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Extreme wave statistics of surface elevation and
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This paper presents the effects of two-dimensional bathymetry on the evolution of
skewness and kurtosis of the surface elevation and velocity field in long-crested irregular
waves propagating over a circular shoal and a submerged bar with a semicircular step. For
a circular shoal, we show that the surface elevation has a local maximum of skewness and
kurtosis on top of the shoal. We find that the skewness of the horizontal velocity field has
similar behaviour to the surface elevation, but the kurtosis of the horizontal velocity field
has two local maxima at different locations on the lee side of the shoal. For a semicircular
step, which acts similar to a converging lens, we find that refraction contributes to the
statistical properties of the surface elevation and horizontal velocity field to deviate from
Gaussian statistics.
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1. Introduction

Rogue waves are unusually large waves whose wave heights or crest heights are much
larger than their surroundings. Haver (2000) suggested as criteria for a rogue wave event
within a 20 minute time series of ocean surface waves that the crest height is larger
than five quarters of the significant wave height, ηmax > 1.25Hs, or the wave height is
larger than twice the significant wave height, H > 2Hs. One physical mechanism that
can produce rogue waves is spatial focusing, see Dysthe, Krogstad & Müller (2008). As
waves propagate into shallower water, the presence of bottom topography affects the waves
through shoaling and refraction. Refraction of waves can lead to spatial focusing of wave
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energy and, thus, enhance nonlinearity that may provoke non-Gaussian statistics. Rogue
waves can occur not only in surface elevation, but also in other quantities such as the
velocity field.

The deviation from Gaussian statistics provoked by a sloping bottom was found in field
observations before it was measured in the laboratory. In her pioneering work, Bitner
(1980) reported a field experiment of waves propagating into shallower water. Similar field
experiments were later reported by Cherneva et al. (2005) and Teutsch et al. (2020). From
a field data set in the southern North Sea, Teutsch et al. (2020) found that there was one
buoy that captured more rogue waves than expected and it was located at a rather shallow
water depth. Noticeable deviation from Gaussian statistics was found.

Laboratory work not considering statistics include the experiments of waves propagating
over a submerged bar of Grue (1992) and Beji & Battjes (1993) who showed the growth
of bound harmonics triggered by bottom topography. The experiment of Whalin (1971)
considered harmonic wave propagating over a sloping bottom with parallel semicircular
contours symmetric in the centre to study the nonlinear effects from the bottom combined
with wave refraction. The experiment of Berkhoff, Booij & Radder (1982) had an elliptical
shoal on the sloping bottom and the waves propagated with an angle. All of the wave tank
experiments mentioned previously are widely used as benchmark tests for the validation
of deterministic wave models.

Large values for skewness and kurtosis in finite and shallow water depth were observed
initially in the laboratory experiment of long-crested irregular waves propagating over a
sloping bottom reported by Trulsen, Zeng & Gramstad (2012). As the waves propagate over
a slope, there is a local maximum in the skewness and kurtosis of the surface elevation
near the edge of the shallower side of the slope. This behaviour was also demonstrated
in numerical simulations by Sergeeva, Pelinovsky & Talipova (2011), Gramstad et al.
(2013), Viotti & Dias (2014), Majda, Moore & Qi (2019), Zhang et al. (2019), Zheng et al.
(2020), Li et al. (2021c) and Lawrence, Trulsen & Gramstad (2021b) and in experiments
as reported by Kashima, Hirayama & Mori (2014), Ma, Dong & Ma (2014), Bolles, Speer
& Moore (2019), Zhang et al. (2019), Wang et al. (2020), Moore et al. (2020) and Li et al.
(2021a). Curiously, in a deeper regime with milder slope, Zeng & Trulsen (2012) did not
find this behaviour. Subsequently, Lawrence et al. (2021b) confirmed the results by Zeng
& Trulsen (2012) with a more accurate simulation model.

