
J. Fluid Mech. (2021), vol. 912, A11, doi:10.1017/jfm.2020.1102

Modelling of particle capture by
expanding droplets
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Froth flotation by small air bubbles has been traditionally used in industry to capture
fine minerals and other hydrophobic particles. This method, however, is not efficient for
capturing very small particles. The present work is motivated by a new agglomeration
process that overcomes this lack of efficiency. It consists of mixing a particle
suspension and saltwater-filled droplets covered with semi-permeable oil layers. This
paper investigates the two-particle dynamics of a solid particle and a semi-permeable
spherical drop that expands due to osmosis in an external, pure extensional flow field.
A dimensionless engulfment parameter measures the relative effects of droplet growth
and convective flow. The computational results from numerical integration determine a
transient collision efficiency, which describes the influence of hydrodynamic interactions
and osmotic flow on particle capture. The results show that drop expansion, which
decays slowly with time, greatly increases particle capture rates, especially for small
particles. Moreover, as the engulfment parameter increases, there is a transition from
flow-dominated capture to expansion-dominated capture. For the case of a non-expanding
droplet, we provide a numerical solution for the transient pair distribution function, which
enables us to explain the transient particle-capture rate in terms of the microstructure of
the suspension. Furthermore, we derive an analytical expression for the initial collision
efficiency at zero times, which agrees with our numerical data. The numerical results
for non-expanding droplets at long times show increasing collision efficiency as the
permeability increases and when the size ratio is near unity, in agreement with previous
steady-state calculations.
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1. Introduction

Froth flotation, in which rising air bubbles are used for recovering hydrophobic particles,
has been traditionally used in industry (Kitchener 1984; Wills & Napier-Munn 2006).
However, this method is not efficient for particles smaller than approximately 20 μm,
which, instead of being captured by the bubble, move around it (Mehrotra, Sastry &
Morey 1983; Barnocky & Davis 1989; Loewenberg & Davis 1994; Miettinen, Ralston
& Fornasiero 2010). An alternative to froth flotation is provided by the more efficient
hydrophobic oil-binder techniques (Sirianni, Capes & Puddington 1969; Mehrotra et al.
1983; van Netten, Moreno-Atanasio & Galvin 2014, 2016). These methods, however, can
be expensive due to the amount of oil required. The present project is motivated by a more
recent particle-capture technique, which circumvents the limitations of froth flotation and
oil-binder techniques (Galvin & van Netten 2017; van Netten, Borrow & Galvin 2017). This
method consists of using a binder containing droplets filled with saltwater and covered
by thin, surfactant-stabilized, semi-permeable oil layers. The presence of salt inside the
droplet results in an osmotic flow that increases particle capture.

Several works have used two-particle dynamics to characterize aggregation phenomena
(e.g. Zeichner & Schowalter 1977; Davis 1984; Rother & Davis 2001; Phan et al.
2003; Roure & Cunha 2018). In a recent work, Davis & Zinchenko (2018) found both
semi-analytical and asymptotic solutions (i.e. far field and near field) for the translational
mobility functions (Batchelor & Green 1972b) for the relative motion of a solid particle and
a semi-permeable drop interacting in creeping flow for linear external flows. In the work of
Davis & Zinchenko (2018), the collision rates were found in the absence of osmotic flow.
However, it should be noted that their results regarding the collision rates, as well as the
ones in the aforementioned studies, were obtained in a quasi-steady context, in the sense
that they assume a steady-state pair distribution function.

The goal of the present work is to investigate the two-particle dynamics of a solid
particle and an expanding semi-permeable drop in the presence of both osmotic flow
and an external, extensional flow field. The numerical integration of the relative particle
motion is performed using the mobility functions found in Davis & Zinchenko (2018).
The computational results from the numerical integration are used for calculating the
particle–drop collision efficiency. Rather than making a quasi-steady assumption, we
consider both the short-term dynamics, as the particle–drop pair distribution function is
being established, and the long-term dynamics, as the drop expands. We compare our
results with an analytical result for the collision efficiency at time zero and with the
steady-state solution (in the case of non-expanding droplets) by Davis & Zinchenko (2018).

The equivalence between our approach and the standard quasi-steady one relies on the
expectation that, in the context of non-expanding droplets, an initially uniform probability
distribution will eventually approach a steady state, as calculated by Batchelor & Green
(1972a). There are several works concerning the steady-state pair distribution function for
shear and pure strain flows (e.g. Brady & Morris 1997; Morris & Katyal 2002; Wilson
2005; Blanc et al. 2013). These works use distinct approaches, ranging from experimental
to theoretical. However, all of them focus on steady-state distributions. Although works
such as Gadala-Maria & Acrivos (1980) present some transient experiments, the transient
regime of microstructure is rarely explored in the literature. Hence, in the present work,
we provide a numerical solution of the transient pair distribution function for the case of a
non-expanding droplet, which enables us to better explain the transient particle-capture
rate in terms of the suspension microstructure. This solution, besides justifying the
assumptions made in the work, provides an estimation of the time it takes to reach the
steady state.

912 A11-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
02

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1102


Modelling of particle capture by expanding droplets

1.1. Problem description and drop growth
We consider the creeping motion of a solid spherical particle relative to a semi-permeable
spherical droplet filled with saltwater in the presence of a linear flow at infinity. At
the surface of the rigid particle, we consider both impenetrability and no-slip boundary
conditions. At the drop interface, although we still consider a no-slip boundary condition,
with the membrane allowed to rotate to remain torque-free, we allow the existence of
a normal component of the fluid velocity, as the drop is semi-permeable. The relative
velocity through the interface is described by Darcy’s law as being proportional to the
hydrodynamic pressure jump. We also assume continuity of velocity at the drop’s interface
and that changes in the viscosity and density of the fluid inside the drop due to the
presence of salt are negligible. Details concerning analytical and asymptotic solutions for
the hydrodynamic problem are provided by Davis & Zinchenko (2018).

