NEW RESULTS FROM COMPLETE SAMPLES OF FAINT RADIO GALAXIES AND QUASARS

K.M. BLUNDELL¹, S. RAWLINGS¹, S.A. EALES², M. LACY¹ ¹ Oxford University Astrophysics - Keble Road, Oxford, OX1 3RH, U.K. ² Department of Physics & Astronomy University of Web

² Department of Physics & Astronomy, University of Wales at Cardiff, CF2 3YB, Wales, U.K.

1. Improved coverage of the luminosity-redshift plane

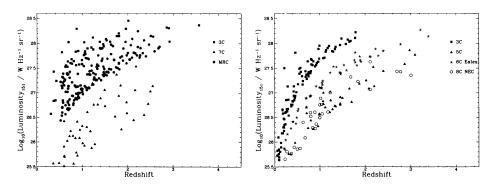


Figure 1. Coverage of the P-z plane with the new flux-limited quasar (left) and RG (right) samples overlaid on the coverage from 3C.

In any flux-limited sample a tight correlation of luminosity (P) and redshift (z) is inevitable. It is therefore necessary to obtain complete samples at lower and lower flux-limits in order to have adequate coverage of the P-zplane, essential if we are to decouple the trends in epoch from trends in luminosity. This we have done for a number of flux-limits — giving coverage of the P-z plane seen in Fig. 1. Our redshift information is *spectroscopic*; the results of Eales et al *(in prep.)*, namely the increased scatter in the

567

R. Ekers et al. (eds.), Extragalactic Radio Sources, 567–568. © 1996 IAU. Printed in the Netherlands.

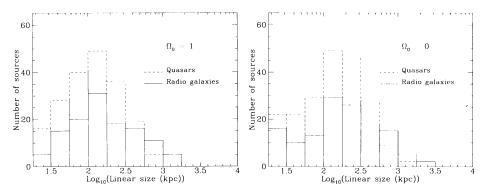


Figure 2. Histograms of the linear sizes of RGs and quasars calculated for two values of Ω .

K-z plot for samples lower in luminosity than 3C, strongly warn us against using redshifts estimated from K-magnitudes.

2. Linear size evolution of radio sources

We calculated the three-way partial rank correlation coefficients (Macklin 1982) for the linear sizes (D) of sources, with their redshifts and luminosities. For a universe with $\Omega = 1$, we obtain for both radio galaxies and quasars in our complete samples, $r_{Dz|P} = -0.43$ with significance 7.6 σ and $r_{DP|z} = -0.0067$ with significance 0.11 σ . (The notation $r_{Dz|P}$ means the partial rank correlation coefficient between D and z at constant P). We thus find a strong anti-correlation between D and z, but not between D and P.

3. Comparison of the linear sizes of radio galaxies and quasars

Barthel (1989) found the median linear size of RGs in 3C to be ~ 2.2 times that of the quasars in 3C, lending strong support to the unification-byorientation model of RGs and quasars. For our higher redshift and lower luminosity samples, we find that the ratios of the median lengths in kpc of RGs over quasars for 0 < z < 1 is 259/157, for 1 < z < 2 is 119/86, for z > 1.5 is 84/77 and for z > 2 is actually 56/77. The similarity of the linear size distributions of radio galaxies and quasars can be seen in Fig. 2. We thus conclude that unification without evolution is untenable.

References

Barthel P.D. (1989) ApJ, **336**, 606. Macklin J.T. (1982) MNRAS, **199**, 1119.