In the work of Janssen, Herbers & Battjes (2008) and Janssen & Herbers (2009), they
included refraction effect from the bottom topography to study the wave statistics with a
frequency-angular spectrum model by Janssen, Herbers & Battjes (2006). For directional
waves, but without refraction, Ducrozet & Gouin (2017) suggested the extreme wave
activity is reduced.

A theoretical explanation was developed by Majda et al. (2019) based on statistical
mechanics of the Korteweg–de Vries (KdV) system. They recognized that the most likely
states minimise the Hamiltonian, which in deeper water is associated with minimising
the variance of the surface slope, but in shallower water is associated with an increase
in the surface displacement skewness, giving rise to the non-Gaussian statistics observed
in a number of studies. Another explanation developed by Li et al. (2021b) suggested the
anomalies arise from interaction between linear free and second-order bound waves and
new second-order free waves generated due to the abrupt depth transition.

In addition to the surface elevation, other quantities such as fluid kinematics and wave
forces are of interest. The deviation from Gaussian statistics of fluid velocity can be more
pronounced in shallower water as pointed out in Song & Wu (2000). Numerical studies
by Sergeeva & Slunyaev (2013) suggested that rogue waves usually have large magnitudes
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Figure 1. (a) Smooth functions χd for damping zones (solid line) and χnl for spatial nonlinear adjustment
(dashed line). (b) Computational domain with damping zones and influx line (red) for wave generation.

of velocities, but large velocities do not necessarily correspond to rogue waves. Alberello
et al. (2016) showed that the horizontal velocity is negatively skewed due to second-order
effects. Through wave tank experiments of long-crested irregular waves over a shoal,
Trulsen et al. (2020) found the kurtosis of the horizontal velocity can be different from the
kurtosis of the surface elevation. For sufficiently shallow shoal, the kurtosis of the surface
elevation has a local maximum near the edge of the slope on the incoming side, meanwhile
the kurtosis of horizontal velocity has a local maximum on the downward slope on the lee
side of the shoal. In the numerical simulations reported by Zhang & Benoit (2021) and
Lawrence et al. (2021b), it was observed that strongly non-Gaussian statistics for both
surface elevation and horizontal velocity fields are triggered by abrupt depth changes.
Recent studies by Klahn, Madsen & Fuhrman (2021a,b) consider statistical properties of
surface elevation, velocity field, acceleration and forces on a vertical column in deep water
that show the deviation from Gaussian statistics as the wave steepness increases.

In this paper, we focus on two-dimensional bathymetry effects for the statistical
properties of surface elevation and horizontal velocity field in long-crested irregular
waves propagating over a circular shoal and submerged bar with a semicircular step.
The organisation of the rest of the paper is as follows. In § 2, the numerical model
for 3D nonlinear wave propagation for non-uniform bathymetry including the wave
kinematics calculation is described. In § 3, the statistical moments and their convergence
are presented. In § 4, we present the results of numerical simulation for evolution of the
statistical moments through different bathymetries. Finally, a discussion and summary
with conclusions are found in §§ 5 and 6, respectively.

2. Numerical model

2.1. High-order spectral method
We consider a 3D rectangular fluid domain, periodic in the horizontal directions and
equipped with a Cartesian coordinate system, as shown in figure 1. Here z = η(x, y, t)
denotes the free surface elevation and z = 0 is the still water level. We use z = −h0 +
β(x, y) to denote the bottom topography, where h0 is the mean water depth and β(x, y) is
the bottom variation.

