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Abstract. We introduce the principal matrix solution Z(t, s) of the linear Volterra-
type vector integro-dynamic equation

x�(t) = A(t)x(t) +
∫ t

s
B(t, u)x(u)�u

and prove that it is the unique matrix solution of

Z�t (t, s) = A(t)Z(t, s) +
∫ t

s
B(t, u)Z(u, s)�u, Z(s, s) = I.

We also show that the solution of

x�(t) = A(t)x(t) +
∫ t

τ

B(t, u)x(u)�u + f (t), x(τ ) = x0

is unique and given by the variation of parameters formula

x(t) = Z(t, τ )x0 +
∫ t

τ

Z(t, σ (s))f (s)�s.

2010 Mathematics Subject Classification. 34N05, 45D05, 39A13, 45J05.

1. Introduction and preliminaries. The resolvent equation and variation of
parameters formula play a key role in the stability analysis of Volterra-type integral (or
summation) equations (see [6, 9, 10, 15], and references therein). The investigation of
Volterra-type integral equations with the aid of resolvent was first begun by Grossmann
and Miller [13] in their outstanding study. Grossmann and Miller [13] defined the
resolvent R(t, s) by

R(t, s) = I +
∫ t

s
R(t, u)�(u, s)du 0 ≤ s ≤ t,

where I is the identity matrix and

�(t, s) = A(t) +
∫ t

s
B(t, v)dv,
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and showed that Volterra vector integro-differential equation

x′(t) = A(t)x(t) +
∫ t

0
B(t, u)x(u)du + f (t) (1)

has the unique continuous solution

x(t) = R(t, 0)x0 +
∫ t

0
R(t, s)f (s)ds

satisfying the initial condition x(0) = 0. They also proved that R(t, s) is continuous for
0 ≤ s ≤ t and satisfies the resolvent equation

∂

∂s
R(t, s) = −R(t, s)A(s) −

∫ t

s
R(t, u)B(u, s)du, R(t, t) = I . (2)

In a discrete case, Elaydi [9] obtained the resolvent equation as follows:

R(n + 1, m) = Ã(n)R(n, m) +
n∑

k=m

B(n, k)R(k, m), n ≥ m, (3)

with R(m, m) = I . Using (3), Elaydi derived the variation of parameters formula

y(n, 0, y0) = R(n, 0)y0 +
n−1∑
k=0

R(n, k + 1)g(k)

for the unique solution y(n, 0, y0) of the equation

y(n + 1) = Ã(n)y(n) +
n∑

k=0

B(n, k)y(k) + g(k) (4)

satisfying y(0) = y0 (see [9, Proposition 1]). Recently, Eloe et al. [11] arrived at the
resolvent equation

�mR(n, m) = −R(n, m + 1)(Ã(m) − I) −
n−1∑
k=m

R(n, k + 1)B(k, m), (5)

for m ≤ n, with R(m, m) = I and R(n, m) = 0 if n < m, where �mR(n, m) = R(n, m +
1) − R(n, m). It is worth mentioning that equation (5) is the discrete analogue of
equation (2) with A(m) = Ã(m) − I .

Afterwards, Becker [2] found a more fundamental way of defining resolvent and
variation of parameters formula for the unique solution of (1) satisfying x(0) = x0. He
introduced the principal matrix solution Z(t, s) of the homogeneous Volterra equation

x′(t) = A(t)x(t) +
∫ t

0
B(t, u)x(u)du

to derive the variation of parameters formula

x(t) = Z(t, 0)x0 +
∫ t

0
Z(t, s)f (s)ds
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and showed that Z(t, s) satisfies

∂

∂t
Z(t, s) = A(t)Z(t, s) +

∫ t

s
B(t, u)Z(u, s)du, Z(s, s) = I ,

which is the principal matrix version of the resolvent equation (2). Becker also proved
that Miller’s resolvent R(t, s) is the transpose of the principal matrix solution of the
adjoint equation

y′(s) = −AT (s)y(s) −
∫ t

s
BT (u, s)y(u)du

and R(t, s) and Z(t, s) are identical despite the difference between their definitions.
Note that Becker’s remarkable resolvent Z(t, s) took a prominent attention in recent
years (see, for instance, [6–10, 18, 20]).

