CHARACTER CLUSTERS FOR LIE ALGEBRA MODULES OVER A FIELD OF NONZERO CHARACTERISTIC

DONALD W. BARNES

(Received 22 February 2013; accepted 4 March 2013; first published online 7 June 2013)

Abstract

For a Lie algebra L over an algebraically closed field F of nonzero characteristic, every finite dimensional L-module can be decomposed into a direct sum of submodules such that all composition factors of a summand have the same character. Using the concept of a character cluster, this result is generalised to fields which are not algebraically closed. Also, it is shown that if the soluble Lie algebra L is in the saturated formation \mathscr{F} and if V, W are irreducible L-modules with the same cluster and the p-operation vanishes on the centre of the p-envelope used, then V, W are either both \mathfrak{F}-central or both \mathfrak{F}-eccentric. Clusters are used to generalise the construction of induced modules.

2010 Mathematics subject classification: primary 17B10.
Keywords and phrases: Lie algebras, saturated formations, induced modules.

1. Introduction

Lie algebras are very important and have been actively investigated by many authors. See [3-6] for examples of recent results.

Throughout this paper, L is a finite dimensional Lie algebra over the field F of characteristic $p \neq 0$. Let V be a finite dimensional L-module. To define a character for V, we must embed L in a p-envelope ($L^{p},[p]$). The action ρ of L on V can be extended to L^{p}. (See Strade and Farnsteiner [7, Theorem 5.1.1].)

Definition 1.1. A character for V is a linear map $c: L^{p} \rightarrow F$ such that for all $x \in L^{p}$,

$$
\rho(x)^{p}-\rho\left(x^{[p]}\right)=c(x)^{p} 1 .
$$

Not every module has a character, but if F is algebraically closed and V is irreducible, then V has a character. (See Strade and Farnsteiner [7, Theorem 5.2.5].) The following is Strade and Farnsteiner [7, Theorem 5.2.6].

[^0]Theorem 1.2. Suppose that F is algebraically closed and let $(L,[p])$ be a restricted Lie algebra over F. Let V be a finite dimensional L-module. Then there exist $c_{i}: L \rightarrow F$ and submodules V_{i} such that $V=\bigoplus_{i} V_{i}$ and every composition factor of V_{i} has character c_{i}.

This decomposition in terms of characters is functorial and is clearly useful. In this note, the concept of a character cluster is used to obtain a similar result which does not require the field to be algebraically closed. As a further application, it is shown that, if the soluble Lie algebra L is in the saturated formation \mathfrak{F} and V, W are irreducible L-modules with the same cluster and the p-operation vanishes on the centre of the p-envelope used, then either both V, W are \mathfrak{F}-central or both are \mathfrak{F}-eccentric. Over a perfect field, clusters are used to generalise the construction of induced modules.

To simplify the exposition, we work with a restricted Lie algebra ($L,[p]$). To apply the results to a general Lie algebra, as is the case for characters, we have to embed the algebra in a p-envelope, and the clusters obtained depend on that embedding.

2. Preliminaries

In the following, $(L,[p])$ is a restricted Lie algebra over the field F, \bar{F} is the algebraic closure of F and $\bar{L}=\bar{F} \otimes_{F} L$ is the algebra obtained by extension of the field. A character of L is an F-linear map $c: L \rightarrow \bar{F}$. If $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of L, then c can be expressed as a linear form $c(x)=\sum a_{i} x_{i}$ for $x=\sum x_{i} e_{i}$, where $a_{i} \in \bar{F}$. If α is an automorphism of \bar{F} / F, that is, an automorphism of \bar{F} which fixes all elements of F, then c^{α} is the character $c^{\alpha}(x)=\sum a_{i}^{\alpha} x_{i}$ and is called a conjugate of c. We do not distinguish in notation between $c: L \rightarrow \bar{F}$ and its linear extension $\bar{L} \rightarrow \bar{F}$. We denote by $F[c]$ the field $F\left[a_{1}, \ldots, a_{n}\right]$ generated by the coefficients a_{i}. It is the field generated by the $c(x)$ for all $x \in L$ and is independent of the choice of basis.

If V is an L-module, then \bar{V} is the \bar{L}-module $\bar{F} \otimes_{F} V$. The action of $x \in L$ on V is denoted by $\rho(x)$. The module V has character c if $\left(\rho(x)^{p}-\rho\left(x^{[p]}\right)\right) v=c(x)^{p} v$ for all $x \in L$ and all $v \in V$.