A potential theory is used assuming inviscid fluid and irrotational flow. The fluid
velocity is expressed by the velocity potential φ, V = ∇φ. Assuming the fluid is
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incompressible, the continuity equation becomes the Laplace equation

∇ · ∇φ = 0. (2.1)

We consider periodic boundary conditions in the horizontal plane. The bottom boundary
condition is

∇φ · ∇β − ∂φ

∂z
= 0 at z = −h0 + β(x, y). (2.2)

As pointed out in Zakharov (1968), the kinematic and dynamic nonlinear free surface
boundary conditions can be written in terms of surface elevation η and surface potential
φs = φ(x, y, z = η, t)

∂η

∂t
= W

(
1 + |∇η|2

)
− ∇φs · ∇η

∂φs

∂t
= −gη − 1

2
|∇φs|2 + 1

2
W2

(
1 + |∇η|2

)
,

⎫⎪⎪⎬
⎪⎪⎭

(2.3)

where g is the acceleration of gravity and W = ∂φ/∂z|z=η is the vertical velocity at the
surface. The surface vertical velocity W needs to be evaluated to solve the system. For flat
bottom, an efficient pseudo-spectral method to calculate the surface vertical velocity W in
terms of η and φs was initially introduced by Dommermuth & Yue (1987) and West et al.
(1987), and it has been known as the high-order spectral method (HOSM). Extension to
variable depth was discussed in Gouin, Ducrozet & Ferrant (2016, 2017). A brief summary
of the HOSM for variable depth by Gouin et al. (2017) is presented in the following.

The velocity potential φ is expressed as a truncated power series φ = ∑M
m=1 φ(m) where

m is the nonlinear order of φ(m) and M is the nonlinear order of the method which can be
freely chosen. The velocity potential evaluated at the free surface φs is then expanded in a
Taylor series around the still water level z = 0.

For an uneven bottom, an additional velocity potential φB is expressed as a truncated
power series φB = ∑M

m=1 φ
(m)
B and φ

(m)
B = ∑MB

l=1 φ
(m,l)
B where MB is the order for the

bottom boundary condition which can be different from M and can be freely chosen. Thus,
the velocity potential φ(m) is expressed as the sum of two components

φ(m) = φ
(m)
0 + φ

(m)
B

φ
(m)
0 (x, y, z, t) =

∑
p,q

A(m)
pq (t)

cosh(kpq(z + h0))

cosh(kpqh0)
exp(i(kxpx + kyqy))

φ
(m)
B (x, y, z, t) =

∑
p,q

B(m)
pq (t)

sinh(kpqz)
cosh(kpqh0)

exp(i(kxpx + kyqy))

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

with kxp = ( p − Nx/2 + 1)(2π/Lx) for p = 0, . . . , Nx − 1, kyq = (q − Ny/2 + 1)(2π/Ly)

for q = 0, . . . , Ny − 1 and kpq =
√

k2
xp

+ k2
yq

. Here Nx and Ny are the number of wave
components in the x and y directions, respectively. We choose Nx and Ny to be even
numbers. We use A(m)

pq (t) and B(m)
pq (t) = ∑MB

l=1 B(m,l)
pq (t) to denote the modal amplitudes

of φ
(m)
0 and φ

(m)
B , respectively. With the velocity potential in (2.4) and Taylor expansion of

the bottom boundary condition in (2.2), we can calculate each B(m,l)
pq (t).

For evaluation of the vertical velocity at the surface, W, a similar expansion series
of surface potential is applied for the vertical velocity at the surface W = ∑M

m=1 W(m).
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Then, Taylor expansion around the still water level z = 0 leads to a triangular system
for W(m) to be solved iteratively. Once the vertical velocity at the surface W(m) has been
computed, then the free surface elevation η and surface potential φs can be marched in
time through (2.3).

This method is based on a Taylor expansion of the bottom boundary condition with
respect to the mean water depth and solved numerically by pseudo-spectral method. The
bottom and its gradient need to be continuous to avoid any instabilities. For larger bottom
variation β/h0, the error on the vertical velocity at the surface, W, becomes larger and
the convergence is slower but still exists by increasing number of wave components and
orders of the method M and MB. A detailed convergence study in one horizontal dimension
with respect to the number of wave component Nx and orders M and MB is presented for
variable depth in Gouin et al. (2016).

