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Abstract. Let A = (a}) be an orthogonal matrix (ovék or C) with no entries zero. LeB = (b})

be the matrix defined by, = 1/a}. M. Kontsevich conjectured that the rank Bfis never equal
to three. We interpret this conjecture geometrically and prove it. The geometric statement can be
understood as variants of the Castelnuovo lemma and Brianchon’s theorem.
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1. Definitions and statements

DEFINITION 1.1. Given ak x [ matrix A = (a%), 1 < i < k,1 <
no entries zero, define théadamard inverse ofl, B = (b.,), by b, =
name is in analogy with the Hadamard product.)

Maxim Kontsevich conjectured the following:

a < I, with
1/a!,. (The

) )
« «

CONJECTURE 1.2 (Kontsevich (1988))et A be an orthogonal matrix (over
or C) with no entries zero. LeB be the Hadamard inverse af. Then the rank of
B is never equal to three.

At first glance, (1.2) may not appear all that striking because based on a naive
count, one would not expect any low rank Hadamard inverses of orthogonal matrices
to exist (see (1.16)). However, Kontsevich asserted and we show the following:

THEOREM 1.3.The space ah x m orthogonal matrices with rank two Hadamard
inverses ig2m — 3)-dimensional.

We will rephrase (1.2), (1.3) in geometric language and prove them. First we
will need some definitions:

DEFINITION 1.4. LetV = C**! or R**1, let Q € S?V* be a nondegenerate
quadratic form. Two pointg,w € PV are said to beolar, or more precisely,
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Q-polarif the corresponding lines iir are@-orthogonal. Given a poirt € PV,
the polar hyperplane ot with respect toQ, Hg, ., is the hyperplane of)-polar
points toz. A set of pointsz, .. ., z,, hone lying on the quadric iRV defined by
Q, is said to bepolarwith respect ta) if they are all mutually polar. (In particular,
vectors inV’ representing them give@-orthogonal basis di".) A quadratic form
P is said to be apolar tQ if tracey P = 0. (tracey P is defined by considering the
induced map$’: vV — V*, Q": V* — V;trace, P := tracgQ" o P').)

In what follows, unless we specify the ground field, it may be taken t& be
orC.

DEFINITION 1.5. Givenaset of points, . . ., z, spanning”, define the standard
Cremona transform df”™ with respect to{ z; } to be the rational mag: P" — P",
obtained by first blowing up the codimension two spaces spanned by subsets of
(n — 1)-tuples of the points, and then blowing down thayperplanes containing

sets ofn of the points. In coordinates, if

z;=10,...,0,1,0,...,0], (1.6)
where the 1 occurs in thih slot, the map is

1 l}

S0, 2"]) = b (1.7)

) ﬁ .
Note thatthe images of the blown down hyperplanes determine a coordinate simplex
in the imageP™ which we will call theimage simplex

Conjecture (1.2) is equivalent to:

THEOREM 1.8 (Version 1)Let z, ..., z, andpy,...,p, be two sets of points
spanningP™, each set apolar with respect to a nondegenerate quadratic {rm
Let ¢ denote the Cremona transform defined by{thg . If the pointsy(p;) fail to
span aP®, then they span exactlyrt.

THEOREM 1.8 (Version 2)Let z,...,z, andpo,...,p, be two sets of points
spanningP™, each set apolar with respect to a nondegenerate quadratic €prm
LetX be the space of hypersurfaces of degrémving multiplicities of orden — 2
at eachz;. (X is aP™.) LetA := {P € X|p; € P Vi}. If codim A < 2then
codim A = 1. In this case the points, p; all lie on a rational normal curve.

Equivalence of versionkand 2. ¥ is the space of inverse images undgesf the
hyperplanesi®”, and for anyr! c P", ¢—1(P!) is a (possibly degenerate) rational
normal curve. (The?''s that we will consider will yield non-degenerate rational
normal curves.) O

One form of the classical Brianchon theorem says that given a conic in the plane
and given two triangles circumscribing the conic, then the six points consisting of
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the vertices of the two triangles all lie on another conic. Rhe 3 case of (1.8)
provides a variant of this which was originally proven by Weddle and Zeuthen (see
[EP2] for an exposition of their work).