In the universal enveloping algebra $U(L)$, the element $x^{p}-x^{[p]}$ is central. (See Strade and Farnsteiner [7, page 203].) For the module V giving the representation ρ, we put $\phi_{x}=\rho(x)^{p}-\rho\left(x^{[p]}\right)$. We then have $\left[\phi_{x}, \rho(y)\right]=0$ for all $x, y \in L$.
Lemma 2.1. The map $\phi: L \rightarrow \operatorname{End}(V)$ defined by $\phi_{x}(v)=\left(\rho\left(x^{p}\right)-\rho\left(x^{[p]}\right)\right) v$ is p semilinear.

Proof. In the universal enveloping algebra $U(L)$,

$$
(a+b)^{p}=a^{p}+b^{p}+\sum_{i=1}^{p-1} s_{i}(a, b)
$$

(see Strade and Farnsteiner [7, page 62, Equation (3)]) and

$$
(a+b)^{[p]}=a^{[p]}+b^{[p]}+\sum_{i=1}^{p-1} s_{i}(a, b)
$$

(see Strade and Farnsteiner [7, page 64, Property (3)]). Putting these together,

$$
(a+b)^{p}-(a+b)^{[p]}=a^{p}+b^{p}-a^{[p]}-b^{[p]} .
$$

It follows that $\phi_{a+b}=\phi_{a}+\phi_{b}$. Clearly, $\phi_{\lambda a}=\lambda^{p} \phi_{a}$.
Remark 2.2. In the decomposition of \bar{V} given by Theorem 1.2, the summand corresponding to the character c is

$$
\left\{v \in \bar{V} \mid\left(\phi_{x}-c(x)^{p} 1\right)^{r} v=0 \text { for some } r \text { and all } x \in \bar{L}\right\} .
$$

By Lemma 2.1, we need only consider those $x \in L$, or indeed, in some chosen basis of L.

3. Clusters

Definition 3.1. The cluster $\mathrm{Cl}(V)$ of an L-module V is the set of characters of the composition factors of the \bar{L}-module $\bar{V}=\bar{F} \otimes_{F} V$.

Lemma 3.2. Suppose $c \in \mathrm{Cl}(V)$. Then the conjugates c^{α} of c are in $\mathrm{Cl}(V)$.
Proof. Let A / B be a composition factor of \bar{V} and let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis of V. The action $\rho(x)$ of $x \in L$ on V and so also on \bar{V} is given in respect to this basis by a matrix X with coefficients in F. An automorphism α maps $v=\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}$ to $v^{\alpha}=\lambda_{1}^{\alpha} v_{1}+\cdots+\lambda_{k}^{\alpha} v_{k}$. Since $X^{\alpha}=X$, we have that $(x v)^{\alpha}=x v^{\alpha}$. Thus A^{α}, B^{α} are submodules of \bar{V} and A^{α} / B^{α} is a composition factor. The linear map $\phi_{x}=$ $\rho(x)^{p}-\rho\left(x^{[p]}\right)$ also commutes with α. Thus from $\phi_{x}(a+B)=c(x)^{p} a+B$, it follows that $\phi_{x}\left(a^{\alpha}\right)+B^{\alpha}=c^{\alpha}(x)^{p} a^{\alpha}+B^{\alpha}$. Thus $c^{\alpha} \in \mathrm{Cl}(V)$.

The statement $(x v)^{\alpha}=x v^{\alpha}$ may suggest that A / B and A^{α} / B^{α} are isomorphic. They are not. The map $v \mapsto v^{\alpha}$ is not linear, as $(\lambda v)^{\alpha}=\lambda^{\alpha} v^{\alpha}$.

By Lemma 3.2, a cluster $\mathrm{Cl}(V)$ is a union of conjugacy classes of characters.
Definition 3.3. A cluster $\mathrm{Cl}(V)$ is called simple if it consists of a single conjugacy class of characters.

Theorem 3.4. Let V be an irreducible L-module. Then $\mathrm{Cl}(V)$ is simple.
Proof. Notice that $\bar{V}=\bar{F} \otimes_{F} V$ has a direct decomposition $\bar{V}=\sum_{c} \bar{V}_{c}$, where the component \bar{V}_{c} is, by Remark 2.2, the space

$$
\left\{v \in \bar{V} \mid\left(\phi_{x}-c(x)^{p} 1\right)^{r} v=0 \text { for all } x \in L \text { and some } r\right\} .
$$

Here, we may take for r the length of a composition series of \bar{V}_{c}, which is independent of x. Let $c \in \mathrm{Cl}(V)$. Let $\bar{V}_{0}=\sum_{\alpha} \bar{V}_{c^{\alpha}}$, where the sum is over the distinct conjugates c^{α}. Let $f_{x}(t)=\Pi_{\alpha}\left(t-c^{\alpha}(x)^{p}\right)$. The coefficients of $f_{x}(t)$ are invariant under the automorphisms of \bar{F} / F. Therefore for some k, we have that $f_{x}(t)^{p^{k}}$ is a polynomial over F. As the field is not assumed to be perfect, this may require $k>0$. Let $m_{x}(t)$
be the least power of $f_{x}(t)$ which is a polynomial over F. Then, with r the length of a composition series of \bar{V}_{c},

$$
\bar{V}_{0}=\left\{v \in \bar{V} \mid m_{x}\left(\phi_{x}\right)^{r} v=0 \text { for all } x \in L\right\} .
$$

