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1. Introduction

This paper is devoted to the critical extinction and blow-up exponents for the fast diffu-
sive polytropic filtration equation

∂u

∂t
− div(|∇um|p−2∇um) = λuq, (x, t) ∈ Ω × (0, +∞), (1.1)

subject to the initial- and boundary-value conditions

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, +∞), (1.2)

u(x, 0) = u0(x), x ∈ Ω, (1.3)

where 0 < m(p − 1) < 1, q > 0, λ > 0, Ω is a bounded domain with smooth boundary in
R

N , N > 2, and u0(x) is a non-negative and bounded function with um
0 (x) ∈ W 1,p

0 (Ω).
As two of the important features of many evolutionary equations, blow-up and extinc-

tion properties of solutions have been the subject of intensive study during the past
few decades. Among these investigations, it was Fujita [4] who first established the so-
called theory of critical blow-up exponents for the heat equation with reaction sources
in 1966; this can, of course, be regarded as the elegant description for either blow-up
or global existence of solutions. Since then, there has been increasing interest in the
study of critical Fujita exponents for different kinds of evolutionary equations (see [1,10]
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for a survey of the literature). In recent years, special attention has been paid to the
blow-up property to nonlinear degenerate or singular diffusion equations with different
nonlinear sources, including the inner sources, boundary flux or multiple sources (see, for
example, [5,15–18]). Besides the blow-up, the extinction phenomenon has also received
much attention (see [2,3,6,7,9,11,14]). Our interest lies in whether or not there exist
both a critical blow-up exponent and a critical extinction exponent for (1.1). In a recent
paper [13], we showed that this indeed happens for the fast diffusive p-Laplacian equa-
tion, namely the special case m = 1 of (1.1).

In this paper, we focus our attention on the fast diffusive polytropic filtration equation
with sources, and to reveal the fact that problem (1.1)–(1.3) admits two critical exponents
q1, q2 ∈ (0, +∞) with q1 < q2, which will be called the critical extinction exponent and
critical blow-up exponent, respectively. More precisely, q2 is called the blow-up exponent
since for q ∈ (0, q2] the problem admits global solutions for any non-negative initial data,
while for q ∈ (q2, +∞) there exist both global solutions and blow-up solutions. On the
other hand, q1 is called the extinction exponent, since the extinction can always occur
for q in the interval (q1, +∞), whereas for q ∈ (0, q1) there always exists a non-extinction
bounded solution for any non-negative initial data. Moreover, where the critical case
q = q1 is concerned, the other parameter λ is also found to have a critical value. In fact,
such a critical value is just equal to λ1, the first eigenvalue of the p-Laplacian equation
with a homogeneous Dirichlet boundary-value condition, and the solution has completely
different properties for λ belonging to (0, λ1) or (λ1, +∞).

This paper is organized as follows: in § 2, we firstly give some definitions and notations.
Thereafter, some auxiliary lemmas and the basic existence proposition are given. Because
it is standard and rather lengthy, for the convenience of the reader the proof of the
existence proposition is given in the appendix. Furthermore, in § 3, we discuss the blow-
up exponent of solutions; a global existence result is also given. Finally, § 4 is devoted to
the critical extinction exponent.

2. Preliminaries

In this section, we establish the global existence, uniqueness and boundedness of non-
negative weak solutions of problem (1.1)–(1.3). First, we introduce some notation which
will be used throughout the paper:

Q = Ω × (0,∞), QT = Ω × (0, T ), Q(t1,t2) = Ω × (t1, t2),

E = {u ∈ L2q(QT ) ∩ L2(QT ); u ∈ C([0, T ];L1(Ω)), ∇um ∈ Lp(QT )},

Ẽ =
{

u ∈ L2(QT ); u(· , t) ∈ C([0, T ];L2(Ω)),
∂u

∂t
∈ L2(QT ), ∇u ∈ Lp(QT )

}
,

E0 = {u ∈ E; u|∂Ω = 0}, Ẽ0 = {u ∈ Ẽ; u|∂Ω = 0}.

Because of the degeneracy and the singularity, equation (1.1) might not have classical
solutions in general, and hence we consider the non-negative solution of (1.1) in some
weak sense.

https://doi.org/10.1017/S0013091507000399 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000399


Fast diffusive polytropic filtration equations 421

Definition 2.1. A function u ∈ E is called a weak upper solution of problem (1.1)–
(1.3) provided that, for any T > 0 and any 0 � ϕ ∈ Ẽ0,∫

Ω

u(x, T )ϕ(x, T ) dx −
∫

Ω

u0(x)ϕ(x, 0) dx −
∫∫

QT

u
∂ϕ

∂t
dxdt

+
∫∫

QT

|∇um|p−2∇um∇ϕ dxdt � λ

∫∫
QT

uqϕ dxdt,

and

u(x, t) � 0, (x, t) ∈ ∂Ω × (0, +∞),

u(x, 0) � u0(x), x ∈ Ω.

Replacing ‘�’ by ‘�’ in the above inequalities yields the definition of a weak lower solu-
tion. Furthermore, if u is a weak upper solution as well as a weak lower solution, then
we call it a weak solution of problem (1.1)–(1.3).

In order to show the existence of non-negative weak solutions, the following fixed-point
theorem is necessary; this can be found in [12].

Lemma 2.2 (Leray–Schauder fixed-point theorem). Let X denote a real Banach
space and let Γ (u, σ) be a mapping from X × [0, 1] to X, satisfying the following condi-
tions:

(i) Γ is compact;

(ii) Γ (u, 0) = 0 for any u ∈ X;

(iii) there exists a positive constant M independent of u and σ, such that, for any u ∈ X,
if u = Γ (u, σ) for some σ ∈ [0, 1], then ‖u‖X � M .

Then Γ (· , 1) has a fixed point, namely, there exists an u ∈ X, such that u = Γ (u, 1).

Employing the above Leray–Schauder fixed-point theorem, we can prove the following
existence results.

Proposition 2.3. Assume that u0(x) � 0 with um
0 ∈ L∞(Ω) ∩ W 1,p

0 (Ω). Then if
q � 1, problem (1.1)–(1.3) admits at least a non-negative weak solution. In addition, if
q = 1, the non-negative weak solution is unique; if q > 1, for any non-negative initial
data u0(x), problem (1.1)–(1.3) is uniquely solvable locally in time and, furthermore, if
λ � λ1, um

0 (x) � ϕ1(x) for x ∈ Ω, where λ1 is the first eigenvalue of the p-Laplacian
equation with homogeneous Dirichlet boundary-value condition, and ϕ1(x) � 0 with
‖ϕ1‖L∞(Ω) = 1 is the eigenfunction corresponding to the eigenvalue λ1, then the solution
exists globally and is bounded.

The proof is classical and lengthy and is therefore deferred to the appendix.
After establishing the basic existence, we turn to the boundedness of weak solutions.

As is shown later, there exist blow-up weak solutions for the case q > 1. Therefore, we
only consider the case 0 < q � 1.
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Proposition 2.4. Let 0 < q � 1. Then the weak solution of problem (1.1)–(1.3) is
locally bounded. In particular, when q < m(p−1), the weak solution is globally uniformly
bounded.

Proof. Suppose that u is a weak solution of problem (1.1)–(1.3), then by the weak
maximum principle, we conclude that

‖u‖L∞(Qt) � ‖u0‖L∞(Ω) + λt‖u‖q
L∞(Qt)

.