The normal component of the fluid velocity relative to the semi-permeable interface is
given by Darcy’s law

−(u − us) · n̂|S = K(Π + Δp), (1.1)

where S represents the drop surface, n̂ is the outward unit normal vector, K is the oil-layer
or membrane permeability, Π is the osmotic pressure, Δp is the jump in dynamic pressure
across the thin oil layer at the drop interface, us is the velocity of the interface and u is the
fluid velocity. The osmotic pressure for dilute solutions may be estimated by Van’t Hoff’s
law

Π ≈ RTcs, (1.2)

where cs is the salt concentration near the drop’s interior surface, R is the ideal gas constant
and T is the absolute temperature. The pressure jump Δp is of order ∼ μγ̇ , which is much
smaller than the osmotic pressure jump Π in typical cases. Here, μ is the fluid viscosity
and γ̇ is the intensity of the far-field extensional flow, whose undisturbed velocity field is
given by (γ̇ x, γ̇ y, −2γ̇ z).

As we are assuming flow of an incompressible liquid, the osmotic flow will result in an
increase of the drop’s size. To find the expansion rate of the drop, we note that the terms
u · n̂|S and Δp in (1.1) cancel out due to the boundary conditions of the hydrodynamic
problem. It is noted that the term Π does not contribute to the velocity of the fluid at
the boundary, as this extra source term would result in a violation of continuity, as the
integral

∫
S u · n̂ dS at the drop’s interface would be non-zero. Thus, as we consider the

fluid motion to be quasi-stationary, as drop expansion happens slowly, the hydrodynamic
problem at each time is reduced to the same one investigated by Davis & Zinchenko (2018),
with the same boundary conditions. Again, we refer to the aforementioned paper for the
full analysis and solution of the hydrodynamic problem both outside and inside the drop.
Considering that the interface velocity us = usêr is purely radial, as the drop keeps its
spherical shape, so n̂ = êr, the velocity of the interface is given by

us = KRTcs. (1.3)

As the drop expands, its interface moves outward through the surrounding suspension,
with velocity us, without modifying the fluid velocity u, and it acts as a passive sieve
that captures or engulfs the particles that it encounters in the suspension. Particles are
also swept to this interface by the external flow, as shown in figure 1. From this point on,
quantities are non-dimensional unless noted otherwise. For the non-dimensionalization
of the problem, we use ad0 as the length scale and γ̇ −1 as the time scale, where ad0 is
the initial drop radius. Considering a small spherical drop with instant relaxation (i.e. in
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a regime of low Péclet numbers for the salt molecules), conservation of mass yields a
differential equation for the non-dimensional drop radius

dad/dt = Eg a−3
d , (1.4)

where

Eg = KRTc0/(γ̇ ad0) (1.5)

is the engulfment parameter, which represents the ratio between osmotic permeate flow
and external convective flow and c0 is the initial salt concentration in the drop. The word
engulfment here is used in analogy to the phenomenon in solidification where particles
are engulfed by a solidifying or freezing moving interface (e.g. Omenyi & Neumann 1976;
Asthana & Tewari 1993; Stefanescu et al. 1998; Mukherjee & Stefanescu 2004). This
parameter can also be thought as a ratio between the characteristic dimensional flow time
τfl = γ̇ −1 and the characteristic dimensional drop-expansion time τeng = ad0/(KRTc0).
The engulfment parameter can be decomposed as Eg = K∗c0RT/μγ̇ , in which the first
term is the non-dimensional permeability K∗ = Kμ/ad0, which is usually small (Davis &
Zinchenko 2018), and the second term is the ratio between osmotic and viscous pressures,
which is usually large. Thus, Eg can take on a broad range of values. In particular, Davis
& Zinchenko (2018) noted that μK ≈ 10−4 μm for microfiltration membranes, yielding
K∗ = μK/ad0 ≈ 10−6–10−4 for ad0 = 1–100 μm. Then, for μ = 0.01 g cm-s−1, RTc0 =
106 g cm-s−2 (i.e. c0 ≈ 0.04 M at room temperature) and γ̇ = 103 s−1, Eg = 0.1–10. As
another example, Matsumoto et al. (1980) examined the swelling of small, oil-covered
water drops and globules with ad0 = 2–10 μm, c0 = 0.06–0.6 M and corresponding initial
swelling rates of KRTc0 = O(10−4–10−3 cm s−1), from which μK = O(10−8 μm), K∗ =
O(10−9–10−8) and Eg ≈ 0.1–10 for very low shearing of γ̇ = 1 s−1. Corresponding
permeabilities for the experiments of van Netten et al. (2017) are thought to be somewhat
higher, due to active water transport by micelles, but quantitative values are not available
because swelling experiments with much larger binder fragments for their system exhibited
diffusion limitations (DeIuliis et al. 2020).

For constant membrane permeabilities, (1.4) can be solved analytically, yielding

ad(t) = (1 + 4Eg t)1/4. (1.6)

From (1.6), the drop expands with time due to the osmotic flow. The flux across the drop
interface, however, decreases with time due to dilution of the internal saltwater, resulting
in a decrease of expansion effects at large times. The time it takes for expansion effects to
become negligible can be estimated by a scaling argument. As pointed out before, the ratio
between the osmotic and hydrodynamic pressure differences is of order Eg/(K∗a3

d(t)).
Hence, for this ratio to be small, we should have ad(t) � (Eg/K∗)1/3. For rapid diffusion,
a(t) ∼ (4Eg t)1/4 at large times. Thus, for the hydrodynamic effects to dominate over
osmotic ones, we should have t � K∗−4/3Eg1/3, which can be quite large for K∗ � 1
and Eg = O(1).