COROLLARY 1.9 (Weddle, Zeuthen).etQ C P?be asmooth conic. Leg, 21, z»
andpo, p1, p2 be two sets af)-apolar points. Then the six points, z1, 22, po, p1, P2
all lie on a conic.

Writing p; = [p%, p}, p3], 2 as in (1.6), and lef) have equatiort;(z")* = 0,
the conic all six points lie on is

(pgpip3) =%zt + (pgpip3)=’z® + (pgpipd)z 'z (1.10)

More generally, we have:

PROPOSITION 1.11Letz,...,z, andpy, ..., p, be two sets of points spanning
CP™ = PV, each set apolar with respect to a smooth quadyicLet Q = {P €
PS2V* | z;,p; € PVi}. Thendim Q = (g) 1

Proof. The dimension of the space of quadrics containing any-2L points
is (g) — 1, so we need to show that any quadric containing all but possibly one

of the points also contains the last point. Recall that for two quadratic forms
Q, P € S?V*, thattracg P = %, P(v;, v;) is a well-defined number, whefe; } is
anyQ-orthonormal basis df . TakeQ € S?V* and letp; andz; be corresponding
QQ-orthonormal bases. We have

If all the points but perhaps, lie on P, we see thap,, must as well. O

Relation to Castelnuovo’s Lemmial2. Castelnuovo’s lemma says thatqif 2 3
points lie on an{(g) — 1}-dimensional linear system of quadrics, then in fact

they all lie on a rational normal curve{.(g) — 1} is the dimension of the space

of quadrics containing a rational normal curve and the point of Castelnuovo’s
lemma is that not only is the space of the correct dimension, but it is actually a
space cutting out a rational normal curve. Here we only have 2 points. (1.11)
shows that the apolarity conditions imply that the 2 2 points always lie on an

{(Z) — 1}-dimensional linear system of quadrics. When one adds the additional

hypothesis on the Cremona images of the points, the system of quadrics cuts out a
rational normal curve.

Proof of equivalence ¢fL.1)and(1.8). Write

A= () (1.13)
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and let
pi=[p2....p}0 (1.14)

Without loss of generality, takg as in (1.6) and lef) have equatioix;(z?)2 = 0.

The Hadamard inverse of is given by the coordinates of thgp;) up to the
ambiguity of scales which do not effect rank, i.e. the rank of the Hadamard inverse
of A is the dimension of the span of tiép;) plus one. O

PROPOSITION 1.15 (Duality)Letzq, . . . , z, andpo, . . . , p, be two sets of points
spanningP™, each set apolar with respect to a nondegenerate quadratic {rm
If the images of the; under the Cremona transform defined by théie on aP*,
then images of the; under the Cremona transform defined by thalso lie on a
P*.

(1.15) will follow from some remarks on the Gale transform given in Section 4.

PROPOSITION 1.16There exist orthogonal rartkHadamard inverses forn. x m
complex matrices for all

m2 m
sm— |2 g
k>m 2+2

Proof LetM = C™ ® C™ and letp: PM = P™*~1 — pm*~1 phe the Cremona
transform defined by the standard coordinates. Write m — 1.

Considerthe Segre, S@ xP"), in p(PM) and leto, (SegP" x P")) denote its
kth secant varietythe closure of the union of dif*~''s spanned by-ples of points
of the Segre. LeY;, = ¢~ 10, (SedP” x P)), soY; is the space of matrices with
Hadamard inverse of rank less than or equél tdote that dint, = k(2m—k)—1.

Let Z C PM be the space of orthogonal columns, i.e.

7 = {A] A'A is diagona). (1.17)

Z is a complete intersection of tk(ég) quadricsy;a’aj, = O forall j < k. (Z is
isomorphic to the variety of complete flag¥} will intersectZ7 if

1
M&n—m—1+<m;'>—1>nﬂ—L (1.18)
ie., if
k>m— (m;1>—1 (1.19)
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2. Proof of 1.8.