When q < 1, it is not difficult to see that u is bounded locally uniformly, while if q = 1,
then we have

‖u‖L∞(Q(tn,tn−1)) � ‖u(· , tn−1)‖L∞(Ω) + λ(tn − tn−1)‖u‖L∞(Q(tn,tn−1)),

that is
‖u‖L∞(Q(tn,tn−1)) � 2‖u(· , tn−1)‖L∞(Ω) � 2n‖u0‖L∞(Ω),

where tn = tn−1 + 1/2λ, t0 = 0. Then it is not difficult to see that u is bounded locally
uniformly.

In the following, we show the global boundedness for the case when q < m(p − 1).
Assume that u is a non-negative weak solution of problem (1.1)–(1.3). Let

k0 = ‖u0‖L∞(Ω), l = max
{

k0,

(
mλ(mp − m + 1)p

λ1(mp)p

)1/(mp−m−q)}
,

and set
Ah(t) = {x ∈ Ω; u(x, t) � h}.

In the following, we shall show that

‖u(· , t)‖L∞(Ω) � l for any t > 0. (2.1)

Multiplying equation (1.1) by (u − l)+ and integrating in Ω yield

1
2

d
dt

∫
Ω

(u − l)2+ dx +
∫

Ω

(|∇um|p−2∇um)∇(u − l)+ dx = λ

∫
Ω

uq(u − l)+ dx,

that is

1
2

d
dt

∫
Ω

(u − l)2+ dx +
(mp)p

m(mp − m + 1)p

∫
Al(t)

|∇u(mp−m+1)/p|p dx = λ

∫
Ω

uq(u − l)+ dx.

(2.2)
Let λ1 be the first eigenvalue of the p-Laplacian equation with homogeneous Dirichlet
boundary-value condition, in which case we have∫

Ω

|∇u|p dx � λ1

∫
Ω

up dx for any u ∈ W 1,p
0 (Ω).
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Furthermore, we also have∫
Al(t)

|∇u|p dx � λ1

∫
Al(t)

up dx for any u ∈ W 1,p
0 (Ω). (2.3)

Indeed, if we take

ũ =

{
u if u � l,

0 otherwise,

then we have ∫
Ω

|∇ũ|p dx � λ1

∫
Ω

ũp dx;

that is, (2.3) holds. Taking (2.2) into account, we conclude that

1
2

d
dt

∫
Ω

(u − l)2+ dx + λ1
(mp)p

m(mp − m + 1)p

∫
Al(t)

ump−m+1 dx � λ

∫
Ω

uq(u − l)+ dx.

We further have

1
2

d
dt

∫
Ω

(u − l)2+ dx + λ1
(mp)p

m(mp − m + 1)p

∫
Ω

ump−m(u − l)+ dx � λ

∫
Ω

uq(u − l)+ dx.

Recalling the definition of l, we arrive at

1
2

d
dt

∫
Ω

(u − l)2+ dx �
∫

Ω

uq(u − l)+

(
λ − λ1(mp)p

m(mp − m + 1)p
ump−m−q

)
dx � 0. (2.4)

Noting that
∫

Ω
(u0−l)2+ dx = 0, and combining this with the above inequality, we conclude

that ∫
Ω

(u − l)2+ dx = 0,

which implies (2.1). The conclusion of the proposition follows immediately. �

3. Critical blow-up exponent

We are now in a position to discuss the critical blow-up exponent of problem (1.1)–(1.3).
By using the method of Levine [8], we define

F (u) =
1
p

∫
Ω

|∇um|p dx − λm

q + m

∫
Ω

uq+m dx, H(u) =
1

m + 1

∫
Ω

um+1 dx.

The following theorem shows that the blow-up exponent q2 = 1.

Theorem 3.1. Assume that u0 � 0, F (u0) � 0 and H(u0) > 0. If q > 1, then there
exists T ∗ with 0 < T ∗ < ∞, such that

lim
t→T ∗

H(u(t)) = +∞;
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and if 0 < q � 1, then the weak solution exists globally. In particular, if q = 1, then

lim
t→+∞

H(u(t)) = +∞;

if m(p − 1) < q < 1,
lim

t→+∞
‖u(· , t)‖L∞(Ω) = +∞;

if 0 < q < m(p − 1), then the weak solution is uniformly bounded.

Proof. By the definition of F (u) and H(u), and a simple calculation, we have

dF (u)
dt

= − 4m

(m + 1)2

∫
Ω

(
∂u(m+1)/2

∂t

)2

dx � 0, (3.1)

dH

dt
=

∫
Ω

∂u

∂t
um dx

= −
∫

Ω

|∇um|p dx +
∫

Ω

λuq+m dx

=
(

1 − mp

q + m

) ∫
Ω

λuq+m dx − pF (u). (3.2)

According to (3.1), we see that F (u0) � 0 implies that F (u) � 0. Therefore, we have

dH

dt
� λ

(
1 − mp

q + m

) ∫
Ω

uq+m dx. (3.3)

Case 1. When q > 1, recalling Hölder’s inequality, we obtain

∫
Ω

uq+m dx � C

(
1

m + 1

∫
Ω

um+1 dx

)(m+q)/(1+m)

.

Thus, we have
dH(u)

dt
� Cλ

(
1 − mp

q + m

)
(H(u))(m+q)/(1+m).

Then there must exist a positive constant T ∗ < ∞ such that

lim
t→T ∗

H(u(t)) = +∞. (3.4)

Otherwise, we would have

1 + m

1 − q

dH(1−q)/(1+m)(u)
dt

� Cλ

(
1 − mp

q + m

)
.

Integrating from 0 to t yields

H(1−q)/(m+1)(u0) − H(1−q)/(m+1)(u(t)) � q − 1
m + 1

Cλ

(
1 − mp

q + m

)
t;
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that is,

H(1−q)/(m+1)(u(t)) � H(1−q)/(m+1)(u0) − q − 1
m + 1

Cλ

(
1 − mp

q + m

)
t.

Since H(u0) > 0 implies that H(1−q)/(m+1)(u0) < ∞, there exists a positive constant
T ∗ > 0 such that H(1−q)/(m+1)(u(t)) < 0 for all t > T ∗, which is a contradiction.

Case 2. Since the global existence for 0 < q � 1 or the boundedness for 0 < q <

m(p − 1) is a direct consequence of Propositions 2.3 and 2.4, it suffices to prove the
remaining part.

When q = 1, from (3.3) it follows that

dH(u(t))
dt

� λ(m + 1 − mp)H(u(t)).

By a direct calculation, we obtain

H(u(t)) � H(u0)eλ(m+1−mp)t.

Therefore, we have
lim

t→+∞
H(u(t)) = +∞, (3.5)

while, for the case when m(p − 1) < q < 1, if u is a weak solution, by means of the weak
maximum principle, for any t > 0 we have

‖u‖L∞(Qt) � ‖u0‖L∞(Ω) + tλ‖u‖q
L∞(Qt)

,

which implies that u is bounded in any finite time, namely the weak solution could not
blow up in finite time. However, we have

lim
t→∞

‖u(· , t)‖L∞(Ω) = +∞. (3.6)

Suppose to the contrary that there exists a positive constant M such that

‖u(· , t)‖L∞(Ω) � M.

Then ∫
Ω

um+1 dx � M1−q

∫
Ω

uq+m dx.

From (3.3), we infer that

dH(u(t))
dt

� λ

(
1 − mp

q + m

)
Mq−1

∫
Ω

u1+m dx

� λ

(
m + 1 − mp(m + 1)

q + m

)
Mq−1H(u(t)),

which implies that
lim

t→+∞
H(u(t)) = +∞.

https://doi.org/10.1017/S0013091507000399 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000399


426 C. Jin, J. Yin and Y. Ke

Taking this into account and noting that

H(u(t)) � 1
m + 1

|Ω| ‖u‖m+1
L∞(Ω),

we conclude that ‖u(· , t)‖L∞(Ω) goes to infinity as t → ∞, which is a contradiction. The
proof of the theorem is complete. �

4. Critical extinction exponent

Now, we turn to the discussion of the critical extinction exponent for problem (1.1)–(1.3).
The following two theorems exhibit the details of such characteristics.