2.2. Wave generation and damping zones
For a flat bottom, the simulation can be initiated by specifying the surface elevation η and
the surface potential φs at initial time t = 0. The prescribed initial condition has to be
periodic because of the pseudo-spectral method. For an uneven bottom, it is convenient
to start simulations from rest (η = φs = 0) and use a wave generator inside the domain.
Embedded wave generation is implemented with spatial nonlinear adjustment as described
in Lie, Adytia & van Groesen (2014). To ensure the periodicity, a couple of damping zones
of length λd are also applied.

The dynamic equations with embedded wave generation and damping zones become

∂η

∂t
= RHSlin + RHSnonlinχnl − cdηχd + Sx0

∂φs

∂t
= RHSlin + RHSnonlinχnl − cdφsχd

⎫⎪⎪⎬
⎪⎪⎭

(2.5)

where RHSlin and RHSnonlin are the linear and nonlinear parts of right-hand sides of the
dynamic equations, cd is the damping coefficient, S is the source term for embedded wave
generation and χnl and χd are smooth functions. Illustration of the chosen functions for
nonlinear adjustment and damping zones is shown in figure 1. In the damping zone, the
solutions decay exponentially as e−cdTd , where Td is the travel time of the wave in the
damping zone. The value of the damping coefficient cd and the length of the damping
zone λd are coupled. As an example, for exponential decay of 10−3 ≈ e−7, the length of
the damping zone should be at least λd = 7Vg/cd, where Vg is the group velocity.

2.3. Wave kinematics calculation
The HOSM calculates the surface vertical velocity W in terms of surface elevation η and
surface potential φs. For wave kinematics calculation, it is convenient to use (2.4) directly
after the modal amplitudes Apq and Bpq are known. We refer this method as the direct
method in this paper. We consider a solitary wave and Stokes waves on a flat bottom to
check the validity of the direct method.

Solitary waves with amplitude over depth A/h = 0.4 and A/h = 0.6 are chosen. We
took the surface elevation and the surface potential for the solitary waves from the exact
solution of the Euler equations by Dutykh & Clamond (2014) as input to calculate the
interior horizontal velocity with the direct method. Figure 2 shows the comparison of
the horizontal velocity profile of solitary wave at the crest by the direct method and the
reference solution from Dutykh & Clamond (2014). For a rather extreme solitary wave
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Figure 2. Horizontal velocity profiles of solitary waves with (a) A/h = 0.4 and (b) A/h = 0.6.
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Figure 3. Horizontal velocity profiles of Stokes waves with (a) ka = 0.1 and (b) ka = 0.3.

A/h = 0.6, the direct method gives inaccurate horizontal velocity close to the surface. For
a milder case A/h = 0.4, the accuracy of the direct method can be improved by increasing
the nonlinear order.

We consider a Stokes waves in deep water (kh = 10) with ka = 0.1 and ka = 0.3,
where a is the first-order amplitude, k is the wavenumber and h is the water depth. We
use the fifth-order solution by Fenton (1985) to obtain the surface elevation and surface
potential. The surface potential is calculated from the fifth-order velocity potential at
z = η, retaining fifth-order terms. Figure 3 shows the comparison of horizontal velocity
under the wave crest by the direct method with Fenton’s solution. For Stokes wave with
steepness ka = 0.1, the direct method gives a good agreement compared with Fenton’s
solution. Meanwhile, the horizontal velocity by the direct method starts to deviate from
Fenton’s solution close to the surface when the steepness is increased to ka = 0.3.

From both test cases, we see that the direct method is inaccurate to calculate the
horizontal velocity near the surface for strongly nonlinear cases. However, the direct
method is still valid down to the bottom and for low steepness parameter A/h in shallow
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water or ka in deep water. This problem has been pointed out in Bateman, Swan & Taylor
(2003) where the H and H2 operators were introduced. For flat bottom, the direct method
is equivalent to the H operator method. The H2 operator method was proposed in Bateman
et al. (2003) as a remedy. For varying bottom, the more advanced variational Boussinesq
model was proposed to calculate the wave kinematics in Lawrence, Gramstad & Trulsen
(2021a).