During last decades, theory of time scales became a useful device for the unification
of differential and difference equations under dynamic equations on time scales (see
[4, 5] and references therein). In order to indicate a time scale (a closed non-empty
subset of reals) we use the notation �. We classify the points of a time scale � by using
the forward jump and backward jump operators defined by

σ (t) := inf {s ∈ � : s > t}

and

ρ(t) := sup {s ∈ � : s < t} ,

respectively. A point t in � is said to be right-scattered (right-dense) if σ (t) > t (σ (t) = t).
We say t ∈ � is left-scattered (left-dense) if ρ(t) < t (ρ(t) = t). If ρ(t) < t < σ (t), then
t ∈ � is called isolated point. The set �κ is derived from the time scale � as follows:
If � has a left-scattered maximum m, then �κ = �−{m}. Otherwise �κ = �. The delta
derivative of a function f : � → �, defined at a point t ∈ �κ by

f �(t) := lim
s→t

s�=σ (t)

f (σ (t)) − f (s)
σ (t) − s

,

was first introduced by Hilger [14] to unify discrete and continuous analyses. It follows
from definition of the operator σ that

σ (t) =
⎧⎨
⎩

t if � = �,

t + 1 if � = �,

qt if � =q�,

where q� = {qk : k ∈ �} ∪ {0} and q > 1. Hence, the delta derivative f �(t) turns into
ordinary derivative f ′(t) if � = � and it becomes the forward difference operator
�f (t) := f (t + 1) − f (t) whenever � = �. For the time scale � =q� we have f �(t) =
Dqf (t), where

Dqf (t) := f (qt) − f (t)
(q − 1)t

. (6)
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Thus, one can consider the differential, difference and q-difference equations as special
cases of the dynamic equations on time scales. It is evident from the recent literature
(see [1, 3, 4, 5, 16, 17, 19]) that dynamic equations on time scales are a useful tool to
explain the differences and similarities between difference and differential equations.
It turns out that the theory of time scales provide a deep understanding of physical
application and leads to the invention of some results that are not known even for
the special cases of time scales. Furthermore, since there are many time scales that are
different than �, � and q�, investigation of dynamic equations on time scales provides
a more general and comprehensive theory.

Hereafter, we denote by [a, b]� the closed interval [a, b] ∩ � of the time scale �. The
intervals [a, b)�, (a, b]� and (a, b)� are defined similarly. A function f : � → � is called
rd-continuous if it is continuous at right dense points and its left-sided limits exist
(finite) at left dense points. The set of rd-continuous functions f : � → � is denoted by
Crd = Crd(�). Note that continuity implies rd-continuity. Every rd-continuous function
f : � → � has an anti-derivative

F(t) =
∫ t

t0

f (t)�t.

That is, F�(t) = f (t) for all t ∈ �κ (see [5, Theorem 1.74]). For a comprehensive review
on �-derivative and �-Riemann integral we direct the reader to [4].

Let a, b ∈ � with a < b and f ∈ Crd . We know from [5, Theorem 1.79] that

∫ b

a
f (t)�t =

∫ b

a
f (t)dt if � = �,

∫ b

a
f (t)�t =

b−1∑
t=a

f (t) if � = �

and

∫ b

a
f (t)�t = (q − 1)

∑
t∈[a,b)∩q�

t f (t) if � = q�.

Hence, integral, summation and q-integral equations can be regarded as special cases
of integral equations on time scales.