The condition $m_{x}\left(\phi_{x}\right)^{r} v=0$ for all $x \in L$ may be regarded as a set of linear equations over F in the coordinates of v. These equations have a nonzero solution over \bar{F} since $\bar{V}_{c} \neq 0$. Therefore, they have a nonzero solution over F, that is,

$$
V_{0}=\left\{v \in V \mid m_{x}\left(\phi_{x}\right)^{r} v=0 \text { for all } x \in L\right\} \neq 0
$$

Since the ρ_{y} commute with the ϕ_{x}, V_{0} is a submodule of V. Therefore, $V_{0}=V$ and it follows that the set of conjugates of c is the whole of $\mathrm{Cl}(V)$.

4. The cluster decomposition

We have seen that if $c \in \mathrm{Cl}(V)$, then every conjugate c^{α} of c is in $\mathrm{Cl}(V)$. It is convenient to expand our terminology and call any finite set C of linear maps $c: L \rightarrow \bar{F}$ a cluster if, for each $c \in C$, all conjugates of c are in C. With this expansion of our terminology, every cluster is a union of simple clusters.

Theorem 4.1. Let $(L,[p])$ be a restricted Lie algebra and let V be an L-module. Suppose that $\mathrm{Cl}(V)$ is the union $C_{1} \cup \cdots \cup C_{k}$ of the distinct simple clusters C_{i}. Then $V=V_{1} \oplus \cdots \oplus V_{k}$ with submodules V_{i} such that $\mathrm{Cl}\left(V_{i}\right)=C_{i}$.
Proof. By Theorem 1.2, \bar{V} is the direct sum over the set of characters c of submodules \bar{V}_{c} whose composition factors all have character c. By Remark 2.2, \bar{V}_{c} is the space annihilated by some sufficiently high power of $\left(\phi_{x}-c(x)^{p} 1\right)$ for all $x \in L$.

Suppose $c \in C_{i}$. Put $\bar{V}_{i}=\sum_{\alpha} \bar{V}_{c^{\alpha}}$. Some power $m_{x}(t)$ of $\Pi_{\alpha}\left(t-c^{\alpha}(x)^{p}\right)$ is a polynomial over F, and \bar{V}_{i} is the space annihilated by $m_{x}\left(\phi_{x}\right)^{r}$ for all $x \in L$ and some sufficiently large r. Put

$$
V_{i}=\left\{v \in V \mid m_{x}\left(\phi_{x}\right)^{r} v=0 \text { for all } x \in L\right\} .
$$

The set of conditions $m_{x}\left(\phi_{x}\right)^{r} v=0$ for all $x \in L$ may be regarded as a set of linear equations over F in the coordinates of v, so the F-dimension of its solution space V_{i} in V is equal to the \bar{F}-dimension of its solution space \bar{V}_{i} in \bar{V}. It follows that $V=\bigoplus_{i} V_{i}$. Clearly, V_{i} is a submodule of V and $\mathrm{Cl}\left(V_{i}\right)=C_{i}$.

Theorem 4.2. Suppose that $S \varangle L$ and let V be an L-module. Then the components of the cluster decomposition $V=\bigoplus_{C} V_{C}$ with respect to S are L-submodules.

Proof. Although S need not be a restricted algebra, it is embedded in the restricted algebra ($L,[p]$) and the components are defined using the operation [$p]$. There exists a series $S=S_{0} \triangleleft S_{1} \triangleleft \cdots \triangleleft S_{n}=L$. We use induction over i to prove that V_{C} is an S_{i}-module. Take $x \in S_{i}$ and consider $\left(x V_{C}+V_{C}\right) / V_{C}$. For $s \in S$ and $v \in V_{C}$, we have $s(x v)=x(s v)+[s, x] v$. But $[s, x] \in S_{i-1}$, so $[s, x] v \in V_{C}$. Thus the
map $v \mapsto x v+V_{C} \in\left(x V_{C}+V_{C}\right) / V_{C}$ is an S-module homomorphism. Thus the character of every composition factor of $\bar{F} \otimes_{F}\left(\left(x V_{C}+V_{C}\right) / V_{C}\right)$ is in C, which implies that $x V_{C} \subseteq V_{C}$.

