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Abstract

Two projective nonsingular complex algebraic curves X and Y defined over the field IR of real numbers can
be isomorphic while their sets X(R) and K(R) of R-rational points could be even non homeomorphic.
This leads to the count of the number of real forms of a complex algebraic curve X, that is, those
nonisomorphic real algebraic curves whose complexifications are isomorphic to X. In this paper we
compute, as a function of genus, the maximum number of such real forms that a complex algebraic curve
admits.

2000 Mathematics subject classification: primary 14H45, 20H10, 30F50; secondary 20F05.

1. Introduction

In [6] Natanzon proved, using topological methods, that a complex algebraic curve of
genus g > 2 has at most 2(.v/g + 1) real forms with real points. He also showed that
this bound is attained for infinitely many values of g, these being of the form (2" - 1 )2.
A combinatorial proof of this appears in [3], where it is also proved that these are the
only values for which the Natanzon bound is sharp.

Here we find die maximal number co (g) of real forms with real points that a complex
algebraic curve of genus g > 2 can admit. First we prove that a bound for to (g) depend
only on the parity structure of g — 1. To be precise, consider the set of all positive
integers to be divided in strata, the r th of which Nr consists of all integers of the form
g = 2r~lu + 1 for some odd u. We show that co(g) < 2r+1 for g e Nr, the equality
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[2] On real forms of a complex algebraic curve 135

holds if and only if u > 2r+1 — 3, and then we find exact values of co for the remaining
values of g in Nr. This result generalizes the result obtained in [4] for even genera,
where it was proved that a complex algebraic curve of even genus has at most 4 real
forms with real points and that this bound is sharp for all even g.

2. Preliminaries

The above results will be proved using the language of Riemann and Klein surfaces.
We shall employ Fuchsian and NEC groups using combinatorial methods. Most of
the results that we use here are dispersed in original papers [1, 5, 8]. So for reader's
convenience we refer him to the monograph [2] where he can find all of them.

It is well known [1, 2, 7] that the categories of real algebraic curves and compact
Klein surfaces are equivalent in the same way as the categories of complex algebraic
curves and Riemann surfaces are equivalent. Under this equivalence, a real curve with
real points corresponds to a bordered Klein surface. Besides, the complexifications of
real curves correspond to complex doubles of Klein surfaces.

A real form of a complex algebraic curve # is an equivalence class of all isomorphic
real curves which have ^ as their complexification. So there exists a one-to-one
correspondence between the real forms of a complex algebraic curve tf and the
conjugacy classes of anticonformal involutions of the Riemann surface X(if), which
will be referred to as symmetries throughout the paper.

Arbitrary compact Riemann surfaces of genus g > 2 can be represented as the
orbit space Jf?/ F of the hyperbolic plane Ji? with respect to the action of a Fuchsian
surface group F, a discrete subgroup of Aut+(Jif) = PSL(2, IR) without elliptic
elements. A discrete subgroup A of A u t ± ( ^ ) with compact orbit space is called
an NEC (non-Euclidean crystallographic) group. The algebraic structure of an NEC
group A is determined by the signature

(1) j(A) = (A;±;[m,, . . . ,m,]; {C,, . . . , C.}),

where C, = (nn,..., niSi) are called the period cycles, the integers ntj are the link
periods, nit proper periods and finally h the orbit genus of A.

A group A with signature (1) has the presentation with generators: x^,... ,xv,
eu ..., en, Ctj, 1 < i < n, 0 < j < st and a,, bu ...,ah,bh if the sign is + or
du...,dh otherwise, andrelators: *"', i = 1 , . . . , v, cfj_l,cfj,(cij-iCij)''\cioe~lCiS.ei,
i = l , . . . , n , j = O,...,Sj and Xi ••-xvei ••• ena\bia^lb[l ••-ahbha^b^1 o r

Xx-- -xvex- • • end\ •••d\, according to whether the sign is + or —.
The hyperbolic area of Jif/h coincides with the hyperbolic area of an arbitrary
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fundamental region of A and equals

where e = 2 if there is a ' + ' sign and e = 1 otherwise. If A' is a subgroup of A
of finite index, then it is itself an NEC group and the following Riemann-Hurwitz
formula holds

(3) [A : A'] = (A(A')/(M(A).

Given an NEC group A, the subgroup A+ of A consisting of the orientation-preserving
elements is called the canonical Fuchsian subgroup of A.