The study in [1] is the first of its kind in which the resolvent concept has been
investigated on time scales. In [1], the authors showed that a solution of the linear
system of integral equations

x(t) = f (t) +
∫ t

t0

a(t, s)x(s)�s, t0 ∈ �κ (7)

can be given by the variation of parameters formula

x(t) = f (t) −
∫ t

t0

r(t, u)f (u)�u (8)
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where the resolvent r(t, s) is the unique solution of

r(t, s) = −a(t, s) +
∫ t

σ (s)
r(t, u)a(u, s)�u. (9)

If a is scalar-valued, so is r. If a is n × n matrix, so is r. However, there is no variation
of parameters formula for the solutions of integro-dynamic equation

x�(t) = A(t)x(t) +
∫ t

τ

B(t, u)x(u)�u + f (t), t ∈ [t0,∞)�κ , (10)

where τ ∈ [t0,∞)�κ is fixed, A is an n × n matrix function that is continuous on [t0,∞)�κ

and B is an n × n matrix function that is continuous on

	 := {(t, u) ∈ �κ×�κ : t0 ≤ u ≤ t < ∞}.

This work is the continuation of the paper [1] and aims to achieve the following three
main tasks:
� To show the existence and uniqueness of the continuous solution of (10) satisfying

x(τ ) = x0.
� To introduce the principal matrix solution Z(t, s) of the integro-dynamic equation

x�(t) = A(t)x(t) +
∫ t

s
B(t, u)x(u)�u.

� To derive the variation of parameters formula

x(t) = Z(t, τ )x0 +
∫ t

τ

Z(t, σ (s))f (s)�s

for the unique solution of x(t) of equation (10) satisfying x(τ ) = x0.
Hence, the theory developed in [2] is extended to general time scales.
Notice that for the particular cases � = �, � = � and � = q�, the Volterra integro-

dynamic equation (10) turns into Volterra vector integro-differential equation (1),
Volterra-type integro-difference equation (4) and Volterra-type integro q-difference
equation

Dqx(t) = A(t)x(t) +
∑

s∈[τ,t)∩q�

B̃(t, u)x(u) + f (t),

respectively, where B̃(t, u) := u(q − 1)B(t, u) and Dq is the q-difference operator defined
by (6). Since there are more time scales other than � = �, � = � and � = q�,
investigation of resolvent and principal matrix solution on time scales provides a more
general theory. Moreover, some results obtained in this paper are new for difference
and q-difference equations.

For brevity we assume familiarity with time scale calculus. For an excellent review
on time scales we direct the reader to [4, 5]. We end this section by listing some results,
definitions and notations from the existing literature for further use.

Throughout the paper we denote by μ the graininess (step-size) function defined
by μ(t) := σ (t) − t.
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In order to construct the Banach space C[a, b]� used in further sections we need
to define the exponential function eα(t, s), which is the unique solution of the initial
value problem y� = α(t)y, y(s) = 1 provided α is regressive (see [4, Theorem 2.35]).

DEFINITION 1. A function α : � → � is said to be regressive provided 1 +
μ(t)α(t) �= 0 for all t ∈ �κ . The set of all regressive rd-continuous functions α : � → �

is denoted byR, while the setR+ is given byR+ = {α ∈ R : 1 + μ(t)α(t) > 0 for all t ∈
�}.

Let α ∈ R and μ(t) > 0 for all t ∈ �. The exponential function on � is defined by

eα(t, s) := exp
(∫ t

s

1
μ(z)

Log(1 + μ(z)α(z)) �z
)

.

It is well known that if p ∈ R+, then ep(t, s) > 0 for all t ∈ �. Other properties of the
exponential function are given in the following lemma.

LEMMA 2. [4, Theorem 2.36]. Let p, q ∈ R. Then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ (t), s) = (1 + μ(t)p(t))ep(t, s);
(iii) 1

ep(t,s) = e
p(t, s) where, 
p(t) = − p(t)
1+μ(t)p(t) ;

(iv) ep(t, s) = 1
ep(s,t) = e
p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);
(vi) ( 1

ep(·,s) )
� = − p(t)

eσ
p (·,s) .