Theorem 4.1. Assume that u0(x) � 0 with um
0 (x) ∈ L∞(Ω) ∩ W 1,p

0 (Ω). If q >

m(p − 1), then the weak solution of problem (1.1)–(1.3) vanishes in finite time for appro-
priately small initial data u0. In addition, if q = m(p − 1) with λ < λ1, then the weak
solution goes to zero in the sense of the norm Lm+1(Ω) as t → ∞ and, in particular, if

(m + 1)N
mN + m + 1

� p or 1 < p <
(m + 1)N

mN + m + 1

with

λ < λ1

(
mp

mp − Nm + (m + 1)(N/p − 1)

)p
N + Nm − p − Nmp

mp
,

then u vanishes in finite time too.

Remark 4.2. In fact, from the proof of Theorem 4.1, we see that when q = 1 the
boundedness restriction on the solution u is unnecessary.

Theorem 4.3. For any non-negative function u0(x) with um
0 (x) ∈ L∞(Ω)∩W 1,p

0 (Ω),
problem (1.1)–(1.3) admits at least one bounded non-negative and non-extinction weak
solution for the case q = m(p − 1) with λ > λ1 or 0 < q < m(p − 1).

For convenience, in the following proof, we assume that the weak solution is appro-
priately smooth; otherwise, we can consider the corresponding regularized problem, and
the same result can also be obtained through an approximate process.

Proof of Theorem 4.1. We divide the proof into three steps according to the different
intervals of q: that is,

(i) q � 1,

(ii) m(p − 1) < q < 1,

(iii) q = m(p − 1) with λ < λ1.

(i) In view of Proposition 2.3, we see that the existence of bounded solutions is possible
for a suitable initial datum u0. Set M = ‖u‖L∞(Q). Multiplying equation (1.1) by ur,
where r > 0 satisfies

p(r + 1)
mp − m + r

� Np

N − p
if N > p
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(namely r > max{N(m+1)/p−1−Nm, 0}), otherwise r > 0 is arbitrary, and integrating
over Ω we conclude that

1
r + 1

d
dt

∫
Ω

ur+1(x, t) dx +
(

mp

mp − m + r

)p
r

m

∫
Ω

|∇u(mp−m+r)/p|p dx

� λMq−1
∫

Ω

ur+1 dx. (4.1)

Moreover, recalling the imbedding theorem, we also have

(
mp

mp − m + r

)p
r

m

∫
Ω

|∇u(mp−m+r)/p|p dx � C

( ∫
Ω

ur+1 dx

)(mp−m+r)/(r+1)

.

Combining this result with (4.1), we conclude that

1
r + 1

d
dt

∫
Ω

ur+1(x, t) dx + C

( ∫
Ω

ur+1 dx

)(mp−m+r)/(r+1)

� λMq−1
∫

Ω

ur+1 dx. (4.2)

Let
f(t) =

∫
Ω

ur+1 dx, α =
mp − m + r

r + 1
< 1.

It follows that
f ′(t) + C(r + 1)fα(t) � λ(r + 1)Mq−1f(t).

If there exists a t0 > 0 such that f(t0) = 0, then

f(t) � λ(r + 1)Mq−1
∫ t

t0

f(τ) dτ.

Recalling Grönwall’s inequality, we obtain

f(t) ≡ 0 for any t > t0.

Otherwise, f(t) > 0 holds for all t. Then we have

(f1−α)′ − λ(1 − α)(r + 1)Mq−1f1−α(t) � −C(r + 1)(1 − α).

By a simple calculation, we arrive at

f1−α(t) � f1−α(0)eλ(1−α)(r+1)Mq−1t − C

λMq−1 (eλ(1−α)(r+1)Mq−1t − 1)

�
(( ∫

Ω

ur+1
0 dx

)1−α

− C

λMq−1

)
eλ(1−α)(r+1)Mq−1t +

C

λMq−1 .

Choose a sufficiently small u0(x) such that

( ∫
Ω

ur+1
0 dx

)1−α

� C

2λMq−1 .
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Then the two inequalities above give

f1−α(t) � − C

2λMq−1 (eλ(1−α)(ps+2)Mq−1t − 2).

From the inequality above, we see that there must exist a T > 0 such that f1−α(t) � 0
for any t � T . Obviously, this is a contradiction. In conclusion, there exists a positive
constant T ∗ such that ∫

Ω

ur+1 dx ≡ 0 for any t � T ∗,

which implies that u vanishes in finite time. This completes the proof of (i).

(ii) Multiplying equation (1.1) by ur, and integrating over Ω, we deduce

1
r + 1

d
dt

∫
Ω

ur+1(x, t) dx +
(

mp

mp − m + r

)p
r

m

∫
Ω

|∇u(mp−m+r)/p|p dx

= λ

∫
Ω

ur+q dx � λ|Ω|(1−q)/(r+1)
( ∫

Ω

ur+1 dx

)(r+q)/(r+1)

. (4.3)

Choose an appropriately large r > 0, such that

p(r + 1)
mp − m + r

� Np

N − p
if N > p;

otherwise, r > 0 is arbitrary. Then, according to the imbedding theorem, we have
(

mp

mp − m + r

)p
r

m

∫
Ω

|∇u(mp−m+r)/p|p dx � C

( ∫
Ω

ur+1 dx

)(mp−m+r)/(r+1)

.

Substituting into (4.3), we obtain

1
r + 1

d
dt

∫
Ω

ur+1(x, t) dx + C

( ∫
Ω

ur+1 dx

)(mp−m+r)/(r+1)

� λ|Ω|(1−q)/(r+1)
( ∫

Ω

ur+1 dx

)(r+q)/(r+1)

. (4.4)

By a direct calculation, we further have

d
dt

( ∫
Ω

ur+1 dx

)(1−m(p−1))/(r+1)

� (1 − m(p − 1))
(

λ|Ω|(1−q)/(r+1)
( ∫

Ω

ur+1(x, t) dx

)(q−m(p−1))/(r+1)

− C

)
. (4.5)

For simplicity, we set

M(u(t)) = λ|Ω|(1−q)/(r+1)
( ∫

Ω

ur+1(x, t) dx

)(q−m(p−1))/(r+1)

− C.
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If M(u0) < 0, combining this with (4.5), we obtain that M(u(t)) is decreasing on t.
Hence, we have

M(u(t)) � M(u0).

We further have( ∫
Ω

ur+1 dx

)(1−m(p−1))/(r+1)

� (1 − m(p − 1))M(u0)t + ‖u0‖1−m(p−1)
Lr+1(Ω) .

It is evident that there exists a positive constant T0, such that∫
Ω

ur+1(x, t) dx ≡ 0 for all t � T0,

which implies u = 0 a.e. in Ω for t � T0.

(iii) First we show that
‖u(· , t)‖L∞(Ω) � M0, (4.6)

where

M0 =

⎧⎪⎨
⎪⎩

‖u0‖L∞(Ω), α0 � 1,

1
1 − α0

‖u0‖L∞(Ω), α0 < 1.

Set

l0 = ‖u0‖L∞(Ω), α0 =
λ1(mp)p

λm(mp − m + 1)p
.

