THREE-GROUPS WITH CYCLIC CENTRE AND CENTRAL QUOTIENT OF MAXIMAL CLASS

S. B. CONLON

(Received 13 September; revised 30 November 1976) Communicated by M. F. Newman

Abstract

All three-groups with cyclic centre and such that the quotient by the centre has maximal class are listed and a presentation with generators and relations for each is given.

Let G be a p-group with cyclic centre Z and such that G/Z has maximal class. It is known (though not in the literature) and not difficult to verify that the analysis of p-groups of maximal class as set out in Blackburn (1958) or Chapter III, Section 14 of Huppert (1967) carries through for such a group G; one works with the upper central series instead of the lower central series in the maximal class case. Let

$$(1) = G_{a+1} < Z = G_a < G_{a-1} < \dots < G_2 < G$$

be the upper central series of G, where a is the class of G. When a=2 or 3, G has an abelian maximal subgroup and is readily described (Conlon (1976)). For $a \ge 4$, we have that

$$C_G(G_2/G_4) = \dots = C_G(G_{a-2}/G_a)$$

and this is a maximal subgroup G_1 of G. The subgroup $C_G(G_{a-1})$ is also maximal and G is called exceptional if $G_1 \neq C_G(G_{a-1})$. The quotient G/Z is always a non-exceptional maximal class group. G is not exceptional if a is even. Further if $s \in G - G_1 - C_G(G_{a-1})$, then $s^p \in Z$. If $s_1 \in G_1 - G_2$, and if $s_{i+1} = [s_i, s]$ (i = 1, ..., a-1), then $G_i = \langle G_{i+1}, s_i \rangle$. All maximal subgroups of G which contain G (and so G) and which are not equal to G_1 or $G_1 \cap G_2(G_{a-1})$ are also nonexceptional groups with centre G. If G is abelian and G is described in Conlon (1976).

When p=3 and |Z|=3 (G has maximal class a), then $G_1'=[G_2,G_1]\leqslant Z=G_a$, G is nonexceptional and such groups are described by Blackburn (1958). But if $|Z|\geqslant 3^2$, then G can be exceptional. However if G=G/Z, then G is of maximal class a-1 and so $[G_2,G_1]\leqslant G_{a-1}$, whence $[G_2,G_1]\leqslant G_{a-1}$. Thus $[s_2,s_1]=s_{a-1}^fz$ for $0\leqslant f<3$ and $z\in Z$. Thus G is certainly a quotient of a group with a presentation:

(1)
$$G(a) = \langle s, s_1, ..., s_a, Z | Z \text{ is a central cyclic 3-group,}$$

$$s_{i+1} = [s_i, s] \ (i = 1, ..., a-1), \ s^3 = z_1, \ (ss_1^{-1})^3 = z_2,$$

$$[s_2, s_1] = s_{a-1}^f z, \text{ where } s_a, z_1, z_2 \text{ and } z \in Z \rangle.$$

When a=2 or 3, one can further suppose that f=0 and z=1. We have the following consequences (2), ..., (9) of the relations in (1):

$$[s_3, s_1] = s_a^f z^{-3}.$$

Other than (2) and the relation $[s_2, s_1] = s_{a-1}^f z$, we have the following for $1 \le i < j \le a$:

$$[s_i, s_i] = z^{m(j-i) \cdot 3^{\lfloor (i+j-2)/2 \rfloor}},$$

where m(l+12) = m(l) for all $l \ge 0$ and for $0 \le l < 12$ we have:

In particular $m(2l+1) \equiv (-1)^l \pmod{3}$, for l > 0.

$$z^{3^{((a-1)/2)}} = 1.$$

(5) If $[s_{a-1}, s_1] \neq 1$, then a is odd and z has order exactly $3^{(a-1)/2}$. Also in this case we have:

$$[s_{a-1}, s_1] = z^{(-3)^{(a-3)/2}}.$$

(6) If $f \neq 0$, then $[s_{a-1}, s_1] = s_a^{-1}$.

$$[s_{a-1}, s_{a-2}] = \dots = [s_{a-1}, s_2] = 1.$$

(8)
$$s_1^3 = (s_3^{-1})^{s^{-1}} s_{a-1}^{-f} z^2 z_1 z_2^{-1} = s_4 s_6 \dots s_5^{-1} s_3^{-1} s_{a-1}^{-f} z^2 z_1 z_2^{-1}.$$

For i > 1,

$$s_i^3 = (s_{i+2}^{-1})^{s-1} z^{2 \cdot 3^{i-1}} = s_{i+3} s_{i+5} \dots s_{i+4}^{-1} s_{i+2}^{-1} z^{2 \cdot 3^{i-1}}$$

For $a \ge 3$,

$$s_{a-1}^3 = 1.$$
(9)
$$s_a^3 = 1.$$

By passing to the quotient G(a)/Z and using induction on a, it is readily seen that G(a) is a 3-group and that $|G(a)| \le |Z| \cdot 3^a$.

Relations (4), (5), (6) and (9) place restrictions on the choice of z and s_a in Z. Once these are satisfied, then $|G(a)| = |Z| \cdot 3^a$ without any collapse and G(a) gives the correct form of our sought group G of class a. To see this one constructs by induction on a the group G(a+1) from a maximal subgroup G(a) by adding another element s_0 satisfying:

(10)
$$[s_0, s] = s_1, [s_1, s_0] = s_{\alpha-1}^t z',$$

and s_0 acts identically on Z. s_0 then gives an automorphism of G(a) provided

(11)
$$z^{3((n-2)/2)} = 1$$
, $f = 0$, $(z')^3 = z$ and $z_1 = z_2$.