LEMMA 3. [3, Remarks 1–2].
(i) For a non-negative ϕ with −ϕ ∈ R+, we have the inequalities

1 −
∫ t

s
ϕ(u)�u ≤ e−ϕ(t, s) ≤ exp

{
−

∫ t

s
ϕ(u)�u

}
for all t ≥ s.

(ii) If ϕ is rd-continuous and non-negative, then

1 +
∫ t

s
ϕ(u)�u ≤ eϕ(t, s) ≤ exp

{∫ t

s
ϕ(u)�u

}
for all t ≥ s.

THEOREM 4. [4, Theorem 1.117]. Let a ∈ �κ , b ∈ � and assume that k : � × �κ → �

is continuous at (t, t), where t ∈ �κ with t > a. Also assume that k�(t, .) is rd-continuous
on [a, σ (t)]. Suppose that for each ε > 0 there exists a neighbourhood U of t, independent
of τ ∈ [a, σ (t)], such that

|k (σ (t) , τ ) − k (s, τ ) − k� (t, τ ) (σ (t) − s) | ≤ ε |σ (t) − s|

for all s ∈ U, where k� denotes the derivative of k with respect to the first variable. Then

g (t) :=
∫ t

a
k (t, τ ) �τ implies g� (t) =

∫ t

a
k� (t, τ ) �τ + k (σ (t) , t) ,

h (t) :=
∫ b

t
k (t, τ ) �τ implies g� (t) =

∫ b

t
k� (t, τ ) �τ − k (σ (t) , t) .
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LEMMA 5. (Gronwall’s inequality) [4, Corollary 6.7]. Let y ∈ Crd, α ∈ R+ and
c ∈ �. Then

y(t) ≤ c +
∫ t

t0

y(s)α(s)�s for all t ∈ �

implies

y(t) ≤ ceα(t, t0) for all t ∈ �.

THEOREM 6. [12, Theorem 5, p. 102]. Let f (x, y) be a real-finite valued function
whose domain is the Cartesian product S1 × S2. Suppose f (x, y) is continuous in y at
y = b uniformly for x in S1, and continuous in x at x = a for each y in S2, then f (x, y) is
continuous in (x, y) at (a, b).

2. Existence and Uniqueness. In this section, we use the Banach contraction
mapping principle to show the existence of a unique continuous solution of

x�(t) = A(t)x(t) +
∫ t

s
B(t, u)x(u)�u + f (t), t ∈ [s,∞)�κ (11)

satisfying x(s) = x0, where s ∈ �κ is fixed, A is an n × n matrix function that is
continuous on [t0,∞)�κ , B is an n × n matrix function that is continuous on

	 := {(t, s) ∈ �κ×�κ : t0 ≤ s ≤ t < ∞} (12)

and f is n-vector function that is continuous on [t0,∞)�κ . For this purpose, we first
introduce the Banach space in which the equation (11) will be proven to have a solution.

2.1. Banach space (C[a, b]�, dβ ). Denote by ‖.‖ the vector norm on �n. For an
n × n matrix A we define the matrix norm |A| induced by the vector norm by

|A| := sup {‖Ax‖ : ‖x‖ ≤ 1} .

Let C[a, b]� be the vector space of continuous functions x : [a, b]�→ �n. Let β > 0 be
a fixed real number. It was shown in [17] that ‖.‖β defined by

‖x‖β := sup
{ ‖x(t)‖

eβ(t, a)
: t ∈ [a, b]�

}

is a norm on C[a, b]� and is equivalent to the norm ‖.‖0 given by

‖x‖0 := sup{‖x(t)‖ : t ∈ [a, b]�}.
Furthermore, it was concluded in [17, Lemma 3.3] that (C[a, b]�, ‖x‖β ) is a Banach
space.