Multiplying equation (1.1) by (u − l0)+ and integrating over Ω we obtain

1
2

d
dt

∫
Ω

(u − l0)2+ dx +
(mp)p

m(mp − m + 1)p

∫
Al0 (t)

|∇u(mp−m+1)/p|p dx

= λ

∫
Ω

um(p−1)(u − l0)+ dx,

where Al0(t) = {x ∈ Ω; u(x, t) > l0}. Since λ1 is the first eigenvalue of p-Laplacian equa-
tion with homogeneous Dirichlet boundary-value condition, combining this with (2.3),
we conclude that

1
2

d
dt

∫
Ω

(u − l0)2+ dx + λ1
(mp)p

m(mp − m + 1)p

∫
Al0 (t)

ump−m+1 dx

� λ

∫
Ω

um(p−1)(u − l0)+ dx.

We further have

1
2

d
dt

∫
Ω

(u − l0)2+ dx � λ

∫
Al0 (t)

um(p−1)
(

u − l0 − λ1(mp)p

λm(mp − m + 1)p
u

)
dx. (4.7)
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If α0 � 1, then
d
dt

∫
Ω

(u − l0)2+ dx � 0.

Therefore, we have ∫
Ω

(u − l0)2+ dx = 0 a.e. in Ω,

which implies that ‖u(· , t)‖L∞(Ω) � l0, while, if α0 < 1, let

T0 = inf{t > 0; ‖u(· , t)‖L∞(Ω) � l0/(1 − α0)}.

Since
‖u(· , t)‖L∞(Ω) � ‖u0‖L∞(Ω) + tλ‖u‖m(p−1)

L∞(Qt)
,

we see that T0 > 0. Suppose to the contrary that T0 = +∞. Then we obtain

‖u‖L∞(Q) � ‖u0‖L∞(Ω)/(1 − α0).

Otherwise, T0 < +∞. Taking (4.7) into account, we arrive at

d
dt

∫
Ω

(u − l0)2+ dx � 0 for all t � T0.

Thus, we have ‖u(· , T0)‖L∞(Ω) � l0. Clearly, it is a contradiction. Now (4.6) is a direct
consequence of what we have proved.

Multiplying equation (1.1) by um and integrating over Ω, we conclude that

1
m + 1

d
dt

∫
Ω

um+1 dx +
∫

Ω

|∇um|p dx � λ

∫
Ω

ump dx. (4.8)

Noting that

λ1

∫
Ω

ump dx �
∫

Ω

|∇um|p dx,

we have
1

m + 1
d
dt

∫
Ω

um+1 dx � −(λ1 − λ)
∫

Ω

ump dx.

Let v = u/M0. Then we further have

d
dt

∫
Ω

vm+1 dx � −(m + 1)Mmp−m−1
0 (λ1 − λ)

∫
Ω

vmp dx

� −(m + 1)Mmp−m−1
0 (λ1 − λ)

∫
Ω

vm+1 dx,

which implies that∫
Ω

vm+1 dx � e−(m+1)Mmp−m−1
0 (λ1−λ)t

∫
Ω

vm+1
0 dxdx.
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Furthermore, we have∫
Ω

um+1 dx � e−(m+1)Mmp−m−1
0 (λ1−λ)t

∫
Ω

um+1
0 dxdx.

Therefore, we conclude that ‖u(· , t)‖Lm+1(Ω) → 0 as t → ∞.
In addition, by (4.8), we have

1
m + 1

d
dt

∫
Ω

um+1 dx +
∫

Ω

|∇um|p dx � λ

λ1

∫
Ω

|∇um|p dx.

Using the imbedding theorem we obtain that if p � (m + 1)N/(mN + m + 1),

d
dt

∫
Ω

um+1 dx � −(m + 1)
(

1 − λ

λ1

) ∫
Ω

|∇um|p dx

� −C0(m + 1)
(

1 − λ

λ1

)( ∫
Ω

um+1 dx

)mp/(m+1)

.

A similar argument to that above shows that there must exist a T0 > 0, such that∫
Ω

um+1(x, t) dx ≡ 0 for all t � T0, which implies that u vanishes in a finite time.
The following argument is devoted to the discussion of the case when 1 < p < (m +

1)N/(mN + m + 1). Noting (4.3), and taking r = (N − p − Nmp + Nm)/p > m, we
obtain

1
r + 1

d
dt

∫
Ω

ur+1(x, t) dx +
(

mp

mp − m + r

)p
r

m

∫
Ω

|∇u(mp−m+r)/p|p dx

= λ

∫
Ω

ur+m(p−1) dx � λ

λ1

∫
Ω

|∇u(mp−m+r)/p|p dx. (4.9)

Furthermore, we obtain

1
r + 1

d
dt

∫
Ω

ur+1 dx � −
((

mp

mp − m + r

)p
r

m
− λ

λ1

) ∫
Ω

|∇u(mp−m+r)/p|p dx.

If

λ < λ1

(
mp

mp − m + r

)p
r

m
,

then according to the imbedding theorem we further have

d
dt

∫
Ω

ur+1 dx � (r + 1)
(

λ

λ1
−

(
mp

mp − m + r

)p
r

m

)( ∫
Ω

ur+1 dx

)(mp−m+r)/(r+1)

.

A similar argument to that above shows that there exists a T1 > 0 such that∫
Ω

ur+1(x, t) dx ≡ 0 for any t � T1.

We have thus proved the theorem. �
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Remark 4.4. As for the case when q = m(p−1) with λ = λ1, kϕ
1/m
1 (x) with k > 0 is

a steady-state weak solution of (1.1)–(1.3). Then, for any non-trivial non-negative initial
datum u0(x), the weak solution u(x, t) of (1.1) satisfies

∫
Ω

up(x, t) > 0 for all t > 0 or
u(x, t) is identically equal to zero.

Proof of Theorem 4.3. The result will be proved by using the weak upper and lower
solutions method. Consider the following problem:

∂u

∂t
− div(|∇um|p−2∇um) = λ(u+ + 1)q, (x, t) ∈ Ω × (0, +∞),

u = 0, (x, t) ∈ ∂Ω × (0, +∞),

u(x, 0) = u0(x) � 0, x ∈ Ω.

⎫⎪⎪⎬
⎪⎪⎭ (4.10)

Clearly, if u is a weak solution of the above problem, then by the weak maximum princi-
ple we have u � 0. By using the Leray–Schauder fixed-point theorem, as in the proof of
Proposition 2.3, we may show that the problem (4.10) admits at least one non-negative
weak solution u. In addition, the weak solution u is also a weak upper solution of prob-
lem (1.1)–(1.3). The following is devoted to the construction of weak lower solutions of
problem (1.1)–(1.3) by using the first eigenvalue λ1 and the first eigenfunction ϕ1(x) of
the p-Laplacian equation with homogeneous Dirichlet boundary-value condition.

Case 1. When q = m(p − 1), λ > λ1, let v(x, t) = g(t)ϕ1/m
1 (x), where g(t) satisfies

g′(t) = (λ − λ1)gm(p−1)(t), t > 0,

g(t) > 0, t > 0,

g(0) = 0.

Then we have

∂v

∂t
= (λ − λ1)ϕ

1/m
1 (x)gm(p−1)(t)

� (λ − λ1)ϕ
p−1
1 (x)gm(p−1)(t)

= div(|∇vm|p−2∇vm) + λvm(p−1),

i.e. v is a weak lower solution.

Case 2. When q < m(p − 1), let v(x, t) = µg(t)ϕ1/m
1 (x), where g(t) is a solution of

the following problem:

g′(t) = −λ1g
m(p−1)(t) + λgq, t > 0,

g(t) > 0, t > 0,

g(0) = 0.