2. Two-particle dynamics

2.1. Kinematic equations
Following Batchelor & Green (1972b), the general expression for the relative velocity
between two smooth, spherical particles freely suspended in a linear flow field at small
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Modelling of particle capture by expanding droplets

ap

ad

Figure 1. Schematic of a solid particle interacting with an expanding drop in an external extensional flow
field.

Reynolds number is

V = Ω∞ ∧ r + E∞ · r −
[
A(r)

rr
r2 + B(r)

(
1 − rr

r2

)]
· E∞ · r, (2.1)

where A(r) and B(r) are the so-called mobility functions, r is the vector from the centre of
the drop to the centre of the particle, r = ‖r‖ and Ω∞ and E∞ are the undisturbed rotation
vector and rate-of-strain tensor, respectively, for the far-field flow. These mobility functions
arise in the solution of the hydrodynamic problem at low Reynolds number and are related
to the intensity of hydrodynamic interaction between the particles, which cause them to
deviate from the undisturbed flow streamlines. Both functions A and B vanish when the
distance between the particle and the drop goes to infinity, as hydrodynamic interactions
become weaker. For non-permeable surfaces, the quantity 1 − A goes to zero as the particle
approaches the drop, which prevents contact in finite time, unless additional attractive
forces are present. In contrast, the presence of a semi-permeable interface mitigates this
lubrication resistance, allowing the particle and the drop to collide. In the context of the
present problem, these functions depend on the non-dimensional permeability and the ratio
between particle and drop radii (Davis & Zinchenko 2018). Although there is an implicit
dependence of the mobility functions on the engulfment parameter and time (due to the
changing radius ratio), there is no explicit dependence of the mobility functions on the
expansion rate, as we are assuming the motion to be quasi-stationary for small Reynolds
numbers (i.e. the diffusion of vorticity is much faster than the motion of the particles or the
expansion rate). By definition of a pure extensional flow, the rotation vector is Ω∞ = 0
and the non-dimensional strain rate tensor at infinity is given by

E∞ =
⎡
⎣1 0 0

0 1 0
0 0 −2

⎤
⎦ . (2.2)
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Figure 2. Trajectory simulation for Eg = 1.0, K∗ = 10−4, ap = 0.5 and z0 = 4.0, with (a) x0 = 0.6 and (b)
x0 = 0.7. The dashed line represents the final interface of the drop at the end of the trajectory. In (a), the solid
particle is captured by the expanding drop, whereas the trajectory in (b) does not result in aggregation.

Thus, in Cartesian components, the equations of motion are

dx/dt = (1 − B)x + Ex, (2.3)

dy/dt = (1 − B)y + Ey, (2.4)

dz/dt = −2(1 − B)z + Ez, (2.5)

where
E = (B − A)(x2 + y2 − 2z2)/r2. (2.6)

Note that the present set of differential equations is not autonomous for the case of an
expanding drop, as the mobility functions depend on the decreasing ratio between the
radii of the particle and drop, and, consequently, on time.

2.2. Particle trajectories
The numerical integration of the relative particle trajectories was performed using a
fourth-order Runge–Kutta scheme. The exact solution of the hydrodynamic problem by
Davis & Zinchenko (2018) in terms of bi-spherical harmonics was used to evaluate the
mobility functions. We also employed an adaptive time step at small gaps, to avoid
particle-drop overlap in the intermediate Runge–Kutta steps. The drop-size evolution was
described analytically by (1.6). As illustrated in figure 2, there are some initial conditions
that lead to collision between the particle and the drop and others that do not. Hence, we
perform several simulations for trajectories starting at varied initial positions to determine
starting locations that lead to particle–drop collision within a certain time.

3. Collision efficiency

In this section, we start by showing the equivalence of the multiple definitions of the pair
collision rate used in this work. Furthermore, we proceed to derive an analytical expression
of the ideal pair collision rate between a particle with an expanding drop at time zero.
This initial collision rate is used in latter sections to validate the numerical results for the
collision efficiency.
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Modelling of particle capture by expanding droplets

3.1. Pair collision rates
The problem of calculating the rates at which two different species collide with one another
is present in many branches of science, such as chemistry and colloidal sciences. In a
classical point of view, this problem is closely related to the scenario of particles colliding
with a surface. Namely, a particle will collide with another one when the surfaces make
contact.

For a given surface S and given particle dynamics, we define Vcol(t; S) (the S here will be
usually omitted, reading Vcol(t)) as the collisional volume of the surface S in a time t. It is
the volume in which every trajectory starting within this volume will result in a collision in
a time smaller than t. By using this notation, the probability Pcol(t) of a particle colliding
with a surface S in a time less than t is given by the probability measure of a particle to be
inside Vcol(t) at time equal zero. For two different species, we can compute the (average)
total number of collisions between two species by multiplying the collisional probability
Pcol(t) by N1N2, with Ni being the total number of particles of species i, or, in the case
of two particles of the same species, by N(N − 1)/2. Hence, the general rate of pairwise
collision between two species per unit volume is given by

J12 = n1n2
d
dt

∫
Vcol(t)

f̃ (x) dV, (3.1)

where ni is the number density of species i, and f̃ (x) ≡ f (x, 0) is the pair distribution
function evaluated at t = 0. The unsteady state for f (x, t) is governed by the Liouville
equation (Batchelor & Green 1972a)

∂f
∂t

+ ∇ · (V f ) = 0, (3.2)

where V is the relative velocity of the colliding species. For specific cases such as
steady-state probability distributions, it is useful to use a modified version of Reynolds
transport theorem to re-write the pair collision rate as a surface integral. We define Ṽ (x, t)
as the velocity of the bounding surface of the collision volume. The lower portion of this
surface is simply Scol, the original collision surface, as shown in figure 3, on which Ṽ = 0.
Hence, the pair collision rate is given by