An NEC group F without orientation preserving automorphisms of finite order is
called a surface group and it has signature (h; ±; [—], {(—),."., (—)}). In such case
J4?/ F is a Klein surface, that is, a surface with a dianalytic structure of topological
genus h, orientable or not according to whether the sign is '+ ' or '—' and having
n boundary components. Conversely, a Klein surface whose complex double has
genus greater than one can be expressed as Jf?/ F for some NEC surface group
F. Furthermore, given a Riemann (respectively Klein) surface represented as the
orbit space X = Jf/F, modulo a surface group F, a finite group G is a group of
automorphisms of X if and only if G = A/ F for some NEC group A.

3. On conjugacy classes of involutions in 2-groups

In this section we study conjugacy classes in 2-groups. A group G is said to be
abstractly oriented if there is an epimorphism a : G —*• Z2 = {±1} and an element g
of G to be orientation preserving (orientation reversing) if a(g) = +1 (a(g) = —1).

LEMMA 3.1. A 2-group G containing ZN as a subgroup (not necessarily normal) of
index 2r has at most 2r+1 — 1 conjugacy classes of elements of order 2. Furthermore,
if G is abstractly oriented and a generator x ofZn preserves the orientation, then G
has at most 2r conjugacy classes of orientation reversing elements of order 2.

PROOF. Let

be a subnormal sequence and let x, e H, \ H,_i, for i = 1, . . . r.
Then each element g of G can be represented as g = xex[' •••xe/ for some

0 < £ < N and e, = 0 or et — 1 uniquely determined. Denote x\' • • • xe/ by w and
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observe that there are 2r elements of this form. So the proof will be complete if we
show that for any such element w there are at most 2 conjugacy classes of elements
of order 2 among

(4) w, xw,x2w,... ,xN~xw.

Observe that w may not be an element of order 2, and furthermore that among
these elements there may not even be elements of order 2. Assume then that there
are at least two elements xkw and x'w of order 2, and assume that k and / are
chosen so that k > I and m = it — / is as small as possible. We shall show that
each element x"w which has order 2 is conjugate to xkw or to x'w. We have
1 =- (xkw)2 = xm(x'w)2w~1xmw = xnw~ixmw. So wx~m = xmw and therefore
xt+<"nw n a s o r ( j e r 2 and

(5) xam(x'w)x-am = .

(6) xam{xkw)x-am =xk+2amw

for arbitrary a.
Now let x"w be an arbitrary element of order 2. Then n — I + am + y for some

aj, where 0 < j < m, and since both x"w and x'+amu> have order 2, it follows by
minimality of m that./ = 0. Thus x"w = x'+amw, which is a conjugate of x'w if or is
even, or a conjugate of JC*U; if a is odd by (5) and (6) respectively.

Now let a be an orientation of G and let *, , , . . . , xis be all orientation reversing
elements among xi,... ,xr. Then at most 2r of the elements w have odd exponent
sum in *,, , . . . , xit and so the second part of lemma follows. •

Notice that a dihedral group DN generated by two involutions x0 and y0 can be
viewed as a semidirect product ZN tx Z2 = (̂ oyo) x (*o)- So we have as a consequence
the following result.

COROLLARY 3.2. A 2-group G containing a dihedral group DN as a subgroup of
index 2r has at most 2r+2 — 1 conjugacy classes of elements of order 2. Furthermore
if G is abstractly oriented and the generators x0, y0 reverse the orientation, then G
has at most 2r+1 conjugacy classes of orientation reversing elements of order 2.

4. Real forms of complex algebraic curve

Here we shall look for bounds for the number of conjugacy classes of symmetries
of a Riemann surface X of genus g > 2. Recall that by a symmetry we mean
anticonformal involution of X. Assume that o\,... ,ak are representatives of such
classes. By the Sylow theorem all Sylow 2-subgroups are conjugate. So we can
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assume that all these symmetries generate a 2-group G, say of order K = 2s. We start
with the following technical observation.

LEMMA 4.1. Let X be a Riemann surface of genus g, and suppose that 2r~' is the
maximum power of 2 dividing g — 1. Let G be a 2-group of automorphisms of X
of order 2s, where s > r + 1, such that its subgroup G+ of orientation preserving
automorphisms acts on X with fixed points. Then G contains a cyclic or dihedral
subgroup of index 2r.

PROOF. Let X = JV/ F for some surface NEC group F and let G = A/ F. Assume
that A has a signature of the general form (1). Since the action of G+ is not fixed
point free, A has a proper period or nonempty period cycle.