Remark 4.3. The decomposition given by Theorem 4.2 depends on the p-operation, not merely on the algebra S. Changing the p-operation may change the decomposition, as is shown by the following example. This opens the possibility that, where the minimal p-envelope of S has nontrivial centre, judicious variation of the p-operation may give useful different direct decompositions.
Example 4.4. Let $L=\left\langle a_{1}, a_{2} \mid\left[a_{1}, a_{2}\right]=0\right\rangle$ and let $V=\left\langle v_{1}, v_{2}\right\rangle$ with $a_{i} v_{i}=v_{i}$ and $a_{i} v_{j}=0$ for $i \neq j$. With $a_{1}^{[p]}=0$ and $a_{2}^{[p]}=-a_{1}, V$ has the character c with $c\left(a_{1}\right)=0$ and $c\left(a_{2}\right)=1$. The cluster decomposition with respect to $(L,[p])$ is simply $V=V_{c}$. However, with the p-operation $[p]^{\prime}$ with $a_{i}^{[p]^{\prime}}=0$, the submodule $\left\langle v_{1}\right\rangle$ has character c_{1} with $c_{1}\left(a_{1}\right)=1$ and $c_{1}\left(a_{2}\right)=0$, while $\left\langle v_{2}\right\rangle$ has character c_{2} with $c_{2}\left(a_{1}\right)=0$ and $c_{2}\left(a_{2}\right)=1$. This gives the cluster decomposition $V=V_{c_{1}} \oplus V_{c_{2}}$.

5. \mathfrak{F}-central and \mathfrak{F}-eccentric modules

Let \mathfrak{F} be a saturated formation of soluble Lie algebras over F. Comparing Theorem 4.2 with [2, Lemma 1.1] suggests a further relationship between clusters and saturated formations beyond that of [2, Theorem 6.4].

Theorem 5.1. Let \mathfrak{F} be a saturated formation and suppose $S \in \mathfrak{F}$. Let $(L,[p])$ be a p-envelope of S and suppose that $z^{[p]}=0$ for all z in the centre of L. Let V, W be irreducible S-modules. Suppose that $\mathrm{Cl}(V)=\mathrm{Cl}(W)$. Then V, W are either both \mathfrak{F}-central or both \mathfrak{F}-eccentric.

Proof. Suppose to the contrary, that V is \mathfrak{F}-central and that W is \mathfrak{F}-eccentric. By [1, Theorem 2.3], $\operatorname{Hom}(V, W)$ is \mathfrak{F}-hypereccentric. But from [7, Theorem 5.2.7] it follows that the characters of the composition factors of $\operatorname{Hom}(\bar{V}, \bar{W})$ are all of the functions $c_{2}-c_{1}$ where $c_{1} \in \mathrm{Cl}(V)$ and $c_{2} \in \mathrm{Cl}(W)$. Since $\mathrm{Cl}(V)=\mathrm{Cl}(W)$, we have that $0 \in \mathrm{Cl}(\operatorname{Hom}(V, W))$.

By assumption, we have that $z^{[p]}=0$ for all z in the centre of L. As $(L,[p])$ is a p-envelope of S, we have $S \unlhd L$. By [2, Theorem 6.4], a composition factor X of $\operatorname{Hom}(V, W)$ with $\mathrm{Cl}(X)=\{0\}$ is \mathfrak{F}-central, contrary to $\operatorname{Hom}(V, W)$ being \mathfrak{F}-hypereccentric.

6. C-induced modules

Let $(L,[p])$ be a restricted Lie algebra over the perfect field F and let S be a $[p]-$ subalgebra of L. Let W be an S-module and let C be a cluster of characters of L whose restriction to S is $\mathrm{Cl}(W)$. We require that distinct members of C have distinct restrictions to S, in which case we say that C restricts simply to S.

Note that, given a simple cluster C_{S} of S, we can easily construct a cluster C of L which restricts simply to C_{S}. We take a cobasis $\left\{e_{1}, \ldots, e_{n}\right\}$ of S in L, that is,
a basis of some subspace complementary to S. A character $c: S \rightarrow \bar{F}$ can be extended to L by assigning arbitrarily the values $c\left(e_{i}\right) \in \bar{F}$. If these are chosen in $F[c]$, then any automorphism which fixes the given c also fixes its extension.

We want to apply the construction of c-induced modules (see Strade and Farnsteiner [7, Section 5.6]) to the c-components \bar{W}_{c} of \bar{W}. This construction only works for modules with character c. Every compostion factor of \bar{W}_{c} has character c, but \bar{W}_{c} itself need not. This leads to the following definition.

Defintion 6.1. We say that the S-module W is amenable (for induction) if, for all $c \in \operatorname{Cl}(W), \bar{W}_{c}$ has character c.