⎫⎪⎬
⎪⎭ (4.11)

Then we have
∂v

∂t
= (−λ1g

m(p−1)(t) + λgq)µϕ
1/m
1 (x)
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and

div(|∇vm|p−2∇vm) + λvq = −λ1µ
m(p−1)gm(p−1)ϕp−1

1 (x) + λµqgqϕ
q/m
1 (x).

If g(t) is bounded in R
+, let

M = max
t>0

λ1

λ
gm(p−1)−q(t).

Then we can choose a µ > 0 small enough such that

λ1g
m(p−1)(µm(p−1)ϕp−1

1 − µϕ
1/m
1 ) � λgq(µqϕ

q/m
1 − µϕ

1/m
1 ). (4.12)

Then v is a weak lower solution. Indeed, from (4.11), it is not difficult to see that g(t) is
a non-decreasing and bounded function. In addition, let F (x) = (xq − x)/(xm(p−1) − x).
It is easy to check that F (x) is decreasing in (0, 1), and limx→0+ F (x) = +∞. Thus, we
can choose a sufficiently small µ > 0 such that (4.12) holds.

Up to now, we have constructed a pair of weak upper and lower solutions u, v. If v � u,
then the problem admits a weak solution v � ũ � u. Next, we show that v � u.

From the definition of u, v, we deduce that

∫
Ω

(v − u)ϕ(x, t) dx −
∫

Ω

(v0 − u0)ϕ(x, 0) dx −
∫∫

Qt

(v − u)
∂ϕ

∂t
dxdτ

+
∫∫

Qt

(|∇vm|p−2∇vm − |∇um|p−2∇um)∇ϕ dxdτ

� λ

∫∫
Qt

(vq − (u+ + 1)q)ϕ dxdτ for all ϕ � 0.

Take ϕε(x, t) = Hε(vm − um), where Hε(s) is defined as above. Letting ε → 0 yields∫
Ω

(v(x, t) − u(x, t))+ dx � λ

∫∫
Qt

(vq − (u+ + 1)q)H(v − u) dxdτ

� λq

∫∫
Qt

(v − (u+ + 1))+ dxdτ

� λq

∫∫
Qt

(v − u)+ dxdτ.

Recalling Grönwall’s inequality yields∫
Ω

(v(x, t) − u(x, t))+ dx = 0 for all t > 0,

which implies that v � u a.e. in Q. Since v(x, t) does not vanish, neither does ũ. �
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Appendix A. Proof of Proposition 2.3

We divide the proof of Proposition 2.3 into two parts: for the cases when m � 1 and
m < 1.

Case 1. We first consider the case when m � 1. The proof will again be divided into
several steps. Namely, we first show the existence of non-negative weak solutions for the
case when q � 1, and the second step is devoted to the case when q > 1.

Step 1. For any T > 0, let us consider the following problem:

∂u

∂t
− div(|∇um|p−2∇um) = λuq, (x, t) ∈ Ω × (0, T ), (A 1)

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (A 2)

u(x, 0) = u0(x) � 0, x ∈ Ω. (A 3)

In order to prove the existence of the above problem, we first consider the following
auxiliary problem:

∂u

∂t
− div(|∇um|p−2∇um) = σλvq

+, (x, t) ∈ Ω × (0, T ), (A 4)

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (A 5)

u(x, 0) = σu0(x), x ∈ Ω. (A 6)

Clearly, according to the weak maximum principle, if u is a weak solution of the above
problem, then u � 0 since u0 � 0. Now, let us define an operator

Γ : Lr∗+1(QT ) → Lr∗+1(QT ),

v �→ u,

where r∗ is determined later, u is a weak solution of the above problem. In order to apply
the Leray–Schauder fixed-point theorem, it is necessary to show that Γ is compact.

It is well known that there exists a weak solution u in the generalized sense for the above
problem. In order to obtain some necessary estimates, we assume that the weak solution
is appropriately smooth, since the same result can be obtained through an approximate
process by considering a related regularized problem.

Multiplying equation (A 4) by ur (r∗ � r > max{0, 2q + m − 2}) and integrating over
Qt (for any 0 < t < T ), we arrive at

1
r + 1

∫
Ω

ur+1(x, t) dx +
(

mp

mp − m + r

)p
r

m

∫∫
Qt

|∇u(mp−m+r)/p|p dxdτ

� σλ

∫∫
Qt

vq
+ur dxdτ +

1
r + 1

∫
Ω

ur+1
0 dx

� σλ

r + 1

∫∫
Qt

v
(r+1)q
+ dxdτ +

rσλ

r + 1

∫∫
Qt

ur+1 dxdτ +
1

r + 1

∫
Ω

ur+1
0 dx. (A 7)
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By dropping the second term on the left-hand side, and according to Grönwall’s inequal-
ity, it follows that∫

Ω

ur+1(x, t) dx �
(

σλ

∫∫
QT

v
(r+1)q
+ dxdτ +

∫
Ω

ur+1
0 dx

)
erσλt. (A 8)

Furthermore, we also have

(
mp

mp − m + r

)p
r

m

∫∫
QT

|∇u(mp−m+r)/p|p dxdτ

� σλ

r + 1

∫∫
QT

v
(r+1)q
+ dxdτ +

1
r + 1

∫
Ω

ur+1
0 dx

+
erσλT − 1

r + 1

(
σλ

∫∫
QT

v
(r+1)q
+ dxdτ +

∫
Ω

ur+1
0 dx

)
. (A 9)

Using the imbedding theorem, we further obtain( ∫∫
QT

ul dxdτ

)(mp−m+r)/l

� C

∫∫
QT

|∇u(mp−m+r)/p|p dxdτ, (A 10)

where 0 < l � N(mp − m + r)/(N − p) and C is a positive constant depending only on
l and Ω. Moreover, by noting that

∫∫
QT

v
q(r+1)
+ dxdt �

( ∫∫
QT

vr∗+1
+ dxdt

)q(r+1)/(r∗+1)

|QT |1−(q(r+1))/(r∗+1)

and taking (A 9), (A 10) into account, for any l � N(mp − m + r∗)/(N − p), it follows
that ∫∫

QT

ul(x, t) dxdt is bounded uniformly. (A 11)

If we take r∗ > (N − p + Nm(1 − p))/p, then N(mp − m + r∗)/(N − p) > r∗ + 1.
Now, multiplying equation (A 4) by ∂um/∂t and integrating the resulting relation over

QT , and through a simple calculation, we derive

4m

(m + 1)2

∫∫
QT

(
∂u(m+1)/2

∂t

)2

dxdt +
1
p

∫
Ω

|∇um(x, t)|p dxdt

� 1
p

∫
Ω

|∇um
0 |p dx +

2m

(m + 1)2

∫∫
QT

(
∂u(m+1)/2

∂t

)2

dxdt + C

∫∫
QT

v2q
+ um−1 dxdt.

Furthermore, if r∗ > m, then we have

2m

(m + 1)2

∫∫
QT

(
∂u(m+1)/2

∂t

)2

dxdt

� 1
p

∫
Ω

|∇um
0 |p dx + C‖v‖2q

Lr∗+1‖u‖(m−1)/(r∗+1)
Lr∗+1 |QT |(r∗+2−2q−m)/(r∗+1). (A 12)
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Recalling (A 7) and taking r = m − p/2(m − 1) > 1/m > 0 (since m(p − 1) < 1) yields

(2m)p−1(p + 2m − mp)
(m + 1)p

∫∫
QT

|∇u(m+1)/2|p dxdt +
1
r

∫
Ω

ur+1 dx

� σλ‖v+‖q

Lr∗+1‖u‖r
Lr∗+1 |QT |(r∗+1−q−r)/(r∗+1) +

1
r

∫
Ω

ur+1
0 dx. (A 13)

Choose a suitable large r∗ such that

r∗ > max
{

m,
N − p + Nm(1 − p)

p
, m − 1

2p(m − 1)
}

.