In the present paper, we focus on the interior horizontal fluid velocity where it is not
close to the water surface or the bottom. Therefore, we still use the direct method because
it is efficient and sufficiently accurate to study the evolution of the statistical properties of
velocity field.

3. Statistical moments

We focus on the third- and fourth-order moments of the surface elevation and horizontal
velocity, the skewness and the kurtosis, respectively. The skewness and the kurtosis of the
surface elevation are defined as

skewness = E
[
(η − E[η])3]

σ(η)3 , kurtosis = E
[
(η − E[η])4]

σ(η)4 , (3.1a,b)

where E[·] denotes the expected value and σ(·) is the standard deviation. We have similar
expressions for the horizontal velocity.

The skewness is a measure of the asymmetry of the distribution, whereas the kurtosis
measures the dominance of the tails of the distribution. For a Gaussian distribution, the
skewness is zero and the kurtosis is three. In the present study, we study the nonlinear
effects by two-dimensional bathymetry that trigger non-Gaussian statistics indicated by
the skewness and the kurtosis.

We use a Monte Carlo approach to estimate the statistical moments. We have performed
numerical simulations multiple times with different incoming wave fields, i.e. wave
fields generated from the same spectrum but with different random phases. From each
simulation, we collect time series of surface elevation and horizontal velocity of length
100Tp in the domain of interest. The statistical moments are calculated by using time
averaging first on the time series of length 100Tp then ensemble averaging from all
different realisations.

A convergence study of the ensemble-averaged statistical moments with respect to the
number of random runs was performed. As an example, we run 90 different realisations
of case 3 in irregular waves over a circular shoal in § 4.1. Figure 4 shows the convergence
of skewness and kurtosis with respect to the number of runs at the centre of the circular
shoal. From these 90 realisations, we choose n = 10, 20, 30 and 40 random realisations
and calculate the ensemble-averaged kurtosis of surface elevation. This process is repeated
100 times and we show the mean value, μ, and the standard deviation, σ , of averaged
kurtosis of surface elevation in figure 5. We decided that 40 realisations is sufficient to
have reliable estimates of the skewness and kurtosis.

4. Results

4.1. Irregular waves over a circular shoal
Long-crested irregular waves propagating over a circular shoal in computational domain
with length 35 m and width 18 m is simulated by HOSM with truncation orders M = 2 and
MB = 7. The length of the damping zones are λd = 5 m at the left and right boundaries.

939 A41-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.227


C. Lawrence, K. Trulsen and O. Gramstad

(a) (b)

(c) (d)

0.30

0.35

0.40

0.45

0.50

2.8

3.0

3.2

3.4

3.6

K
u
rt

o
si

s

Number of runs Number of runs

0.10

0.15

0.20

0.25

0.30

S
k

ew
n

es
s

S
k

ew
n

es
s

2.6

2.7

2.8

2.9

3.0

3.1

3.2

K
u
rt

o
si

s

Horizontal velocity Horizontal velocity

Surface elevation Surface elevation

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Figure 4. Convergence of the ensemble-averaged skewness and kurtosis of surface elevation and horizontal
velocity at the centre of the circular shoal with respect to the number of runs.
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Figure 5. Averaged kurtosis of surface elevation from n = 10, 20, 30 and 40 random different runs. Here μ is
the mean value and σ is the standard deviation from 100 repetitions.

The damping coefficient was set to cd = 1 s−1. The wave generator is located inside the
domain at x = 8 m. The number of wave components in x and y directions are Nx = 512
and Ny = 32, respectively. The numerical simulation used similar bathymetry as the
experiments of Chawla & Kirby (1996), but with a different radius. The horizontal velocity
is calculated at z = −0.04 m. A sketch of the computational domain is given in figure 6.
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Figure 6. Bottom topography of circular shoal with radius 2.5 m: (a) bottom contour; (b) centreline depth.