Note that if \bar{W}_{c} has character c, then for each conjugate c^{α} of $c, \bar{W}_{c^{\alpha}}$ has character c^{α}. It would be nice to have a way of determining if a module W is amenable which does not require analysis of \bar{W}. The following lemmas achieve that.

Lemma 6.2. Let $\left\{s_{1}, \ldots, s_{n}\right\}$ be a basis of S and let W be an S-module. Let $m_{i}(t)$ be the minimum polynomial of $\phi_{s_{i}}$. Then W is amenable if and only if for all i, $\operatorname{gcd}\left(m_{i}(t), m_{i}^{\prime}(t)\right)=1$.

Proof. The module W is amenable if and only if, for all $c \in \mathrm{Cl}(W)$ and all i, we have $\left(\phi_{s_{i}}-c\left(s_{i}\right)^{p} 1\right) \bar{W}_{c}=0$. So W is amenable if and only if for all i, in $\bar{F}[t], m_{i}(t)$ has no repeated factors, that is, if and only if $\operatorname{gcd}\left(m_{i}(t), m_{i}^{\prime}(t)\right)=1$. As the calculation of $\operatorname{gcd}\left(m_{i}(t), m_{i}^{\prime}(t)\right)$ in $F[t]$ is the same as in $\bar{F}[t]$, the result follows.

Lemma 6.3. Let W be an irreducible S-module. Then W is amenable.

Proof. For any $s \in S, s^{p}-s^{[p]}$ is in the centre of the universal enveloping algebra of S and so, for any representation ρ of S, we have $\left[\rho\left(s_{1}\right)^{p}-\rho\left(s_{1}^{[p]}\right), \rho\left(s_{2}\right)\right]=0$ for all $s_{1}, s_{2} \in S$. For $c \in \mathrm{Cl}(W)$, put $f_{s}(t)=\Pi\left(t-c^{\alpha}(s)^{p}\right)$ where the product is taken over the distinct conjugates of $c(s)$. Then $f_{s}(t)$ is a polynomial over F, and $\rho\left(s_{2}\right)$ commutes with $f_{s_{1}}\left(\phi_{s_{1}}\right)$ for all $s_{1}, s_{2} \in S$. Thus $W_{0}=\left\{w \in W \mid f_{s}\left(\phi_{s}\right) w=0\right.$ for all $\left.s \in S\right\}$ is a submodule of W. The conditions $f_{s}\left(\phi_{s}\right) w=0$ are linear equations over F with nonzero solutions over \bar{F} and so have nonzero solutions over F. Thus $W_{0} \neq 0$, which implies $W_{0}=W$.

As the construction being developed can be applied separately to each direct summand of W, we suppose that C is simple. Take a basis $\left\{b^{1}, \ldots, b^{k}\right\}$ of W. Corresponding to each $c \in C$, we have a component \bar{W}_{c} of $\bar{W}=\bigoplus_{\alpha} \bar{W}_{c^{\alpha}}$. For each $w \in \bar{W}$, we have $w=\sum_{c} w_{c}$ with $w_{c} \in \bar{W}_{c}$.

Lemma 6.4. Let $w=\sum \lambda_{i} b^{i} \in \bar{W}$. Then w is invariant under the automorphisms of \bar{F} / F if and only if the $\lambda_{i} \in F$, in which case, $\left(w_{c}\right)^{\alpha}=w_{c^{\alpha}}$. Further, sw is also invariant for all $s \in S$.

Proof. If $w=\sum \lambda_{i} b^{i}$ is invariant, then λ_{i} is invariant. Since F is perfect, this implies $\lambda_{i} \in F$. If $\lambda_{i} \in F$ for all i, then clearly w is invariant. As W is an S-module, also $s w$ is invariant. The action of α permutes the \bar{W}_{c} and does not change the direct decomposition. It follows that $\left(w_{c}\right)^{\alpha}=w_{c^{\alpha}}$.

Suppose that C is a simple cluster of characters of L which restricts simply to S and that W is an amenable S-module with $\mathrm{Cl}(W)=C \mid S$. For each $c \in C$, we form the c-reduced enveloping algebras $u(L, c)$ and $u(S, c)$. (See Strade and Farnsteiner [7, page 226].) Since W is amenable, we can construct the c-induced \bar{L}-modules

$$
\bar{V}_{c}=\operatorname{Ind}_{\bar{S}}^{\bar{L}}\left(\bar{W}_{c}, c\right)=u(\bar{L}, c) \otimes_{u(\bar{S}, c)} \bar{W}_{c}
$$

and put $\bar{V}=\bigoplus_{c} \bar{V}_{c}$. From \bar{V}, we shall select an F-subspace V with $\bar{F} \otimes_{F} V=\bar{V}$, which we shall show to be an L-module with $\mathrm{Cl}(V)=C$.