Recalling (A 11)–(A 13), and combining these with the compact imbedding theorem, we
conclude that Γ is a compact operator. Furthermore, it is easy to see that Γ (u, 0) = 0.
In addition, if Γ (u, σ) = u, noting (A 7), we arrive at

1
r∗ + 1

∫
Ω

ur∗+1(x, t) dx

� σλ

∫∫
Qt

ur∗+q dxdτ +
1

r∗ + 1

∫
Ω

ur∗+1
0 dx

� σλ
r∗ + q

r∗ + 1

∫∫
Qt

ur∗+1 dxdτ +
1 − q

r∗ + 1
σλ|QT | +

1
r∗ + 1

∫
Ω

ur∗+1
0 dx.

Recalling Grönwall’s inequality, we further obtain∫
Ω

ur∗+1(x, t) dx �
(

(1 − q)σλ|QT | +
∫

Ω

ur∗+1
0 dx

)
eσλ(r∗+q)T , (A 14)

which implies that, for any u ∈ Lr∗+1(QT ), if it satisfies Γ (u, σ) = u, then u is bounded
uniformly in Lr∗+1(QT ). By means of the Leray–Schauder fixed-point theorem, we con-
clude that Γ (· , 1) admits a fixed point, which implies that the problem (A 1)–(A 3)
admits a non-negative weak solution. In the following, we consider problem (1.1)–(1.3)
in Q(T,2T ), Q(2T,3T ), . . . , Q((n−1)T,nT ). Then, by an inductive argument, we infer that
problem (1.1)–(1.3) admits a weak solution in Q. Furthermore, we assert that problem
(A 1)–(A 3) admits a unique non-negative weak solution if q = 1. Suppose by contradic-
tion that u1, u2 are non-negative weak solutions of problem (A 1)–(A 3). Let w = u1−u2,
and take the test function

ϕε(x, t) = Hε(u1(x, t) − u2(x, t)),

where Hε(s) is a monotone increasing smooth approximation of the function H(s):

H(s) =

{
1, s > 0,

0, otherwise.

It is easy to see that H ′
ε(s) → δ(s) as ε → 0. Letting ε → 0 yields∫

Ω

w+ dx � λ

∫∫
Qt

w+ dxdt.
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Recalling Grönwall’s inequality yields w+ = 0 a.e., namely u1 � u2 a.e. Similarly, we
also get u2 � u1. Summing up, we conclude that u1 = u2 a.e., which is a contradiction.

Step 2. In this step, we study the case when q > 1. Firstly, we are concerned with the
local solvability in time. For any non-negative initial datum u0(x) with um

0 ∈ L∞(Ω) ∩
W 1,p

0 (Ω), there must exist a positive constant T > 0, such that

(
1

2λT

)1/(q−1)

= 2‖u0‖L∞(Ω).

For simplicity, we set

R =
(

1
2λT

)1/(q−1)

.

Consider the following problem:

∂u

∂t
− div(|∇u|p−2∇u) = σΨ(v), (x, t) ∈ Ω × (0, T ), (A 15)

u = 0, (x, t) ∈ ∂Ω × (0, T ), (A 16)

u(x, 0) = σu0(x) � 0, x ∈ Ω, (A 17)

where

Ψ(v) =

{
λvq

+, |v| � R,

λRq, |v| > R.

Define an operator

Γ : Lr∗+1(QT ) × [0, 1] → Lr∗+1(QT ),

(v, σ) �→ u,

where r∗ is the above-mentioned constant. If u is a fixed point of Γ (· , 1) with
‖u‖L∞(QT ) � R, then u is clearly a weak solution of problem (1.1)–(1.3) in QT . Similarly,
we may show that Γ is compact. In addition, if Γ (u, σ) = u, according to the weakly
maximum principle, we obtain that

‖u‖L∞(QT ) � ‖u0‖L∞(Ω) + Tσ‖Ψ(u)‖L∞(QT ) � 1
2R + TλRq � R

and

‖u‖Lr∗+1(QT ) � |QT |1/(r∗+1)‖u‖L∞(QT ) � R|QT |1/(r∗+1).

Recalling the Leray–Schauder fixed-point theorem, we see that Γ (· , 1) has a fixed point.
By similar arguments to those above, we see that u is also a weak solution of prob-
lem (1.1)–(1.3) in QT .

The above assertion can then be extended to the maximum time-interval (0, T ∗), where,
for any T < T ∗, the solution remains bounded in Ω × (0, T ]. Thus, the local-in-time
solvability is established.
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In what follows, we show the global existence of bounded solutions for the case when
um

0 (x) � ϕ1(x) and λ � λ1. Clearly, we have ‖u0‖L∞(Ω) � 1. Let T = 1/2qλ, and then
consider problem (A 15)–(A 17) with

Ψ(v) =

{
λvq

+, |v| � 2,

λ2q, |v| > 2.

If u is a weak solution of the problem (A 15)–(A 17) with ‖u‖L∞(QT ) � 2, then u is
clearly a weak solution of problem (1.1)–(1.3) in QT . By a parallel argument, we get the
local-in-time solvability and

‖u‖L∞(QT ) � ‖u0‖L∞(Ω) + λT2q � 2,

which implies that u is also a weak solution of problem (1.1)–(1.3) in QT .
Recall the first eigenfunction ϕ1(x) (‖ϕ1(x)‖L∞(Ω) = 1) of p-Laplacian equation with

homogeneous Dirichlet boundary-value condition. Let Φ(x) = ϕ
1/m
1 (x). Then we obtain

− div |∇Φm|p−2∇Φm = λ1|Φm|p−2Φm � λΦq.

Then, for any u0(x) � Φ(x), Φ(x) is clearly a weak upper solution.
In what follows, we shall show that u � Φ(x). Since u is a weak solution, and Φ is a

weak upper solution, for any non-negative function ϕ(x) ∈ Ẽ0, we have∫
Ω

(u(x, t) − Φ(x, t))ϕ(x, t) dx −
∫

Ω

(u0(x) − Φ(x))ϕ(x, 0) dx

−
∫∫

Qt

(u − Φ)
∂ϕ

∂t
dxdτ +

∫∫
Qt

(|∇um|p−2∇um − |∇Φm|p−2∇Φm)∇ϕ dxdτ

� λ

∫∫
Qt

(uq − Φq)ϕ dxdτ.

For any t > 0, noting that (A 12), we can choose ϕε(x) = Hε(um − Φm), where Hε(s) is
a monotone increasing smooth approximation of the function H(s) with H ′

ε(s) → δ(s).
Then we have∫

Ω

(u(x, t) − Φ(x))Hε(um − Φm) dx −
∫

Ω

(u0 − Φ)Hε(um
0 − Φm) dx

+
∫∫

Qt

H ′
ε(u

m − Φm)(|∇um|p−2∇um − |∇Φm|p−2∇Φm)∇(um − Φm) dxdτ

−
∫∫

Qt

(u − Φ)
∂Hε(um − Φm)

∂t
dxdτ

� λ

∫∫
Qt

(uq − Φq)Hε(um − Φm) dxdτ.

Letting ε → 0 and noting that∫∫
Qt

(u − Φ)
∂Hε(um − Φm)

∂t
dxdτ → 0,
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we arrive at ∫
Ω

(u(x, t) − Φ(x))+ dx � λ

∫∫
Qt

(uq − Φq)+ dxdτ

� Rq−1λ

∫∫
Qt

(u − Φ)+ dxdτ.