J12 = n1n2

∫
Acol

n̂ · Ṽ f̃ (x) dA, (3.3)

where Acol(t) is the upper or expanding portion of the collision surface (see figure 3), Ṽ is
its velocity and n̂ is the outward unit normal to Acol(t). The geometry of the problem for
our specific context of collision of a particle with a spherical collision surface is illustrated
in figure 3. Although (3.3) is general (i.e. it is valid for non-steady states), it is not very
useful for unsteady states, given that the evaluation of Ṽ is not always straightforward.
However, there are some properties of steady-state distributions that make this expression
more useful. Namely, for a steady-state probability distribution, as the field V does not
depend on time, the velocity −Ṽ coincides with the relative velocity V (note that V
is inward, while Ṽ is outward) and f (x, t) = f (x) = f̃ (x). Moreover, we can extend the
collision area Acol to infinity by using the continuity equation.

For a steady-state relative velocity field, the trajectories coincide with its integral curves.
If we extend the collisional volume along a ‘streamtube’ of V (x) that contains all the points
inside the collisional volume extending toward infinity, by the divergence theorem and
(3.2), the probability flux, defined as the integral in (3.3), is equal in every section of the
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Far-field

extensional

f low

Particles captured in

time ≤ t

S

Acol (t)

Vcol (t)
Scol

zn̂

α
R = 1 + ap

Figure 3. Illustration of the collision volume of a particle colliding with a collision surface S. The shaded Scol
represents the portion of S where particles are effectively captured, whereas the non-shaded region is where
particles are pulled away from the drop by the extensional flow faster than the drop expands. In our specific
case of a particle colliding with an expanding drop under an external pure extensional field, S is a sphere of
dimensionless radius R = 1 + ap (i.e. the original drop radius plus particle radius) and Scol is located at the top
and bottom of the sphere, starting at an elevation angle α to be determined. The collision volume Vcol(t) is the
region composed of the starting positions that will lead to aggregation in a time less than or equal to t; Acol(t) is
the boundary of the collision volume with Scol excluded. Although the drop expands in time, Scol is kept fixed
as Vcol smoothly increases, because Vcol(t) is the suspension volume at time zero from which all particles will
be collected by time t.

extended volume. This fact allowed most researchers to focus their analysis on a collision
section far from the reference particle, where f (x) ∼ 1. This consideration allows writing
equation (3.3) for a steady-state probability distribution as

J12 = −n1n2

∫
A∞

col

n̂ · V dA, (3.4)

where A∞
col is a section (typically a horizontal cross-section) of the extended collisional

volume far from the reference particle. Equation (3.4) is a practical way to evaluate the
collision efficiency, as it does not rely on previous knowledge of the pair distribution
function (Zeichner & Schowalter 1977; Davis 1984; Davis & Zinchenko 2018). There are
other works, such as Phan et al. (2003), that compute the collision efficiency by evaluating
the integral over Scol. However, in order to avoid using the probability distribution
explicitly, they assume that the relative velocity V is a solenoidal field, which is often
not the case.

Regarding the case in the absence of a steady-state distribution, for an initially uniform
probability distribution (i.e. f (x, 0) = 1), the rate of collision between two different
species per unit volume is given by

n1n2 dVcol/dt. (3.5)

Equation (3.5) is essentially transient, as it assumes an initial distribution that is not at
steady state, and, therefore, will only reach the steady-state collision efficiency if the
chosen initial pair distribution also reaches a steady state. Throughout the subsequent
sections, we show that this transient behaviour is indeed the case for non-expanding
droplets. Furthermore, we define the collision efficiency as the ratio between the pair
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Modelling of particle capture by expanding droplets

collision rate and the ideal collision rate, which was calculated by Zeichner & Schowalter
(1977) by using (3.4) considering the case of rigid non-expanding spherical particles in an
extensional flow in the absence of hydrodynamical interactions. This ideal collision rate is
given by

Jid
12 = n1n2

8π

3
√

3
(a1 + a2)

3. (3.6)

3.2. Important limiting cases
Physically, there are two distinct mechanisms that contribute to the capture of particles by
expanding drops: convective capture due to the imposed flow and engulfment capture due
to the drop’s expansion. The interplay between these two mechanisms is characterized by
the engulfment parameter Eg, which was defined in the first section of the present paper.
Here, we analyse the limits where Eg = 0 and Eg → ∞.

In the first case, where Eg = 0, the drop does not expand and the steady problem reduces
to the one described in Davis & Zinchenko (2018). For this case, the collision efficiency
at steady state is solely due to flow and given by

E fl
col = 1

φ3(R)
, (3.7)

where the function φ(r) involves an integral over the relative particle distance and is
defined as

φ(r) = exp
(∫ ∞

r

A(r′) − B(r′)
1 − A(r′)

dr′

r′

)
. (3.8)

In the second limiting case, where Eg → ∞, the drop expands and flow effects are
negligible. In this limit, particle capture due to pure expansion happens much faster than
the particle motion, and, hence, relaxation of the probability distribution is negligible.
Thus, we can use (1.6), (3.5) and (3.6) to derive the collision efficiency, resulting in

Eexp
col (t) = 3

√
3

2
(ad(t) + ap)

2

(1 + ap)3
Eg

(ad(t))3 . (3.9)

At large times, for ad(t) � ap, this function slowly decays in proportion to t−1/4, using
(1.6). Of considerable practical importance is that the collision efficiency in this limit
remains non-zero for ap → 0, whereas the collision efficiency for flow-induced capture
becomes very small as ap → 0, due to hydrodynamic interactions.