We claim that G contains a cyclic or dihedral group as a subgroup of index 2r if
A has a proper period m > 2s~r or a link period n > 2s~r~l. Indeed in the first case
the image x in G of an elliptic generator of A corresponding to m is still an element
of order m in G since otherwise F would have elements of finite order, and so for
m' = 2r~sm, xm' generates a cyclic subgroup of G of index 2r. In the second case
the images c and c1 in G of reflections with product of order n are involutions since
otherwise F would be a proper NEC group. Furthermore their product has order n,
since otherwise F would contain an element of finite order. So for n' = 2r~s+ln, the
elements d and d(dc)n' generate a dihedral subgroup of G of index 2r.

We shall show that there exists either a proper period m or a link period n as above.
By the Hurwitz Riemann formula

2 v t r *> t r £ r 2»> /
Thus, since (g — l)/2r~' is odd and s — r > 1, we see that m, = 2s~r for some i or
ny — 2s~r~1 for some i, j . In the first case G contains Z2«-' as a subgroup of index 2r,
whilst in the second one G contains D2w-i. This completes the proof. •

THEOREM 4.2. Let X be a Riemann surface of genus g. Assume that 2r~l is the
maximal power of 2 dividing g — 1, that is, g = 2r~xu + 1 with odd u. Suppose
there are k nonconjugate symmetries of X with fixed points. Then k < 2r+l, and
furthermore this bound is attained if and only ifu> 2r+l — 3.

PROOF. The first part is a direct consequence of Lemma 4.1, Lemma 3.1 and
Corollary 3.2. Assume then that a Riemann surface X = Jiff F has 2r+l nonconjugate
symmetries with fixed points. As we remarked at the beginning of the section we can
assume that these symmetries generate a 2-group G. Let G = A/ F for some NEC
group A, and assume that A has signature of the general form (1). Let C\,... , Cn be

https://doi.org/10.1017/S1446788700002329 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002329


[6] On real forms of a complex algebraic curve 139

all different period cycles of A involving these reflections, and assume that C\,... , C,
are non-empty and C, + ) , . . . , Cn are empty. As each empty period cycle involves at
most one reflection we see that Cu ... , C, involve at least 2r + l — (n — t) reflections.
So if C, has length sh then

5, H + s,> 2r+l -n + t.

We shall show that

If f = 0, then n > 2r+l and so fi(A) > 2n(2r+l - 2). So assume that t > 1. Then by
Lemma 4.1, A has a proper period > \G\/2r or a link period > \G\/2r+1. In the first
case

r+1 +3n + / - 4 2r \ / 2 r + 12 r + 1 - 3 2" \

\G\Y
Now assume that A has a link period > |G|/2r + 1. Then

5i + • • • + s, - 1 1
2 + + +

r + 1 + 3 n + f - 7 2r \ / 2 r + l - 3

- 2 " ( — s — i J n
So

- 2 " (

( g ) / ( D | | / ( ) 2 T T

which gives

8 ( g - l ) > ( 2 r + 1 - 3 ) | G | - 2 r + 2 .

Now if G contains DN as a subgroup of index 2r we obtain that

g - 1 > 2r"2(2r+1 - 3)W - 2r"' = 2r" ' ( — (2r+l - 3) - l j .

So we see that indeed g > 2r~lu + 1, where u = (2r+1 - 3)N/2 - 1 > 2r+1 - 4.
However u is odd by assumption, and so, in particular, u > 2r+1 — 3.

Conversely, let g = 2r"'« + 1, where u > 2r+1 — 4 is any odd integer and let
s = 2(u + l)/N + 2, where N is a power of 2 such that s > 2r+l. Consider a maximal
NEC group A with signature

(0;+; [ - ] ; {(AT, 2,. f., 2)}),
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and let G = DN © Z£ = {yo,xo} © (*i) © • • • © (xr). Also let {au ..., a2^} be
representatives of all conjugacy classes of elements of order 2 in G which have
odd length in y0, XQ, • • • , xr, and assume that they are so chosen that a\ = y0 and
a2 = x0. Define 6(e) = 1 and 0(c0) = 6(cs+i) = au 0(cO = a2, and suppose
9(ci) e {a3 a2'+'} are chosen for 2 < i < s so that 0(c,) ^ 6(ci+l) and the
induced map 6 : A —> G is an epimorphism; observe that this is indeed possible as
s > 2r+l. Then for F = Ker 9, X = Jff/ F is a Riemann surface of genus g having
2r+1 nonconjugate symmetries with fixed points. •

Every even value of g can be written as 2r~x u + 1 for r = 1 and some odd u. As a
result we obtain as a corollary the principal result of [4].

COROLLARY 4.3. A Riemann surface of even genus g has at most 4 nonconjugate
symmetries with fixed points. Furthermore, this bound is attained for every even
genus g.