Grönwall’s inequality then yields ∫
Ω

(u − Φ)+ dx = 0,

which implies that u(x, t) � Φ(x) a.e. in Ω.
In what follows, we consider problem (1.1)–(1.3) in Q(T,2T ), Q(2T,3T ), . . . , Q((n−1)T,nT )

in turn. Then by inductive argument, we infer that u is a weak solution in Q satisfying
u(x, t) � Φ(x).

The following argument is devoted to the uniqueness of non-negative weak solutions.
Suppose to the contrary that u, v, v 	= u, are two non-negative weak solutions of prob-
lem (1.1)–(1.3). It suffices to consider the case when both u and v are bounded in QT ∗ .

Indeed, suppose that we have proved the above conclusion for any bounded u, v with
u 	≡ v. Consider the following cases.

(i) Both u and v exist globally. Then for any T > 0, u, v are both bounded in QT .
According to the arguments above, we conclude that u(· , t) = v(· , t), a.e. in Ω.

(ii) u exists globally, while v does not. We assume that the maximum time-interval
where v exists is (0, T ). Then there exist M , M̂ , T1 with 0 < M < M + 1 < M̂ ,
T1 < T , such that M + 1 < ‖v‖L∞(QT ) < M̂ and ‖u‖L∞(QT ) < M , similar to the
arguments above. We also get that u(· , t) = v(· , t) a.e. in Ω for any t ∈ (0, T ),
which contradicts the fact that ‖v‖L∞(QT ) > M + 1, ‖u‖L∞(QT ) < M .

Furthermore, for the case when u, v both exist locally but not globally (which includes
the fact that the maximum time intervals of u, v may or may not be uniform), the
arguments are all similar to those above, so we omit them.

Thus, we may assume that ‖v‖L∞(QT ∗ ), ‖u‖L∞(QT ∗ ) � M , where M is a positive con-
stant.

Take the test function as above: ϕε(x, t) = Hε(u(x, t) − v(x, t)). Then we have∫
Ω

(u − v)Hε(um − vm) dx −
∫∫

Qt

(u − v)
∂Hε(um − vm)

∂t
dxdτ

+
∫∫

Qt

H ′
ε(u

m − vm)(|∇um|p−2∇um − |∇vm|p−2∇vm)∇(um − vm) dxdτ

� λqMq−1
∫∫

Qt

(u − v)Hε(um − vm) dxdτ.

Letting ε → 0, and discarding the third term on the left-hand side yields∫
Ω

(u(x, t) − v(x, t))+ dx � λqMq−1
∫∫

Qt

(u(x, τ) − v(x, τ))+ dxdτ.
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Employing Grönwall’s inequality yields∫
Ω

(u(x, t) − v(x, t))+ dx = 0 for all t � δ,

which implies that v � u a.e. in Ω for any t � δ. Similarly, we also have v � u, which
means that v = u a.e. This is clearly a contradiction.

Case 2. For simplicity, we set um = v. Then problem (1.1)–(1.3) is transformed into

∂vα

∂t
= div(|∇v|p−2∇v) + λvq̂, (x, t) ∈ Ω × R, (A 18)

v(x, t) = 0, (x, t) ∈ ∂Ω × R, (A 19)

v(x, 0) = v0(x), x ∈ Ω, (A 20)

where α = 1/m, q̂ = q/m. In order to show the existence of non-negative weak solutions
for the above problem, let us first consider the corresponding regularized problem in a
bounded domain QT :

α(vα−1
+ + ε)

∂v

∂t
= div((|∇v|2 + ε)(p−2)/2∇v) + λ(v2 + ε)(q̂−1)/2v in QT , (A 21)

v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),
(A 22)

v(x, 0) = vε0(x), x ∈ Ω, (A 23)

where vε0(x) ∈ C2+α
0 (Ω) and

vε0(x) → v0(x) in L∞(Ω), ∇vε0(x) → ∇v0(x) in Lp(Ω)

as ε → 0.
In the following, we shall show the existence of classical solutions of the above problem.

For this purpose, we define a mapping

Γ : Cα,α/2(QT ) × [0, 1] → Cα,α/2(QT ),

Γ : (u, σ) → v.

Here, v is a solution of the following problem:

α(uα−1
+ + ε)

∂v

∂t
= div((|∇v|2 + ε)(p−2)/2∇v) + σλ(u2 + ε)(q̂−1)/2v in QT , (A 24)

v(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),
(A 25)

v(x, 0) = σvε0(x), x ∈ Ω. (A 26)

It is well known that v = Γ (u, σ) ∈ C2+α,1+α/2(Q̄T ). By means of the compact imbedding
theorem, we see that Γ is compact. Furthermore, it is easy to see that Γ (u, 0) = 0. In
addition, if Γ (v, σ) = v, then by the classical theory of parabolic equations we have

‖v‖2+α,1+α/2 � M‖vε0‖2+α,1+α/2,
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where M depends only on ε. According to the Leray–Schauder fixed-point theorem, we
see that Γ (· , 1) admits a fixed point, which implies that (A 21)–(A 23) admits a classical
solution, vε. Combining this with the weakly maximum principle, we further have vε � 0.

In what follows, we show the existence of weak solutions of the problem (A 18)–(A 20).
We split the proof into two steps. In the first step, we are concerned with the case when
q̂ � α, that is q � 1. The second step is devoted to the case when q̂ > α, that is q > 1.

Step 1. Assume that vε is a solution of problem (A 21)–(A 23). Replacing v by vε in
equation (A 21), multiplying the equation by vr

ε , r � 1, and then integrating in Qt yields∫∫
Qt

α(vα−1
ε + ε)vr

ε

∂vε

∂t
dxdτ + r

∫∫
Qt

(|∇vε|2 + ε)(p−2)/2|∇vε|2vr−1
ε dxdτ

�
∫∫

Qt

λ(v2
ε + ε)(q̂−1)/2vr+1

ε dxdτ. (A 27)

If p � 2, then we have∫∫
Qt

(|∇vε|2 + ε)(p−2)/2|∇vε|2vr−1
ε dxdτ �

∫∫
Qt

|∇vε|pvr−1
ε dxdτ,

while if p < 2,∫∫
Qt;|∇vε|2�ε

(|∇vε|2 + ε)(p−2)/2|∇vε|2vr−1
ε dxdτ � 1

2

∫∫
Qt;|∇vε|2�ε

|∇vε|pvr−1
ε dxdτ.

Combining this with the above two inequalities, a simple calculation yields

α

r + α

∫
Ω

vr+α
ε dx +

εα

r + 1

∫
Ω

vr+1
ε dx + C0

∫∫
Qt;|∇vε|2�ε

|∇v(r+p−1)/p
ε |p dxdτ

�
∫∫

Qt

λvr+α
ε dxdτ +

α

r + α

∫
Ω

vr+α
ε0 dx +

εα

r + 1

∫
Ω

vr+1
ε0 dx + M0, (A 28)

where M0 is independent of ε. By using Grönwall’s inequality, we obtain∫
Ω

vr+α
ε (x, t) dx � M1 for any t � T, (A 29)

where M1 depends only on r, T and ‖vε0‖L∞(Ω). Furthermore, we have∫∫
Qt

|∇v(r+p−1)/p
ε |p dxdτ

�
∫∫

Qt;|∇vε|2�ε

|∇v(r+p−1)/p
ε |p dxdτ +

∫∫
Qt;|∇vε|2<ε

|∇v(r+p−1)/p
ε |p dxdτ

�
∫∫

Qt;|∇vε|2�ε

|∇v(r+p−1)/p
ε |p dxdτ

+
(

r + p − 1
p

)p ∫∫
Qt;|∇vε|2<ε

vr−1
ε |∇vε|p dxdτ

�
∫∫

Qt;|∇vε|2�ε

|∇v(r+p−1)/p
ε |p dxdτ +

(
r + p − 1

p

)p

εp/2
∫∫

Qt

vr−1
ε dxdτ.
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Combining this with (A 28)–(A 29), we obtain∫∫
QT

|∇v(r+p−1)/p
ε |p dxdτ � M2.