3.3. Characteristic times and population dynamics at short times
At time zero, before any collection takes place, the only species present in the suspension
are particles and drops. For simplicity, we consider that the particles are all of the same
size and do not form agglomerates. In this case, the population dynamics for the particle
phase is given by

dnp/dt = −Jnpnd. (3.10)

When the particles are much smaller than the droplets, the capture of a single particle
does not affect the capture efficiency of an additional particle by a given droplet. Hence,
we can consider the resultant agglomerate as a single drop. In this case, nd is a constant.
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By a scaling analysis of (3.10) and knowing that J = dVcol/dt, the characteristic time of
bulk capture is given by

τbulk = T/(a3
d0nd) = 4πT/(3φ0), (3.11)

where φ0 = 4πa3
d0nd/3 is the initial volume fraction of droplets and we choose the

characteristic microscopic capture time T to be

T = (1/τfl + 1/τeng)
−1, (3.12)

so that it scales with the smaller of the flow and engulfment times. Since φ0 � 1 for
dilute systems governed by pairwise interactions, the time scale for bulk capture of
particles is long compared to the pairwise capture dynamics. Equation (3.10) can be solved
analytically for an initially uniform pair distribution function, yielding (in non-dimensional
quantities)

np = np0 exp(−Vcol(t)/τ ), (3.13)

where τ = τbulk/T is the ratio between the characteristic bulk capture time and
microscopic capture time. Thus, Vcol(t) is as a direct measure of particle capture over
time. For the practical systems discussed in § 1.1, the dimensional time scales are τfl =
γ̇ −1 = 10−3 s and τeng = ad0/(KRTc0) = 10−4–10−2 s for the parameters cited by Davis
& Zinchenko (2018), and τfl = 1 s and τeng = 0.1–10 s for the experiments of Matsumoto
et al. (1980). For a dilute suspension with φ0 � 0.01, τbulk is more than 100-fold larger.

3.4. Initial rate of collision with an expanding drop
In this subsection, we derive an analytical solution for the initial rate of collision of a
rigid spherical particle with an expanding drop, in the case of an initially uniform pair
distribution function. This solution is then used in subsequent sections to confirm the
transient results obtained via numerical simulations.

In the present problem, the relative radial velocity at the collisional surface at time zero
(i.e. the surface of a sphere with radius R = 1 + ap) is, from (2.1) and (1.4),

Vrel = Vr − dad

dt
= (1 − A)

(B − A)
Er − Eg

a3
d
. (3.14)

At t = 0, when r = R = 1 + ap, the relative radial velocity is

Vrel = R(1 − A0)(1 − 3 cos2(θ)) − Eg, (3.15)

where A0 is the mobility function A evaluated at the collisional radius R. Although 1 − A0
is zero for two solid particles, it has a non-zero value if one (or both) of the spheres is
permeable, as noted by Davis & Zinchenko (2018). To calculate the rate of collision, we
need to restrict the domain of the collisional surface to the locations with negative relative
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velocity (so that the capture occurs). In this case,

cos2(θ) >
1
3

(
1 − Eg

R(1 − A0)

)
. (3.16)

Thus, the domain of integration is restricted to θ ∈ D = [0, α] ∪ [π − α, π], with

α =

⎧⎪⎨
⎪⎩

arccos

{[
1
3

(
1 − Eg

R(1 − A0)

)]1/2
}

for Eg < R(1 − A0)

π/2 for Eg > R(1 − A0)

. (3.17)

This domain is shown as the shaded area in figure 3. Therefore, for an initial uniform
probability distribution, the integral in (3.3) at time zero is given by∫

Scol

Ṽ · n̂ dS =
∫

Scol

[Eg − R(1 − A0)(1 − 3 cos2(θ))] dS

= Scol[Eg − R(1 − A0)] + 12πR3(1 − A0)

∫ α

0
cos2(θ) sin(θ) dθ

= 4πR2(1 − cos(α))[Eg − R(1 − A0)] + 4πR3(1 − A0)(1 − cos3(α)).

(3.18)

Dividing the collision rate at time zero by the ideal collision rate (3.6) yields the initial
collision efficiency

Ecol(0) = 3
√

3
2

[
Eg
R

(1 − cos(α)) + (1 − A0)(cos(α) − cos3(α))

]
, (3.19)

where α is given by (3.17). For engulfment values larger than R(1 − A0), all the cosines in
(3.19) vanish, indicating that the collision efficiency for these cases is initially dominated
entirely by expansion. In other words, the expansion is then fast enough to capture particles
on all parts of the drop surface at time zero, even in regions where the extensional flow
pulls particles away from the drop.

Figure 4 shows a plot of the initial collision efficiency versus the engulfment parameter
for several values of the non-dimensional permeability. The results for Eg = 0 are

Ecol(0)|Eg=0 = 3
√

3
2

(1 − A0)(cos(α) − cos3(α)). (3.20)

The collision efficiency for K∗ = 0 is necessarily zero in this limit, for which A0 = 1, due
to lubrication preventing the contact of impermeable spheres (when, at least, one of them is
solid) in a finite time under the action of finite forces (Barnocky & Davis 1989). However,
the collision efficiency quickly increases in the presence of even small permeabilities. The
initial collision efficiency, then, increases as Eg increases, due to the increasing role of
engulfment aiding the convective capture due to the extensional flow.

In the opposite limit of Eg � 1, α = π/2 and the initial collision from (3.19) is simply

Ecol(0) = 3
√

3 Eg/(2R). (3.21)

The initial collision efficiency then increases linearly with the engulfment parameter and
is independent of permeability (other than the dependence of the engulfment parameter
on permeability per (1.5)). Equation (3.21) corresponds to the solid line for K∗ = 0 with
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Figure 4. Initial collision efficiency versus the engulfment parameter for ap = 0.5 and different values of
non-dimensional permeability. The solid line represents the limit where K∗ → 0, and, hence, (1 − A0) = 0.