To assign a value to s_0^3 , we choose instead to insist that $(ss_0^{-1})^3 \in \mathbb{Z}$ and $(ss_0^{-1})^3$ acts identically on G(a) provided

(12)
$$(s_a[s_1, s_{a-2}])^{f'} = 1.$$

The conditions (11) and (12), with s_i replaced by s_{i+1} hold in any case in the maximal subgroup $\langle s, s_2, ..., s_{a+1}, Z \rangle$ of a group G(a+1) defined as in (1).

The fact that Z is the centre of G(a) and that G(a)/Z has maximal class a-1 is proved by induction on a.

The isomorphism problem is resolved by looking at all possible choices of generators s, s_1 and t and pushing G = G(a) into a standard form; here t is a generator of the centre Z. In separating the isomorphism classes, account may also be taken of the number h of maximal subgroups M of G such that $G_2 \leq M$ and $M \neq G_1$ or $C_G(G_{a-1})$ and such that every element in $M - G_2$ has order $3 \cdot |Z|$.

a is the class of G, $3^b = |Z|$ and $3^c = |G_1'|$. We can suppose that $z = t^{a \cdot 3^{b-c}}$, where $g \equiv \pm 1 \pmod{3}$. In the nonexceptional cases we can always make g = 1. The exceptional cases occur when c = [a/2] and a is odd and greater than 4; here we can insist that $ss_1 \in C_G(G_{a-1})$ which implies that $[s_{a-1}, s_1] = s_1^{-1}$ and that $g \equiv (-1)^{(a-1)/2} \pmod{3}$. G is presented as follows:

(13)
$$Gabcdef = \langle s, s_1, ..., s_a, t | [s_i, s] = s_{i+1}(i = 1, ..., a-1),$$

$$[t, s] = [t, s_1] = 1, t^{3b-1} = s_a, s^3 = t^d,$$

$$(ss_1^{-1})^3 = t^e, [s_2, s_1] = s_{a-1}^t t^{g,3b-e} \rangle.$$

The table (14) gives the values of the parameters to obtain a full set of nonisomorphic groups. The values of g and h are also included. The values of d, e, f and g are only significant modulo 3.

Table (14)								
	а	b	c	d	e	f	g	h
Non-exceptional	≥2	≥1	0	0	0	0	1	0
	≥2	≥1	0	1	1	0	1	0 3 2 2
	≥3	≥1	0	0	1	0	1	2
	odd ≥3	≥1	0	0	2	0	1	2
	≥4	b = c	0 < c < [a/2]	0	0	0	1	1
	≥4	b = c	0 < c < [a/2]	0	2	0	1	1 2 3
	≥4	b = c	0 < c < [a/2]	1	1	0	1	3
	≥4	b > c	0 < c < [a/2]	0	0	0	1	0
	≥4	b > c	0 < c < [a/2]	1	1	0	1	
	≥4	b > c	0 < c < [a/2]	2	2	0	1	3 2 2
	≥4	b > c	0 < c < [a/2]	0	1	0	1	2
	odd ≥5	b > c	0 < c < [a/2]	0	2	0	1	2
Exceptional	odd ≥5	b≥c	c = [a/2]	0	0	0	$(-1)^{(a-1)/2}$	0
	odd ≥5	$b \geqslant c$	c = [a/2]	0	0	1	$(-1)^{(a-1)/2}$	0
	odd ≥5	$b \geqslant c$	c = [a/2]	0	1	0	$(-1)^{(a-1)/2}$	1
	odd ≥5	$b \geqslant c$	c = [a/2]	0	2 1	0	$(-1)^{(a-1)/2}$	1
	odd ≥5	$b \geqslant c$	c = [a/2]	0	1	1	(_1))a-1)/2	1 1 1
	odd ≥5	$b \geqslant c$	c = [a/2]	0	2	1	(1)(a-1)/2	1
	odd ≥5	$b \geqslant c$	c = [a/2]	1	1	0	(1)(a-1)/2	2
	odd ≥5	$b \geqslant c$	c = [a/2]	1	1	1	$(-1)^{(a-1)/2}$	2
	odd ≥5	$b \geqslant c$	c = [a/2]	1	2	0	$(-1)^{(a-1)/2}$	2
	odd ≥5	$b \geqslant c$	c = [a/2]	1	2	1	$(-1)^{(a-1)/2}$	2
	odd ≥5	$b \geqslant c$	c = [a/2]	2 2	2 2 2 2	0	$(-1)^{(a-1)/2}$	2 2 2 2 2 2
	odd ≥5	$b \geqslant c$	c = [a/2]	2	2	1	$(-1)^{(a-1)/2}$	2

References

- N. Blackburn (1958), "On a special class of p-groups", Acta Math. 100, 45-92.

 S. B. Conlon (1976), "p-Groups with an abelian maximal subgroup and cyclic center", J. Austral. Math. Soc. 22, 221-233.
- B. Huppert (1967), Endliche Gruppen I (Die Grundlehren der mathematischen Wissenschaften, 134. Springer-Verlag, Berlin, 1967).

Department of Pure Mathematics University of Sydney NSW 2006, Australia