Denote by dβ the metric induced by the norm ‖.‖β , that is for ζ, ϕ ∈ C[a, b]�

dβ(ζ, ϕ) := ‖ζ − ϕ‖β = sup
{‖ζ (t) − ϕ(t)‖

eβ(t, a)
: t ∈ [a, b]�

}
.

Of course, (C[a, b]�, dβ ) is a complete metric space.
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Next, we show that equation (11) has a unique solution on [s,∞)�κ satisfying
x(s) = x0.

2.2. Existence theorem. In order to obtain a contraction mapping we need to
invert equation (11). Hence, the following result is essential since it enables us to
change the order of integration on a triangular region.

LEMMA 7. A differentiable function x(t) satisfies (11) and the initial condition
x(s) = x0 if and only if x(t) solves

x(t) = x0 +
∫ t

s

[
A(u) +

∫ t

σ (u)
B(v, u)x(u)�v

]
x(u)�u +

∫ t

s
f (u)�u. (13)

Proof. Integrating (11) from s to t we obtain

x(t) = x0 +
∫ t

s
A(u)x(u)�u +

∫ t

s
�v

∫ v

s
B(v, u)x(u)�u +

∫ t

s
f (u)�u.

Changing the order of integration (see [1, Lemma 2.1]) we get (13). Conversely, one
may show by using Theorem 4 that a differentiable function x(t) solving (13) satisfies
(11) and x(s) = x0. The proof is complete. �

For a fixed T ∈ �κ define the space

Cx0 [s, T ]� := {ζ ∈ C[s, T ]� : ζ (s) = x0}.

Evidently, Cx0 [s, T ]� is a closed subset of C[a, b]�. Hence, Cx0 [s, T ]� is complete when
it is endowed with the metric induced on Cx0 [s, T ]� by dβ . Using right-hand side of the
equation (13) we can construct a mapping on Cx0 [s, T ]�. Define the mapping Q by

Qζ (t) := x0 +
∫ t

s

[
A(u) +

∫ t

σ (u)
B(v, u)�v

]
ζ (u)�u +

∫ t

s
f (u)�u (14)

for all ζ ∈ Cx0 [s, T ]�. We derive the next result from continuity of f , A and B.

LEMMA 8. For each ζ ∈ Cx0 [s, T ]�, the function Qζ is continuous on [s, T ]� and
Qζ (s) = x0 . That is, Q is a mapping from Cx0 [s, T ]� into Cx0 [s, T ]�.

Hereafter, we show that Q is a contraction on Cx0 [s, T ]�. For any ζ ,ϕ ∈ Cx0 [s, T ]�,

‖Qζ (t) − Qϕ(t)‖ ≤
∫ t

s

[
|A(u)| +

∫ t

σ (u)
|B(v, u)| �v

]
‖ζ (u) − ϕ(u)‖ �u. (15)

Since A(t) and B(t, u) are continuous for s ≤ u ≤ t ≤ T , there is a real number β > 1
such that

|A(u)| +
∫ t

σ (u)
|B(v, u)| �v ≤ β − 1.

For such a β, (15) and the inequality

e−β(t−s) ≤ eβ(t, s)−1
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(see Lemma 3) imply

‖Qζ (t) − Qϕ(t)‖ ≤ (β − 1)
∫ t

s
‖ζ (u) − ϕ(u)‖ �u,

and therefore,

‖Qζ (t) − Qϕ(t)‖
eβ(t, s)

≤ (β − 1)
∫ t

s

‖ζ (u) − ϕ(u)‖
eβ(t, u)eβ(u, s)

�u

≤ (β − 1)
β

‖ζ − ϕ‖β

∫ t

s

β

eβ(t, u)
�u

= (β − 1)
β

‖ζ − ϕ‖β

∫ t

s
e�u
β (u, t)�u

= (β − 1)
β

‖ζ − ϕ‖β

{
1 − 1

eβ(t, s)

}

≤ (β − 1)
β

‖ζ − ϕ‖β

{
1 − 1

eβ(t−s)

}

≤ (β − 1)
β

‖ζ − ϕ‖β .