Case Rshoal (m) Tp (s) Hs (cm) kpac ac/h kph0 kphtop

1 5 1 1 0.015 0.008 1.89 0.6
2 3.75 1 1 0.015 0.008 1.89 0.6
3 2.5 1 1 0.015 0.008 1.89 0.6
4 2.5 1 0.5 0.007 0.004 1.89 0.6
5 2.5 1 1.5 0.022 0.012 1.89 0.6

Table 1. Key parameters for irregular waves over a circular shoal simulation.

The circular shoal has a radius of Rshoal and the centre is located at x = 20 and y = 9 m.
The water depth on the shoal is given by

h = h0 + Rsphere − 0.37 −
√

R2
sphere − (x − 20)2 − ( y − 9)2, (4.1)

where Rsphere = (R2
shoal + 0.372)/(2 × 0.37), h0 = 0.45 m is the constant water depth and

the water depth on top of the shoal is htop = 0.08 m. All numbers in (4.1) and Rsphere have
unit of length meters (m).

The incoming wave field has a JONSWAP spectrum with peak period Tp = 1 s,
significant wave height Hs and peak enhancement factor γ = 3.3. The non-dimensional
depth kph on the flat bottom part is 1.89 and on top of the shoal it is 0.6, where kp is
the corresponding peak wavenumber calculated from the peak period based on the linear
dispersion relation. The steepness parameters are kpac = 0.0149 and ac/h0 = 0.0079,
where ac = √

2σ is the characteristic amplitude and σ = Hs/4 is the standard deviation of
the surface elevation. The characteristic wavelength λp = 2π/kp is 1.49 m. The parameters
are summarised in table 1. The evolution of the power spectral density of the surface
elevation and the horizontal velocity is included in the Appendix for Case 3.

Figures 7 and 8 show the statistics of the surface elevation and the horizontal velocity
for irregular waves propagating over a circular shoal with different radii. The skewness
has a local maximum on top of the shoal but not in the centre of the shoal, and has a
local minimum on the lee side of the shoal. The skewness of the surface elevation and the
horizontal velocity have the same trend. However, the surface elevation and the horizontal
velocity have completely different behaviours for the kurtosis. The kurtosis of the surface
elevation has a local maximum on top of the shoal, whereas the horizontal velocity has
two local maxima of kurtosis at different locations on the lee side of the shoal. It is also
noted that the kurtosis of surface elevation has other local maxima on the lee side of the
shoal.
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Figure 7. (a) Kurtosis of surface elevation and (b) skewness of surface elevation for irregular waves over a
circular shoal with Rshoal = 2.5, 3.75 and 5 m (from left to right). The red circle indicates the edge of the shoal
at constant depth.
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Figure 8. (a) Kurtosis of horizontal velocity and (b) skewness of horizontal velocity for irregular waves over a
circular shoal with Rshoal = 2.5, 3.75 and 5 m (from left to right). The red circle indicates the edge of the shoal
at constant depth.
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Figure 9. (a) Kurtosis of surface elevation and (b) skewness of surface elevation for irregular waves over a
circular shoal with Hs = 0.5, 1 and 1.5 cm (from left to right). The red circle indicates the edge of the shoal at
constant depth.

Figures 9 and 10 show the statistics of the surface elevation and the horizontal velocity
for irregular waves propagating over a circular shoal with same radius Rshoal = 2.5 m, but
with different significant wave height Hs. The skewness of surface elevation and horizontal
velocity still have the same trend with a local maximum on top of the shoal and a local
minimum on the lee side of the shoal. For the highest significant wave height Hs = 1.5 cm,
it is observed that the kurtosis of surface elevation has local maxima on top of the shoal
and on the lee side of the shoal. Meanwhile, the kurtosis of horizontal velocity only has
local maxima on the lee side of the shoal.