LetA = (p}) be asin (1.14) and let* = ¢(P") have linear coordinateg), ..., y"
adapted to the image simplex. L&}, (¢ < j < k) denote the hyperplane defined
by the equation

Eije = pppay® + - + ppipiy™. (2.1)

Letq; = ¢(p;) SOq; = p?...p%...p}, where the hat denotes omission. Note
that

Spadqi, g;,ax} € Hijk- (2.2)
To verify (2.2), by symmetry it is sufficient to verity, € H;jy.
Eije(a:) = Siplplpl (2. ..ok ..ol
= (... p})Ziphpl
= (p)...p)Q(P;, Py)

_o, (2.3)

wherep; € V' is a unit vector corresponding tg € PV.

Now say that the; span aP2. Then all theg,’s are in the span of any;, q;, g
spanning theP?. For the moment, assume we are in the case that there exist two
points, sayyo, g1, such that no othey; lies on the line betweety andq;. (This
is always the case ové&; but overC there is the example of the nine flexes on a
plane cubic.)

We claim that the intersection d¥o1o, ..., Ho1, iS at most aP!, which will
prove (1.8) in this case.

To see the claim, say there were a linear relation anfeqng, Fo13, - - - , Foin,

e.g.

a?Eo12+ a®Eoiz+ - - - + a" ot = 0. (2.4)
The coefficient of)’ in (2.4) is

Pyl + - + a"phpip) = 0. (2.5)
This implies (since none of thg'- are zero) that

a?ph+ -+ a"pl, = 0Vj, (2.6)

i.e. that there is a linear relation among the columns of the mditnixhich is a
contradiction.
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Now say there are three points, s@yqi, ¢> that are colinear but no othey
lies on the line they span. We must show that among the hyperplanes containing
the P?, that (n — 2) of them are independent. Say not, then for each 8 < n
there must be a relation

agE013+ SR agEom = aﬂEOZﬂa (2.7)
ie.,
a3piph + - + alpipl = asplpl; Vi (2.8b)

Note that if any of theiz are zero we are done by the above argument. Similarly
there must be arelation amoBky»s, . . . , Hop, andHpizWhich implies an equation
of the form:

baplph + -+ + b, = bpiph, 2.9)

Substituting the right-hand side of (2.8.3),,(2.8.n) into the left-hand side of (2.9)
we obtain a relation involving] in each term which divides out and we are left
with a relation among the rows; and thus a contradiction.

In the event, even more points are required, the same argument as above still
works, only one must use more relations. (To our knowledge, there are no known
configurations of points that span a plane with more than three points on each
line.) O

3. Bases and the proof of (1.3)

DEFINITION 3.1. Abasel is a set of(n + 2) points inCP" in general linear
position. The definition is motivated by the fact that all sgeh- 2)-ples of points
are projectively equivalent. Note that there isar- 1)-dimensional linear system

of rational normal curves throughwhich we will denoteR - and an{ (”;1) —2}-
dimensional linear system of quadric hypersurfaces thrdyghihich we denote

Qr.
The following is a slight modification of some facts in [Con] and [DO]:

LEMMA 3.2. If we fix a basel® = {zo,...,2,,po} and a hyperplaned with
' H = 0, then there is a unique quadr@o such that the z; } are apolar with
respect ta)g and H is the polar hyperplane gfp with respect ta)o.

Proof. Without loss of generality, takeg as vertex points as in (1.6) and take
po = [1,...,1]. SayH has equatiort;a;z* = 0. All quadrics for which thez;
are apolar are of the forr@ = X;);(z%)? for some constant;. The po-polar
hyperplane of such a quadric has the equaligh;z*, so we must have; = a;,
uniquely determining)o. O
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LEMMA 3.3. If we fix a basd” = {zo,..., zn,p0}, & hyperplaned and Qo as
above, then for alR € Rr, the set oh + 1 points consisting ok N H andpg is
apolar with respect t@)o.