For $x, y \in L$, in the following, we need to distinguish their product in the associative algebra $u(L, c)$ from their product in the Lie algebra. We denote the Lie algebra product by $[x, y]$. Take a cobasis $\left\{e_{1}, \ldots, e_{n}\right\}$ for S in L. Then the elements $e_{1}^{r_{1}} e_{2}^{r_{2}} \cdots e_{n}^{r_{n}} \otimes w_{c}$ with $r_{i} \leq p-1$ and $w_{c} \in \bar{W}_{c}$ span \bar{V}_{c}. To simplify the notation, we write $e(r)$ for $e_{1}^{r_{1}} e_{2}^{r_{2}} \cdots e_{n}^{r_{n}}$. For an element $w=\sum_{c} w_{c} \in \bar{W}$, it is convenient to abuse notation and write $e(r) \otimes w$ for the element $\sum_{c} e(r) \otimes w_{c}$. It should be remembered that in this sum, the $e(r)$ come from different algebras $u(\bar{L}, c)$ with different multiplication, and that the tensor products are over different algebras $u(\bar{S}, c)$.

Any element $w_{c} \in \bar{W}_{c}$ is an \bar{F}-linear combination of the b^{i}, so an element of \bar{V}_{c} is expressible as an \bar{F}-linear combination of the $e(r) \otimes b^{i}$. It follows that the $e(r) \otimes b^{i}$ form a basis of \bar{V}. An automorphism α maps $e(r) \otimes w$ to $e(r) \otimes w^{\alpha}$. Thus the invariant elements of \bar{V} are the F-linear combinations of the basis.

Lemma 6.5. Let $v \in \bar{V}$ be invariant. Then $x v$ is invariant for all $x \in L$.
Proof. We use induction over k to show that $x_{1} \cdots x_{k} \otimes b^{i}$ is invariant for all $x_{1}, \ldots, x_{k} \in L$. The result then follows trivially.

For $s \in S$, we have $s\left(1 \otimes b^{i}\right)=1 \otimes s b^{i}$, which is invariant by Lemma 6.4. For e_{j}, we have $e_{j}\left(1 \otimes b^{i}\right)=e_{j} \otimes b^{i}$, which is invariant. Note that in this case, the multiplication is the same in all the $u(\bar{L}, c)$. Thus the result holds for $k=1$.

Suppose that $k>1$. We express each of the x_{t} as a linear combination of the e_{j} and an element of S. We then use the commutation rules $x y-y x=[x, y]$ to move each factor to its correct position, giving a sum of terms of the form $e_{1}^{r_{1}} e_{2}^{r_{2}} \cdots e_{n}^{r_{n}} s_{1} \cdots$ $s_{m} \otimes b^{i}$, but with the r_{j} not restricted to be less than p. The terms coming from a commutator $[x, y]$ all have fewer than k factors and so are invariant. Any elements of S at the end move past the tensor product, giving $e_{1}^{r_{1}} e_{2}^{r_{2}} \ldots e_{n}^{r_{n}} \otimes s_{1} \cdots s_{m} b^{i}$. By Lemma $6.4,1 \otimes s_{1} \cdots s_{m} b^{i}$ is invariant and since, in this case, $e_{1}^{r_{1}} \cdots e_{n}^{r_{n}}$ has fewer than k factors, the term is invariant. Thus we are left to consider terms of the form $e_{1}^{r_{1}} \cdots e_{n}^{r_{n}} \otimes b^{i}$. If $r_{j}<p$ for all j, then the term is one of our basis elements and so is invariant.

Suppose that for some j, we have $r_{j} \geq p$. Then we must separate the summands. The term can be written in the form $e e_{j}^{p} e^{\prime} \otimes b^{i}$, where e, e^{\prime} are strings of cobasis elements. In the algebra $u\left(\bar{L}, c^{\alpha}\right)$, we have $e_{j}^{p}=e_{j}^{[p]}+c^{\alpha}\left(e_{j}\right)^{p} 1$. Thus

$$
e e_{j}^{p} e^{\prime} \otimes b^{i}=e e_{j}^{[p]} e^{\prime} \otimes b^{i}+\sum_{\alpha} e e^{\prime} \otimes c^{\alpha}\left(e_{j}\right)^{p} b_{c^{\alpha}}^{i}
$$

But $e e_{j}^{[p]} e^{\prime} \otimes b^{i}$ has fewer than k factors and so is invariant. As $\sum_{\alpha} 1 \otimes c^{\alpha}\left(e_{j}\right)^{p} b_{c^{\alpha}}^{i}$ is invariant and $e e^{\prime}$ has fewer than k factors, it follows that $e e_{j}^{p} e^{\prime} \otimes b^{i}$ also is invariant.