4.2. Irregular waves over a semicircular step
Long-crested irregular waves propagating over a submerged bar with a semicircular step
in a periodic computational domain with length 40 m and width 18 m is simulated by the
HOSM with same setup as in § 4.1.

We consider two types of bottom topography in this subsection. First, a submerged bar
similar to the experiment by Trulsen et al. (2020), but with a semicircular step on the lee
side, see figure 11. Second, a submerged bar with a semicircular step on the front and
longer distance in the shallower part, see figure 12. The radius of the semicircle is 3 m.
The water depth h0 on the deeper part is 0.53 m and the water depth on the shallower part
is 0.11 m. The horizontal velocity is calculated at z = −0.055 m.

For both cases, the incoming wave field has a JONSWAP spectrum with peak period
Tp = 1.1 s, significant wave height Hs = 2.5 cm and peak enhancement factor γ = 3.3
similar to run 3 in Trulsen et al. (2020). The non-dimensional depth kph on the deeper part
is 1.85 and on the shallower part is 0.64. The steepness parameters are kpac = 0.0123 and
ac/h0 = 0.0067. The characteristic wavelength λp = 2π/kp is 1.8 m.
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Figure 10. (a) Kurtosis of horizontal velocity and (b) skewness of horizontal velocity for irregular waves over
a circular shoal with Hs = 0.5, 1 and 1.5 cm (from left to right). The red circle indicates the edge of the shoal
at constant depth.
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Figure 11. Bottom topography of submerged bar with semicircular step behind: (a) bottom contours; (b)
centreline depth.
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Figure 12. Bottom topography of submerged bar with semicircular step in front: (a) bottom contours; (b)
centreline depth.
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Figure 13. (a), (c) Skewness and (b), (d) kurtosis of (a), (b) surface elevation and (c), (d) horizontal velocity
of irregular waves propagating over a submerged bar with a semicircular step behind. The red curve indicates
the edge of the semicircular step on the shallower depth.

Figures 13 and 14 show the skewness and kurtosis of the surface elevation and the
horizontal velocity for the submerged bar with a semicircular step on the lee side and
on the front, respectively.

In figure 13, the skewness of the surface elevation and the horizontal velocity have
the same behaviour. The skewness has local maximum on the shallower part of the bar
and has a local minimum on the downslope. The kurtosis of surface elevation also has
local maximum on the shallower part of the bar. Meanwhile, the kurtosis of horizontal
velocity has different behaviour. There are increases in kurtosis of horizontal velocity on
the downslope of semicircular step on the lee side.

In figure 14, the skewness of the surface elevation and the horizontal velocity has the
same trend. The skewness has a local maximum after the edge of the upslope on the
shallower part and also after some distance on the shallower part along the centreline.
The kurtosis of the surface elevation has a local maximum after the edge of the upslope
on the shallower part and also after some distance on the shallower part. On the other
hand, the kurtosis of horizontal velocity has local maxima at different locations than the
surface elevation. We notice there is a pattern for the kurtosis after some distance from the
semicircular step on the front.

5. Discussion

Our numerical simulations confirm that non-uniform bathymetry can produce
non-Gaussian statistics for both surface elevation and horizontal velocity. The statistical
properties of the surface elevation and horizontal velocity can be different when the waves
propagate over a varying bathymetry.
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Figure 14. (a), (c) Skewness and (b), (d) kurtosis of (a), (b) surface elevation and (c), (d) horizontal velocity
of irregular waves propagating over a submerged bar with a semicircular step in front. The red curve indicates
the edge of the semicircular step on the shallower depth.

For irregular waves propagating over a circular shoal, the skewness of the surface
elevation and horizontal velocity have local maxima on top of the shoal followed by a local
minimum on the lee side of the shoal. The kurtosis of the surface elevation has a local
maximum on top the shoal. This result is similar to the one-dimensional case reported
experimentally in Trulsen et al. (2020) and numerically in Lawrence et al. (2021b).
Unexpectedly, the kurtosis of surface elevation can have other local maxima on the lee
side of the shoal and the kurtosis of the horizontal velocity also has two local maxima on
the lee side of the shoal. It seems the two-dimensional effects from bottom topography
such as refraction and diffraction influence the kurtosis of the surface elevation and the
horizontal velocity.