Proof. See [DO] Lemma 5, p. 49. O

Proof of (1.3). Fixing thez; as in (1.6) andQo = X;(z%)?, i.e. fixing a copy
of SO(n + 1), we are free to piclpp from an open set i®", and then there is a
P"~'s worth of rational normal curves through;, po}. We see that the dimen-
sion of complex orthogondh + 1) x (n + 1) matrices with rank-two Hadamard
inversesis 2 — 1. Finally, takingl)o as above over the same count is still valida

Note that a rank-one Hadamard inverse is impossibleé &ssone to one off the
hyperplanes that get blown down, and points on blown down hyperplanes corre-
spond to a column vector with at least one entry equal to zero. (In fact the number
of zeros in a column is the number of such hyperplanes the corresponding point
lies on.)

4. Some remarks on the Gale transform

Everything in this section with the exception of Version 3 of Theorem 1.8 is
classical and explained in modern language and greater generality in [DO], [EP1],
and [EP2]. For our purposes, points will be distinct and in a sufficiently general
linear position so that there is no need to be concerned with degenerate cases, and
this will enable a simplified exposition.

DEFINITION 4.1. Letl’ be a set of +s+2 points inP". A setl of r + s+ 2 points

in P? is said to beassociatedo I if when one chooses coordinates in the respective
projective spaces and writes the point§'afs the rows of afr + 1) x (r + s+ 2)
matrix A and the points of” as the rows of afis + 1) x (r + s + 2) matrix B,

that there exists & + s + 2) x (r + s + 2) diagonal matrixA with a nonzero
determinant such thatA’B = 0. If the point sets are sufficiently nice, there is a
unique associated point set. (Of course, all this defined igia (r) and PG L(s)
actions).

The setl” is called theGale transformof I'. We will explain association in
coordinates.

Let 0 < 4,5 < r,and 0< o, < s. Write I' = {z;,p.}, and without
loss of generality (assuming thg are in general linear position) write, =
[0,...,0,1,0,...,0] where the 1 is in théth position. Writep, = [p%,...,p"].
Letq; = [p}, . ..,p:] € P*and letw, = [0,...,0,1,0,...,0] € P* where the 1 is
in the ath position.

PROPOSITION 4.2In the situation abovd, is associated t&" = {w, g; }.
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Proof.
Py ... P2
1 pg ps 'S r
| (e o | o o
' Ids+1 1
1 pp J2A
1

COROLLARY 4.3. Spafp, } = P* if and only ifSpar{g;} = P*.
Proof. Row rank equals column rank. O

PROPOSITION 4.4 (Commutativity of association and Cremoha).z; be the
image simplex points determined by the standard Cremona transfopfiirothe
z;, which we denote,. Similarly, letqg’, be the simplex points determined by the
Cremona transform a#* in the¢,, which we denoté,. Then the associated point
setof™* = {2}, ¢, (pa) } IST"™ = {Pg(wa), ¢} }, i.€., T =T*.

Proof. The original set of points;, p,, yields a matrix

1 Py ... P2
1 pg P

1

el

whose association is explained above. But taking the transpose commutes with that
of taking the Hadamard inverse. O

DEFINITION 4.5. A sefl” of 2n + 2 points inP” is said to beself-associated it
is associated to itself.

PROPOSITION 4.6T" = {z;, p;} is self-associated if and only if the points sets
{z;} and{p;} are both apolar with respect to some quadfic
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Proposition 4.6 generalizes the= 2 case which was known classically. A proof
of then = 2 case is given in ((MSY], A.2.3).

Proof. Let z; be simplex points as above. We need to show the point set
represented by the matri¥d, P) is equivalent to the point set represented by the
matrix (Id,'P), where P is a matrix whose columns are the entries of pheif
and only if the point sets are apolar with respect to a quagricet ) also denote
the(r + 1) x (r + 1) matrix representing the quadric. The point Eetonsisting
of the columns of 'P, Id) is equivalent to the point set consisting of the columns
of ('PQ, Q). Thep; are Q-apolar if 'PQ = QP~1, in which case('PQ, Q) is
equivalent to(QP~1, Q) which is equivalent td P—1, 1d) which is equivalent to
(Id, P). O

In light of (4.6), we can rephrase (1.8) yet again:

THEOREM 1.8 (Version 3)LetI" = {z;,p;} C P" be a self-associated point set.
ThenSpar{¢.(p;)} # P2. Spar{¢.(p;)} = P if and only ifT" is contained in a
rational normal curve.
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