3 12811
0 \[HER Ly [,

where a, = ((ay, — a5,)d,)/(d, — d,), B, = B,.
The kernels h (¢, 5) for the resolvent kernels of K may be constructed from its
adjoint properties derived in Section 2.
For the present case N = 2 and constant 4 this mapping (2.12) gives

eazx—ﬁzt

k=(t,s)=

0
+( ) _e—a21+st —
h(t,s) = ————— 1 12821 _
——ay 1,12,/ ——X,7, |;
2
’ c 2. %ulo R E
0
X [@129n 45,8 . - ;
= 1|2 2T
7 2
2 c5
—ayt+Bys ‘112‘121"11 2 A1y _ _ |\,
(1, 5) = St 50 z Xn )
s Cl 1 ¢y
0
d a,,d
2 12921 _ _
-—~a, 1|2 1T
d c} ;
0
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where X, =t — (d,/d,)s, T, =5 — t, X, = (d;/d,)s — t, 7, = t — 5. This agrees
with the expression derived by Hill [3].
The function
k*(t,s) fort>s,
k(t,s)= _( )

k=(t,5) fort<s
is bounded by bue®” for ¢ < T,s < T (where a and b are the sup norms for K and
J used in Section 2) and is discontinuous at only a finite set of points on any line
s =53 >0,¢ =1, > 0. It therefore has a double Laplace Transform:

= (o] o
k=/ e“”/ e %k(t,s)dtds, p>a,q>a,
0 0

and
= fw oo ok ok
= ~pt—qsfy Pudehl -1 .
Ak fo fo e (at+DasD )dtds,
so that
= = = oo ooa a
— — -1 . —Je-Pt—as - -pt—gqs -1
Ak — pk — qDkD fo foaz[e k] + 5-[ De™?"~#kD™] dt ds

= [ e[kt~ k~]ds — De P ¥ (k*— kT)D'dt

s=1

= [T e (4 - 4%)J(0) di

=(A-[(p+q)1-24".

If k ; denotes the single Laplace Transform [5°e™%k (1, s) ds, then we find from
the expression for k ; that

%j = el(aj-—q){el[A—Ao—q(Dj—l)] - I}{A — 40— q(D}- _ I)}_I(A _ AO)j

in the case A° diagonal. g, is the jth diagonal element of 4% and D, = D/d,.
The transform ;, may be obtained in another way as follows. The operator
= —gI commutes with 4 and D and the problems

du (_12=_

s -Dqu + Au, u(0)=1, 7 Dqv, v(0) =1,
have solutions u = e"“~P9 and e~'P9.
The relationship
u=Jo+ kv

gives the result

e (A=Da) = pldop=tDq 4 f’ k*(t,s)e*Pids + fT° k~(z,s)e *Pdds,
0 t
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and hence considering the jth column only we have

o0
./‘; kj(t, S)e'nrds: [et[A—qu']_e,[Ao_q.Dj]]j

where ¢* = qd;, D, = D/d; and [ B]; denotes the jth column of B.

4. Nonhomogeneous problems

When D and A commute, the solutions of the nonhomogeneous problem
%%=DLu+Au+¢(x,t), u(x,0) = f(x), (4.1)

can be expressed in the form

u = Jv, where % =AJ, JO)=1,

where v satisfies the inhomogeneous problem

= DL+ y(x,1), $(x 1) =T (x. 1), v(x,0) = f(x). (42)

This result extends to the noncommuting case where D, L, and A have the
properties required in Theorem 1.

THEOREM 3. If v(x, t) satisfies the equation

3 (x,4) = DLo(x, 1) + ¥(x,1), v(x,0) = f(x), (43)

and J(1), k (1, 5) satisfy equations (2.2), (2.3), (2.4), then

u(x,t)=(J + K)v(x,1) (4.4)
satisfies the equations
%—l: =DLu+ Au+ ¢ (4.5)
where
¢(x,1)=D(J + K)DN(x,1). (4.6)
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Proor. From equation (4.4) we have
du du

- _ — = (_ 0 -
5, — DLu ~ Au (A+A)Jv+J(a DLv)

+[k+(t,t)—k‘(t,t)]v+f' 9%
0

+j i v-—j Ak+u—j‘T"Ak—u—j Dk*D
! 0

T dv

—[ Dk~ D~ (at )

— + - o - -

J¢+f0DkD‘\p+f, Dk~D Y

=D(J+K)Dy
=¢. Q.E.D.

It can be shown in analogous fashion if u satisfies equation (4.5) and v is
defined by

—
Q)I

~ | Cx
|
<~

——

v+(J'-H)u 4.7)
where J ™ — H is the inverse of J + K|, then v satisfies equation (4.3) where

y=D(J'~H)D%. Q.E.D. (4.8)
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