For our cases with different bottom topography, a submerged bar with a semicircular
step on the lee side acts similar to a focusing lens where the waves propagate from
shallower to deeper water. The kurtosis of horizontal velocity has a significant increase
not in the centre but on the left and right side from the direction of incoming waves
of semicircular step as shown in figure 13. On the other hand, a submerged bar with
a semicircular step on the front also acts similar to a focusing lens but from deeper to
shallower water. After some distance from the edge of the semicircular step, in the area
of the focal zone, there is a huge increase in the skewness of the surface elevation and the
horizontal velocity. The kurtosis of the surface elevation has a local maximum around the
centreline, whereas the kurtosis of the horizontal velocity has positive excess kurtosis not
close to the centreline as shown in figure 14.

Our results suggest that the two-dimensional bathymetry affects the skewness and the
kurtosis for both surface elevation and horizontal velocity.
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Figure 15. (a), (c), (e) Power spectral density of the surface elevation and (b), (d), ( f ) horizontal velocity of
case 3 with irregular waves propagating over a shoal at x = 15 m (before the shoal, a and b), x = 20 m (centre
of the shoal, c and d) and x = 25 m (after the shoal, e and f ).

6. Summary and conclusion

We have performed a numerical study of the statistical properties of the surface elevation
and the velocity field of long-crested irregular waves propagating over a two-dimensional
bathymetry with a Monte Carlo approach. The statistical properties were studied in terms
of evolution of the skewness and the kurtosis. The numerical simulations were performed
using the HOSM for varying bottom from Gouin et al. (2017). We considered two types of
bathymetry: a circular shoal and submerged bar with a semicircular step.
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For our circular shoal, the depth transition is from kph = 1.89 to kph = 0.6. It has been
found that the skewness of surface elevation and horizontal velocity have the same trend:
a local maximum on top of the shoal and a local minimum on the lee side of the shoal.
However, the kurtosis of surface elevation can have a local maximum on top of the shoal
and local maxima on the lee side of the shoal. Meanwhile, the kurtosis of horizontal
velocity only has two local maxima on the lee side of the shoal.

For our submerged bar with a semicircular step, the depth transition is from kph = 1.85
to kph = 0.64. Without the semicircular step, the submerged bar itself is similar to the
experiment by Trulsen et al. (2020). We first considered submerged bar with a semicircular
step on the lee side. In the area of the semicircular step on the lee side, the kurtosis of
horizontal velocity increases at two locations similar to the previous case of a circular
shoal. Second, we considered a submerged bar with a semicircular step on the front and
longer distance in the shallower part. We have found that the skewness of the surface
elevation and horizontal velocity have a significant increase after the edge of the upslope
and also after some distance on the shallower part along the centreline. The kurtosis of
the surface elevation has local maxima just after the edge of the upslope and after some
distance on the shallower part. Meanwhile, the kurtosis of the horizontal velocity has local
maxima not close to the centreline.

We conclude that two-dimensional bathymetry can trigger a significant increase in
both skewness and kurtosis of surface elevation and horizontal velocity. The skewness
of surface elevation and horizontal velocity have similar behaviour but the kurtosis of
surface elevation and horizontal velocity can have completely different behaviours.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Christopher Lawrence https://orcid.org/0000-0002-5799-7089;
Karsten Trulsen https://orcid.org/0000-0002-3070-3829;
Odin Gramstad https://orcid.org/0000-0001-7531-3595.

Appendix

Figure 15 shows the power spectral density of the surface elevation and the horizontal
velocity for case 3 with irregular waves propagating over a circular shoal. The power
spectral density is calculated from an ensemble average of 40 different realisations.
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