R = 1.5 in figure 4. Moreover, from (3.9) and using (1.6), the collision efficiency for pure
engulfment (Eg � 1) is

Ecol(t) = 3
√

3[(1 + 4Egt)1/4 + ap]2Eg
2(1 + ap)3(1 + 4Egt)3/4 , (3.22)

valid for all times. Equation (3.22) reduces to (3.21) for t = 0, using R = 1 + ap. As noted
before, the collision efficiency in this limit also remains finite for small particles (ap � 1).

3.5. Transient microstructure and collision efficiency
In this section, we provide a numerical solution of the transient pair distribution function
f (x, t). This solution can be used to better understand the transient behaviour of the
collision efficiency of a particle with a non-expanding drop.

The pair distribution function is governed by (3.2). Considering the motion of a particle
relative to a non-expanding droplet, for which the vector field V given by (2.1) is in a
steady state, (3.2) can be re-written as (Batchelor & Green 1972a)

D
Dt

(
f (r, t)
q(r)

)
= 0, (3.23)

where D/Dt = ∂/∂t + V · ∇ and q(r) is given by (1 − A)−1φ−3(r). Hence, for an initially
uniform pair density function, (3.23) can be solved by the method of characteristics,
yielding

f (r, t) = q(r)
q(R(x, t))

, (3.24)

where R(x, t) is the radial component of the starting position R that ends in x at time t.
Due to the kinematic reversibility characteristic of Stokes flows, R(x, t) can be evaluated
using the inverse flux of the dynamical equations. It should be noted that the solution
by the method of characteristics is only valid at points for which the position at time t
can be traced back to an initial point in space. That means the collision volume of the
inverse dynamics represents a particle depletion region adjacent to the collision surface.
This region is also referred as wake region by Wilson (2005). For points away from the
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Figure 5. Numerical results for the transient pair distribution function for a rigid particle and a non-expanding
permeable drop at distinct times. The values for the non-dimensional permeability and particle radius are
K∗ = 10−4 and ap = 0.5, at times (a) t = 0.25, (b) t = 0.75, (c) t = 1.0 and (d) t = 1.5. The white region
surrounding the origin is the excluded volume bounded by the collision surface.

wake region, where the particles come from infinity, we have limt→∞ q(R(x, t)) = 1, and,
thus, the pair distribution function approaches q(r) at large times, which is the analytical
result given by Batchelor & Green (1972a).

Coupling the analytical transient solution given by (3.24) with our trajectory
simulations, we were able to find numerical values for the pair distribution function,
which are displayed in figure 5 for K∗ = 10−4 and ap = 0.5, at t = 0.25, 0.75, 1.0 and
1.5. From these results, we see the formation of the wake region near the xy plane,
which increases outward in time as the probability distribution approaches a steady state.
Moreover, although the wake region continues to increase with time, comparison with
the theoretical steady state shows that the pair distribution function away from this wake
region becomes close to the theoretical steady state for t = O(1).

On the upper region of the collision sphere, we can see an increase of the pair
distribution function with time. This increase physically means that there is a higher
probability of encountering a particle at this region, which results in an increase of the
probability flux, and, hence, the collision efficiency should increase with time until it
reaches a steady state.
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Figure 6. Collision boundaries for Eg = 1.0, K∗ = 10−4, ap = 0.5, and (in to out) t =
0.02, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0. The inset shows a zoom of the details of the right region of the
graph, where the curves start to coincide. The shaded region represents the inside of the collision surface
r = 1 + ap. The collision volume (Vcol) is the unshaded region between the collision surface (Scol) and the
collision boundary (Acol).

4. Numerical results and discussion

In this section, we present the results of numerical computation of the collision efficiency.
We start with the shapes of the collision volumes, which were obtained by numerical
interpolation of the collision time as a function of starting position. We then present results
on the change of the collision volume and collision efficiency with time.

4.1. Collision boundaries
The collision boundaries are, by definition, the level surfaces of the function tcol(x0) (i.e.
the collision time of a certain trajectory starting at a point x0). Using data from multiple
trajectory simulations, we obtained numerical values for these boundaries by numerical
interpolation of the data for tcol(x0), which are found by calculating multiple trajectories
for different starting positions. As an example, figure 6 shows the collision boundaries for
different values of t and Eg = 1. Note that, as t increases, the collision surface converges
to a limit surface, except near the axis of symmetry, where there will be a collision tube
as t → ∞. In the absence of engulfment, this limit curve should be the same as the one
predicted by Davis & Zinchenko (2018).

For non-expanding drops, the regular interpolation method fails to obtain some of the
points on the collision boundary next to the drop at larger times, due to computational
time constraints, as particle capture takes longer in the absence of drop expansion. Thus,
in these cases, we used an auxiliary method that makes use of the fact that, for a stationary
field V (r), points on Acol change in time with velocity −V (r). Thus, the inverse flux of
the original dynamical system gives us a homotopy between surfaces Scol and Acol (i.e.
we can continuously deform one surface into the other). Numerically, we permeate points
throughout Scol and evolve them using the velocity −V (r), which helps construct Acol.
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Pure flow Pure expansion Combined

flow + expansion

Figure 7. Different geometries of the collision volume for t = 0.5 and K∗ = 10−4. The combined case and
pure expansion consider Eg = 1.0.