REMARK 4.4. Given an arbitrary g > 2, there is an integer r > 1 and an odd u such
that g = 2r~'w + 1. Fix r > 1 and consider all values of g of this form. Observe that
these are just solutions of the congruence x = 2r~' mod 2r. If u > 2r + 1 — 3, then
g > 2 (-1(2r + 1 - 3) + 1 = 22r - 3 x 21"-1 + 1 > 22r - 4 x 2r~l + 1 = (2r - I)2. So
2(^/g + 1) > 2r+l and thus we see that the Natanzon bound is worse than ours for
almost all values of g of this form. If u < 2 r + 1 - 5 then g < 2r~l(2r+l - 5) + 1 =
22r - 5 x 2 ' - 1 + 1 < 22r - 4 x 2r~' + 1 = (2r - I)2. So 2(Jg + 1) < 2r + 1 . Notice,
however, that Natanzon's bound is sharp only for « = 2r~3 — 1.

For arbitrary g > 2, we define v(g) as the maximal number of conjugacy classes
with fixed points that can be admitted by a Riemann surface X of genus g. The
previous theorem can be seen as a determination of the value of v for g = 2r~x u + 1
where u > 2 r + 1 — 3; indeed v(g) = 2 r + 1 for such g. Now we shall calculate the
remaining values of this function. Observe that given an odd u < 2r+2 — 7 there is a
unique s < r + 2 for which (2S~2 - 4)/2r-s+2 <u< (2s~l - A)/2r~s+l.

THEOREM 4.5. Let g = 2 r " ' « + 1, where r > 1 and u < 2r+2 - 7 is odd. Then

( 2r-*+2 < u < (2s~l - 4)/2r-*+1(
2

2r-s+2 + 4 y(2,-2 4)/2^+2 < u < (2*-i _ 4)/2r-J+2,
vv/iere j is as above.

PROOF. Let X be a Riemann surface of genus g = 2r~' u + 1, where M < 2r + 2 - 7,
such that X has k nonconjugate symmetries o\,... , o* with fixed points. First we
shall show that k < v(g). As before, Sylow theory, we can assume that au ... ,ok
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generate a 2-group G, say of order 2'. Let X — Jff/ F and G = A/ F for some
Fuchsian surface group F and a proper NEC-group A.

Now it is easy to see that /*(A) > n(k — 4)/2. So by the Hurwitz Riemann formula
4(g - 1) = \G\fi(A) > 2-\k - 4), which gives

(7) k < 2r~'+2u + 4.

First suppose (2*"1 - 4)/2r~J+2 < u < (2s~l - 4)/2r~s+l. Then for t > s we
have k < 2r~s+lu + 4 < 2s~l by (7), whilst for t < s, we have k < 2'"1 < 2'~l by
Lemma 3.1.

Now suppose (21-2 - 4)/2 r- I + 2 < u < (2s~l - 4)/2r~s+2. Then for t > s we have
it < 2r~s+2M + 4 by (7), whilst for t < s, we have k < 2'~l < 2S~2 by Lemma 3.1, and
so k < 2r~s+2u + 4, since 2r-J+2u + 4 > 2S~2 for u > (2S~2 - 4)/2r-°+2.

In order to finish the proof we consider arbitrary s < r + 2 and arbitrary u in the
range (2S~2 - 4)/2r-s+2 <u< (2s"1 - 4)/2r- s + 1 . Let G = Z* = {xt) © . . . © (xs).
Let A = {ai,... , a2-->} be the set of all elements of order 2 which can be written
as words of odd length in xu ... ,xs. Finally let k = 2r~s+2u + 4 and let A be a
maximal NEC group with the signature (0; +; [ - ] ; {(2,. *., 2)}). Then there exists an
epimorphism 6 : A -> G such that 0(c,-) ^ 0(ci+l) and such that for k < 2*~\ the
it reflections c{,... , ck are mapped into distinct elements of A (observe that the last
condition holds if and only if u < (21"1 - 4)/2r-J+2). •

Given an arbitrary g > 2, let co(g) denote the maximal number of real forms with
real points that some complex algebraic curve of genus g can admit. Observe that
co(g) = v(g) for arbitrary g. So we can express Theorem 4.2 and Theorem 4.5 in
terms of algebraic curves as follows

COROLLARY 4.6. Let g = 2r~xu + 1, where r > 1 and u is odd. Then

2r+l ifu> 2r+2 - 5

2s-1 1/(2'-' - 4)/2r- J + 2 < u < (2s~l - 4)/2'-s+1

"s+2 <u< (2s-1 - 4 ) /2 r - J + 2 ,

where s < r + 2 is the unique integer for which

(2S~2 - 4)/2r~s+2 <u< (2s~l - 4)/2r-s+l.
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