We define the C-induced module $\operatorname{Ind}_{S}^{L}(W, C)$ to be the F-subspace of invariant elements of \bar{V}. By Lemma 6.5, it is an L-module. Clearly $\mathrm{Cl}\left(\operatorname{Ind}_{S}^{L}(W, C)\right)=C$.

To illustrate this, we calculate a simple example.
Example 6.6. Let F be the field of three elements and let $L=\langle x, y \mid[x, y]=y\rangle$. Putting $x^{[p]}=x$ and $y^{[p]}=0$ makes this a restricted Lie algebra. We take $S=\langle x\rangle$ and $W=\left\langle b^{1}, b^{2}\right\rangle$ with $x b^{1}=b^{2}$ and $x b^{2}=-b^{1}$. Over \bar{F}, we have $\bar{W}=\bar{W}_{1} \oplus \bar{W}_{2}$ with $\bar{W}_{1}=\left\langle-b^{1}-i b^{2}\right\rangle$ and $\bar{W}_{2}=\left\langle-b^{1}+i b^{2}\right\rangle$, where $i \in \bar{F}, i^{2}=-1$. Denote the action of S on W by ρ. Then $\rho(x)\left(-b^{1}-i b^{2}\right)=-i\left(-b^{1}-i b^{2}\right)$ and $\rho(x)\left(-b^{1}+i b^{2}\right)=i\left(-b^{1}+i b^{2}\right)$.

We have $\left(\rho(x)^{p}-\rho\left(x^{[p]}\right)\right)\left(-b^{1}-i b^{2}\right)=\left((-i)^{3}-(-i)\right)\left(-b^{1}-i b^{2}\right)=-i\left(-b^{1}-i b^{2}\right)$. Thus the character c_{1} of \bar{W}_{1} must have $c_{1}(x)^{3}=-i$, so $c_{1}(x)=i$. Similarly, we have $c_{2}(x)=-i$. As distinct conjugates of a character on L in C must have distinct restrictions to $S, c_{1}(y) \in F[i]$. Put $c_{1}(y)=\lambda=\alpha+i \beta$, where $\alpha, \beta \in F$. Then $c_{2}(y)=\bar{\lambda}$. Note that in $u\left(\bar{L}, c_{1}\right), y^{3}=\lambda^{3}=\bar{\lambda}$. In both the algebras, $x y=y+y x$ and $x y^{2}=(y+$ $y x) y=y^{2}+y(x y)=-y^{2}+y^{2} x$.

In the notation used above, we have $b_{c_{1}}^{1}=-b^{1}-i b^{2}$ and $b_{c_{2}}^{1}=-b^{1}+i b^{2}$, while for b^{2}, we have $b_{c_{1}}^{2}=i b^{1}-b^{2}$ and $b_{c_{2}}^{2}=-i b^{1}-b^{2}$. The induced module $V=$ $\operatorname{Ind}_{S}^{L}(W, C)$ has basis the six elements $v_{j}^{r}=y^{r} \otimes b^{j}$ for $r=0,1,2$ and $j=1,2$. We calculate the actions of x, y on these elements:

$$
\begin{array}{ll}
x v_{1}^{0}=x\left(1 \otimes b^{1}\right)=v_{2}^{0}, & x v_{2}^{0}=x\left(1 \otimes b^{2}\right)=-v_{1}^{0}, \\
x v_{1}^{1}=(y+y x) \otimes b^{1}=v_{1}^{1}+v_{2}^{1}, & x v_{2}^{1}=(y+y x) \otimes b^{2}=v_{2}^{1}-v_{1}^{1}, \\
x v_{1}^{2}=\left(-y^{2}+y^{2} x\right) \otimes b^{1}=-v_{1}^{2}+v_{2}^{2}, & x v_{2}^{2}=\left(-y^{2}+y^{2} x\right) \otimes b^{2}=-v_{2}^{2}-v_{1}^{2}, \\
y v_{1}^{0}=v_{1}^{1}, & y v_{2}^{0}=v_{2}^{1}, \\
y v_{1}^{1}=v_{1}^{2}, & y v_{2}^{1}=v_{2}^{2} .
\end{array}
$$