The shapes of the collision boundaries displayed in figure 6 result from the interplay
between the flow and expansion mechanisms. The different shapes of the collision volume
for t = 0.5 are shown in figure 7 for the cases of pure flow, pure expansion and combination
of both effects. Due to the extensional flow, in which the flow is toward the drop near the
axis of symmetry and away from the drop near the equator, non-expanding droplets display
a lateral region in which particles are not captured. For engulfment parameters higher than
R(1 − A0), this region ceases to exist (See (3.17)) and, instead, there is a finite capture layer
that results from the balance between drop-expansion effects (which decay with time) and
pulling of particles away from the drop due to the extensional flow.

4.2. Collision efficiency
Using knowledge about the collision boundaries, together with their symmetry about the
z−axis, we are able to calculate the collision volume numerically for distinct points in
time using a simple trapezoidal method. Moreover, to validate our results, we use the
analytical solution in (3.18) to predict the initial slope of the curve Vcol(t). Figure 8 shows
the collision volume versus time for engulfment parameters Eg = 0, 0.125, 0.25, 0.5 and
1.0 for ap = 0.5 and K∗ = 10−4. The values shown in figure 8(a) correspond to the
actual values of the collision efficiency, whereas the values in 8(b) are normalized by the
initial slope, which was calculated using (3.19) combined with the definition of collision
efficiency. The dashed line in figure 8(b) is a straight line starting at the origin with unit
slope. The collision volume grows noticeably faster for larger values of Eg, which indicates
a larger collision efficiency. The normalization in 8(b) allows us to perceive a transition
in behaviour as the engulfment number increases. There is a transition of patterns at
short times, which occurs at values of engulfment near 0.5. Namely, as the engulfment
number increases, the collision volume curves transition from a flow-like behaviour to
an expansion-like one (represented by the shaded region in figure 8). By examining the
slopes of the curves in figure 8, we see that, for small values of Eg, the collision efficiency
initially increases with time. In contrast, for Eg = 1, although the initial value is much
larger, the collision efficiency decreases at short times. This decrease can be explained by
the dominance of the expansion mechanism in the collision efficiency for large engulfment
parameters, which slows with time due to dilution of the saltwater inside the drop, resulting
in a reduction in the collision efficiency.

The numerical values for the collision efficiency were obtained by numerical
differentiation of Vcol(t), according to (3.5). To reduce the numerical noise due to
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Figure 8. Collision volume increase with time for K∗ = 10−4, ap = 0.5 and engulfment parameters of Eg =
0, 0.125, 0.25, 0.5 and 1.0. Here, (a) shows the values for the collision volume, whereas the values in (b) are
normalized by their initial slopes predicted by the analytical solution for the initial collision rate. The solid
curves represent the results obtained by numerical integration. The dashed line in (b) is a straight line with unit
slope. The shaded area in (b) represents the region in which particle capture is dominated by expansion at short
times.

interpolation, we applied a smoothing spline to the collision volume function before taking
the numerical derivative. The results for the collision efficiency obtained by this numerical
differentiation are shown in figure 9. Note that the results agree with the prediction from
the analytical solution for time zero. Moreover, in the case of a non-expanding droplet,
the solution reaches a steady state with a numerical value close to the one predicted by
Davis & Zinchenko (2018) (as indicated by the dashed line on the top right of figure 9a).
As expected by the results and discussion in § 3.5, the collision efficiency increases
monotonically as it approaches a steady state within a time near unity, due to the particles
slowing down as they approach the drop, and, thus, building up in concentration. However,
our results indicate that, even for small values of the engulfment parameter, the collision
efficiency is much larger than for pure flow (Eg = 0). Another interesting feature is that,
for small engulfment parameters such as Eg = 0.25, the shape of the collision efficiency
curve is similar to the one without expansion. However, it should be noted that even
small values of Eg can increase the collision efficiency by several times. Furthermore,
from figure 9(d), increasing the engulfment parameter results in a shape transition from a
monotonically increasing curve to a decaying behaviour that is closer to the one observed
in the pure expansion efficiency given by (3.9). For Eg = 1, the hydrodynamic and
engulfment and flow time scales, τeng and τfl, are of the same order, and, thus, there is a
substantial contribution of the far-field flow in particle capture, as the external flow drags
particles closer to the drop, which is reflected, among other things, on the collision volume
shape (see figure 7) and explains the difference between the curves. Moreover, engulfment
dominates for short times when Eg = 1, but then the difference between the numerical
results and the pure engulfment approximation deviate at longer times as engulfment slows
and convective capture becomes more important. For larger values of Eg, as τeng > τfl, the
solution becomes closer to the pure expansion solution in (3.9) and (3.22), as can be seen
in the inset of figure 9(d).

We further validate our numerical results by simulating the non-expanding case for
different values of non-dimensional permeability K∗. The results concerning the collision
efficiency for different values of permeability are displayed in figure 10. The numerical
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Figure 9. Numerical results for the transient collision efficiency versus time for K∗ = 10−4, ap = 0.5 and
engulfment parameters (a) Eg = 0, (b) Eg = 0.25, (c) Eg = 0.5, (d) Eg = 1.0 and 7.0 (in inset). The dashed
lines represent the analytical solution at t = 0, and the value of the theoretical steady-state collision efficiency
in (a). The dashed curve in (d) is the pure expansion collision efficiency, as described by (3.9) and (3.22).

results for different permeabilities match within 0.01 with both theoretical solutions for
steady-state and initial collision efficiencies.

We also plotted the results for different permeabilities in the case of expanding droplets
(i.e. Eg /= 0). The results for these simulations are displayed in figure 11 for values of
the engulfment parameter (a) Eg = 0.25 and (b) Eg = 1.0. Figure 11 shows that the
differences between the values of collision efficiency for different values of K∗ shown in
figure 10 are mitigated with an increase of the engulfment parameter. The results displayed
in figure 11(b) show that the increase of Eg results in the collapse of curves for different
small permeabilities into a single limit curve. In this regime, engulfment is the primary
capture mechanism, and the collision efficiency is governed by particle expansion and the
external flow far from the drop, which drags particles close to the drop so that they will be
captured by engulfment.