In particular, we take r = 1 + (α − 1)p/2. Then we arrive at∫∫
QT

|∇v(1+α)/2
ε |p dxdτ � M2. (A 30)

Multiplying (A 21) by ∂vε/∂t yields

∫∫
Qt

α(vα−1
ε + ε)

∣∣∣∣∂vε

∂t

∣∣∣∣
2

dxdτ +
1
p

∫
Ω

(|∇vε|2 + ε)p/2 dx

� 1
p

∫
Ω

(|∇vε0|2 + ε)p/2 dx +
λ

q̂ + 1

∫
Ω

(v2
ε + ε)(q̂+1)/2 dx.

Furthermore, we have

4α

(1 + α)2

∫∫
Qt

∣∣∣∣∂v
(1+α)/2
ε

∂t

∣∣∣∣
2

+
1
p

∫
Ω

|∇vε|p

� 1
p

∫
Ω

(|∇vε0|2 + ε)p/2 +
λ

q̂ + 1

∫
Ω

(v2
ε + ε)(q̂+1)/2.

Combining this with (A 29), we conclude that

∥∥∥∥∂v
(1+α)/2
ε

∂t

∥∥∥∥
L2(QT )

� M∗, (A 31)

‖∇vε‖Lp(Ω) � M∗, (A 32)

where M∗ is independent of ε. Noting the arbitrariness of r > 1, combining with (A 29),
(A 30)–(A 32) and recalling the compact imbedding theorem, we conclude that there
exists a v ∈ L∞((0, T ); Lr(Ω)) ∩ W 1,p

0 (QT ) and ∂v(1+α)/2/∂t ∈ L2(QT ) such that (up to
the subsequence)

vε → v in Lr(Ω), ∇vε ⇀ v in Lp(QT ),

and

∂v
(1+α)/2
ε

∂t
⇀ v in L2(QT )

as ε goes to zero, which implies that problem (A 18)–(A 20) admits a weak solution in
QT . Then, consider problem (A 18)–(A 20) in Q(T,2T ), Q(2T,3T ), . . . , Q((n−1)T,nT ) in turn.
By induction, we infer that problem (A 18)–(A 20) admits a weak solution in Q. As for
the uniqueness of solutions for the case q = 1 (i.e. q̂ = 1/m), this is similar to the case
when m � 1 and we omit it.
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Step 2. When q̂ > α, the proof is similar to that in step 1 and the case when m � 1,
so we just give the outline of the proof. To prove the local-in-time existence, we first find
a T > 0 with (

1
2λT

)1/(q−1)

= 2‖u0‖L∞(Ω).

For simplicity, set R = (1/(2λT ))1/(q−1). Then set

Ψ(v) =

{
λvq̂ if |v| � Rm,

λRq otherwise.

Similarly to the case when m � 1, we obtain the local-in-time solvability for any non-
negative v0(x). Then we also obtain the global solvability by comparing it with the first
eigenfunction’s powers. The uniqueness is also similar to the case when m � 1, and thus
we omit it.

Remark A 1. In Proposition 2.3 we obtained the weak solution satisfying ∂u/∂t ∈
L2(QT ) when m � 1. Indeed, since ∂u(m+1)/2/∂t ∈ L2(QT ) and u ∈ L∞(QT ) for any
given 0 < T < ∞, by using∥∥∥∥∂u

∂t

∥∥∥∥
L2(QT )

=
2

m + 1

∥∥∥∥u(1−m)/2 ∂u(m+1)/2

∂t

∥∥∥∥
L2(QT )

,

we have ∥∥∥∥∂u

∂t

∥∥∥∥
L2(QT )

� 2
m + 1

∥∥∥∥∂u(m+1)/2

∂t

∥∥∥∥
L2(QT )

‖u‖(1−m)/2
L∞(QT ) .

References

1. K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the
sequel, J. Math. Analysis Applic. 243 (2000), 85–126.

2. R. Ferreira and J. L. Vazquez, Extinction behaviour for fast diffusion equations with
absorption, Nonlin. Analysis 43 (2001), 943–985.

3. R. Ferreira, V. A. Galaktionov and J. L. Vazquez, Uniqueness of asymptotic
profiles for an extionction problem, Nonlin. Analysis 50 (2002), 495–507.

4. H. Fujita, On the blowing up of solutions of the cauchy problems for ut = ∆u + u1+α,
J. Fac. Sci. Univ. Tokyo (1) 13 (1966), 109–124.

5. J. S. Guo and B. Hu, Blow-up behavior for a nonlinear parabolic equation of nondiver-
gence form, Nonlin. Analysis 61 (2005), 577–590.

6. S. Y. Hsu, Behaviour of solutions of a singular diffusion equation near the extinction
time, Nonlin. Analysis 56 (2004), 63–104.

7. A. W. Leung and Q. Zhang, Finite extinction time for nonlinear parabolic equations
with nonlinear mixed boundary date, Nonlin. Analysis TMA 31 (1998), 1–13.

8. H. A. Levine, Some nonexistence and instability theorems for solutions of formally
parabolic equations of the form Put = −Au + F (u), Arch. Ration. Mech. Analysis 51
(1973), 371–386.

9. Y. X. Li and J. C. Wu, Extinction for fast diffusion equations with nonlinear sources,
Electron. J. Diff. Eqns 2005 (2005), 1–7.

https://doi.org/10.1017/S0013091507000399 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000399


444 C. Jin, J. Yin and Y. Ke

10. Y. X. Li and C. H. Xie, Blow-up for p-Laplacian parabolic equations, Electron. J. Diff.
Eqns 2003 (2005), 1–12.

11. M. N. L. Roux and P. E. Mainge, Numerical solution of a fast diffusion equation,
Math. Comput. 68 (1999), 461–485.

12. Z. Q. Wu, J. X. Yin and C. P. Wang, Elliptic and parabolic equations (World Scientific,
2006).

13. J. X. Yin and C. H. Jin, Critical extinction and blow-up exponents for fast diffusive
p-Laplacian with sources, Math. Meth. Appl. Sci. 31 (2007), 1383–1386.

14. H. J. Yuan, S. Z. Lian, W. J. Gao, X. J. Xu and C. L. Cao, Extinction and positivity
for the evolution p-Laplacian equation in R

n, Nonlin. Analysis 60 (2005), 1085–1091.
15. S. N. Zheng and F. J. Li, Multinonlinear interactions in quasi-linear reaction-diffusion

equations with nonlinear boundary flux, Math. Comput. Modelling 39 (2004), 133–144.
16. S. N. Zheng and X. F. Song, Interactions among multi-nonlinearities in a nonlinear

diffusion system with absorptions and nonlinear boundary, Nonlin. Analysis 57 (2004),
519–530.

17. S. N. Zheng and H. Su, A quasilinear reaction–diffusion system coupled via nonlocal
sources, Appl. Math. Computat. 180 (2006), 295–308.

18. S. N. Zheng, X. F. Song and Z. X. Jiang, Critical Fujita exponents for degenerate
parabolic equations coupled via nonlinear boundary flux, J. Math. Analysis Applic. 298
(2004), 308–324.

https://doi.org/10.1017/S0013091507000399 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507000399