The calculations of $y v_{j}^{2}$ are more complicated:

$$
\begin{aligned}
y v_{1}^{2} & =y^{3} \otimes\left(b_{c_{1}}^{1}+b_{c_{2}}^{1}\right)=1 \otimes\left(\bar{\lambda} b_{c_{1}}^{1}+\lambda b_{c_{2}}^{1}\right) \\
& =1 \otimes\left((\alpha-i \beta)\left(-b^{1}-i b^{2}\right)+(\alpha+i \beta)\left(-b^{1}+i b^{2}\right)\right) \\
& =1 \otimes\left(\alpha b^{1}+\beta b^{2}\right)=\alpha v_{1}^{0}+\beta v_{2}^{0}, \\
y v_{2}^{2} & =y^{3} \otimes\left(b_{c_{1}}^{2}+b_{c_{2}}^{2}\right)=1 \otimes\left(\bar{\lambda} b_{c_{2}}^{1}+\lambda b_{c_{2}}^{2}\right) \\
& =1 \otimes\left((\alpha-i \beta)\left(i b^{1}-b^{2}\right)+(\alpha+i \beta)\left(-i b^{1}-b^{2}\right)\right) \\
& =1 \otimes\left(-\beta b^{1}+\alpha b^{2}\right)=-\beta v_{1}^{0}+\alpha v_{2}^{0} .
\end{aligned}
$$

Remark 6.7. As noted earlier, in the notation used above, if we are given an amenable S-module W with simple cluster C_{S}, we can construct a simple cluster C on L which restricts simply to C_{S} by choosing arbitrarily the $c_{1}\left(e_{i}\right)$ in $F\left[c_{1}\right]$. If we choose the $c_{1}\left(e_{i}\right)$ in F, then we have $c_{j}\left(e_{i}\right)=c_{1}\left(e_{i}\right)$ for all j. This simplifies the calculation of the
action on the induced module as we then have $e_{i}^{p}=e_{i}^{[p]}+c\left(e_{i}\right)^{p} 1$ in all the algebras $u\left(\bar{L}, c_{i}\right)$ and it follows that $e_{i}^{p} b^{j}=\left(e_{i}^{[p]}+c\left(e_{i}\right)^{p} 1\right) b^{j}$ can be calculated without using the character decomposition of \bar{W}. That the action of $x \in L$ on a basis element $e(r) \otimes b^{i}$ can be calculated without using the decomposition follows by an induction as in the proof of Lemma 6.5. It thus becomes possible to calculate the action on $\operatorname{Ind}_{S}^{L}(W, C)$ without having to determine the eigenvalues of the $\phi_{s_{i}}$. In the above example, if we take $\beta=0$, then the calculations of $y v_{1}^{2}$ and $y v_{2}^{2}$ simplify to $y v_{i}^{2}=y^{3} b^{i}=\alpha^{3} b^{i}=\alpha v_{i}^{0}$.
Remark 6.8. Denote the category of amenable L-modules with the cluster C by $\operatorname{AmMod}(L, C)$. The restriction functor $\operatorname{Res}_{L}^{S}: \operatorname{AmMod}(L, C) \rightarrow \operatorname{AmMod}(S, C \mid S)$ sends an L-module V to V regarded as an S-module. Suppose that C restricts simply to S. Then $\operatorname{Ind}_{S}^{L}(, C)$ is a functor $\operatorname{AmMod}(S, C \mid S) \rightarrow \operatorname{AmMod}(L, C)$. In the special case where $C=\{c\}$, the functor $\operatorname{Ind}_{S}^{L}(, c)$ is a left adjoint to $\operatorname{Res}_{L}^{S}$ by Strade and Farnsteiner [7, Theorem 5.6.3]. Applying this to the \bar{W}_{c} in the general case gives that $\operatorname{Ind}_{S}^{L}(, C)$ is a left adjoint to $\operatorname{Res}_{L}^{S}$.

References

[1] D. W. Barnes, 'On \mathfrak{F}-hyperexcentric modules for Lie algebras', J. Aust. Math. Soc. 74 (2003), 235-238.
[2] D. W. Barnes, 'Ado-Iwasawa extras', J. Aust. Math. Soc. 78 (2005), 407-421.
[3] D. W. Barnes, 'On locally defined formations of soluble Lie and Leibnitz algebras', Bull. Aust. Math. Soc. 86 (2012), 322-326.
[4] A. V. Kelarev, 'Directed graphs and Lie superalgebras of matrices', J. Algebra 285 (2005), 1-10.
[5] I. S. Rakhimov and M. A. Hassan, 'On one-dimensional Leibnitz central extensions of a filiform Lie algebra', Bull. Aust. Math. Soc. 84 (2011), 205-224.
[6] M. Shahryari, 'A note on derivations of Lie algebras', Bull. Aust. Math. Soc. 84 (2011), 444-446.
[7] H. Strade and R. Farnsteiner, Modular Lie Algebras and their Representations (Marcel Dekker, Inc., New York, Basel, 1988).

DONALD W. BARNES, Little Wonga Road, Cremorne, NSW 2090, Australia e-mail: donwb@iprimus.com.au

[^0]: This work was done while the author was an Honorary Associate of the School of Mathematics and Statistics, University of Sydney.
 (C) 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