Another parameter that is important in the determination of collision efficiency is the
non-dimensional particle radius. As mentioned before, previous works (e.g. Barnocky &
Davis 1989; Loewenberg & Davis 1994) show that particle capture is hindered for small
particle sizes. As shown in Davis & Zinchenko (2018), the presence of permeability
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Figure 10. Numerical results for the transient collision efficiency with respect to time for Eg = 0, ap = 0.5
and different values of non-dimensional permeability: K∗ = 10−2, K∗ = 10−3, K∗ = 10−4 and K∗ = 10−5.
The dashed lines represent the theoretical results for the initial and steady-state collision efficiencies.
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Figure 11. Numerical results for the transient collision efficiency with respect to time for (a) Eg = 0.25, (b)
Eg = 1.0. The results are for ap = 0.5 and different values of non-dimensional permeability: K∗ = 10−4, K∗ =
10−5 and K∗ = 10−6. The dashed lines represent the theoretical results for the initial collision efficiency. The
dashed curve in (b) is the pure expansion collision efficiency. For high values of Eg, the system becomes less
sensitive to changes in permeability and the curves collapse onto a single curve.

increase capture efficiency at smaller radii. In fact, as we now show, the presence
of particle engulfment further increases this efficiency. Figure 12 shows results for
the transient collision efficiency for different values of particle radii, K∗ = 10−4 and
Eg = 0.25. Due to the high influence of engulfment over particle capture and the 1/R
dependence of the engulfment-dominated collision efficiency (cf., (3.21) and (3.22)), the
decrease in particle radius, in contrast to non-expanding cases, causes an increase in
the collision efficiency at short times. However, by normalizing the results by the initial
collision efficiency, as displayed in figure 12(b), we see that the increase of particle radius
from 0.25 to 1.0 results in a larger percentage increase of the collision efficiency, given
that such increase is caused by flow effects.
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Figure 12. Numerical results for the transient collision efficiency for Eg = 0.25, K∗ = 10−4 and different
values of particle radii: ap = 0.25, ap = 0.5 and ap = 1.0. Here, (a) shows the values for the transient collision
efficient, whereas, in (b), the results are normalized by the numerical value for the initial collision efficiency.
The dashed lines represent the theoretical results for the initial and steady-state collision efficiencies.

Eg K∗ = 10−4 K∗ = 10−5 ap = 0.25 ap = 0.5 ap = 1.0

0.00 1.00 1.00 1.00 1.00 1.00
0.25 4.13 5.77 7.36 4.13 3.06
0.50 5.90 8.70 11.57 5.90 4.56
1.00 8.59 12.21 18.31 8.59 6.00

Table 1. Relative collision efficiency E∗
col at time t = 1 for Eg = 0, 0.25, 0.5 and 1.0. The first two result

columns show the relative collision efficiency for ap = 0.5 for distinct permeabilities, whereas the last three
result columns show the relative collision efficiency for K∗ = 10−4 for different particle radii.

The strong effect of engulfment is demonstrated in a quantitative fashion in table 1.
Here, the collision efficiency at t = 1 is normalized with the steady-state collision
efficiency for flow only, E∗

col = Ecol/E fl
col, for systems with the same dimensionless size

ratio and permeability. For the conditions in this table, the increase in collision efficiency
is roughly 3–18 fold. The highest values occur at lower permeability, smaller particle
radius and higher engulfment parameter, as expected. It is also noteworthy that the largest
increase occurs for small particles (which are the most difficult to capture).

5. Concluding remarks

We investigated the interaction between an expanding spherical droplet and a solid particle
in an external extensional flow. Using the results of relative particle trajectories obtained
via numerical simulation, we calculated the transient collision efficiencies for different
parameter values. Further, we derived an analytical expression for the initial collision
efficiency and numerical results for the pair distribution function.

In contrast with previous works (e.g. Zeichner & Schowalter 1977; Davis 1984; Davis
& Zinchenko 2018; Roure & Cunha 2018), we have not restricted our analysis to a
steady-state pair distribution function. Rather, by starting with a uniform pair distribution,
we demonstrated the evolution of the collision efficiency at short times. We applied the
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numerical solutions of the relative dynamics of the rigid particle to find a numerical
solution of the transient pair distribution function for the case of non-expanding droplets.
This solution allowed us to investigate the transiency of the collision efficiency and the
time it takes to reach a steady state. For non-expanding droplets, the collision efficiency
increases with time and approaches the steady state predicted by Davis & Zinchenko
(2018). The time it takes for the system to reach a steady state is of order γ̇ −1 and agrees
with our microstructure simulations, which also explain the monotonically increasing
behaviour of the collision efficiency for these cases. The monotonicity, however, can be
broken in the presence of engulfment.

The numerical results for the collision efficiency, obtained by numerical differentiation
of the collision volume with respect to time, agree with theoretical results for both initial
and steady-state collision efficiencies. Drop-expansion effects decay slowly with time, as
engulfment capture slows with time due to a decrease in the osmotic driving force, as the
internal saltwater is diluted. Overall, drop-expansion effects contribute to the increase of
collision efficiency even for small values of the engulfment parameter Eg. Of particular
importance is that engulfment capture is relative insensitive to particle size, and so is
particularly effective relative to convective capture for small particles. Further increase
of Eg results in a transition from a flow-dominated behaviour of the collision efficiency,
with a monotonically increasing curve to a engulfment-dominated behaviour, where the
collision efficiency decreases with time. At high values of Eg, the system becomes less
sensitive to changes in the permeability, which indicates the predominance of the far-field
flow and engulfment as the predominant capture mechanisms in these cases.
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