This and Lemma 8 show that Q is a contraction on Cx0 [s, T ]�. By the Banach
contraction mapping principle Q has a fixed point in Cx0 [s, T ]�. Since T was arbitrary,
there is unique continuous solution x of (13) on [s,∞)�κ . This, along with Lemma 7,
yields the following result:

THEOREM 9. (Existence). For a given x0 ∈ �n, there is a unique continuous solution
x of (11) on the interval [s,∞)�κ satisfying the initial condition x(s) = x0.

3. Joint Continuity. Taking f (t) ≡ 0 in (11), for a given x0 ∈ �m we can conclude
by Theorem 9 that there exists a unique continuous solution xs of

x�(t) = A(t)x(t) +
∫ t

s
B(t, u)x(u)�u, t ∈ [s,∞)�κ (16)

satisfying xs(s) = x0. Equivalently, by Lemma 7 xs is the unique continuous solution
of

x(t) = x0 +
∫ t

s
ξ (t, u)x(u)�u, (17)

where

ξ (t, u) = A(u) +
∫ t

σ (u)
B(v, u)�v. (18)

Up to now, we have assumed that s is fixed. If we remove this restriction, then xs(t)
turns into a function, defined on the set 	 = {(t, s) ∈ �κ×�κ : t0 ≤ s ≤ t < ∞} whose
value at (t1, s1) ∈ 	 is xs1 (t1).
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DEFINITION 10. For a given x0 ∈ �n, let x denote the function with domain 	

whose value value at (t, s) is

x(t, s) := xs(t), (19)

where xs is the unique solution of (16) on [s,∞)�κ satisfying xs(s) = x0.

Hereafter, we will show that x is jointly continuous in (t, s).

THEOREM 11. The function x(t, s) defined by (19) is continuous on 	.

Proof. Let us extend the domain 	 of x to [t0,∞)� × [t0,∞)� by assuming that
x(t, s) = x0 whenever σ (s) > t. For any T > t0, consider x(t, s) on [t0, T ]� × [t0, T ]�.
We will first prove that x(t, s) is uniform continuous in s for each t ∈ [t0, T ]�. For a
fixed s ∈ [t0, T ]� and for t ∈ [s, T ]�, we get from equation (17) that

|x(t, s)| ≤ |x0| +
∫ t

s
|ξ (t, u)| |x(u, s)| �u

≤ |x0| +
∫ t

s

[
|A(u)| +

∫ t

σ (u)
|ξ (v, u)| �v

]
|x(u, s)| �u

≤ |x0| + k
∫ t

s
|x(u, s)| �u, (20)

where k > 0 is a constant chosen so that

|ξ (v, u)| ≤ |A(u)| +
∫ t

σ (u)
|ξ (v, u)| �v ≤ k (21)

for (t, u) ∈ 	T , where

	T := 	 ∩ ([t0, T ]� × [t0, T ]�) .

By Gronwall’s inequality (Lemma 5) we obtain

|x(t, s)| ≤ |x0| ek(t, s) for (t, s) ∈ 	T .

Using [3, Remark 2] we arrive at

|x(t, s)| ≤ |x0| ek(t, s) ≤ |x0| exp(k(t − s))

for (t, s) ∈ 	T . Since |x(t, s)| = |x0| for σ (t) > t, the inequality

|x(t, s)| ≤ |x0| exp(k(T − t0)) (22)

holds for all (t, s) ∈ [t0, T ]� × [t0, T ]�. Hereafter, we will use (22) to show that for every
ε > 0 there exists a δ > 0 such that |s1 − s2| < δ implies

|x(t, s1) − x(t, s2)| < ε (23)

for all s1, s2 ∈ [t0, T ]� and all t ∈ [t0, T ]�. Then the proof will follow from Theorem 6.
For convenience, let us suppose that s2 > s1. Evidently,

|x(t, s1) − x(t, s2)| = 0 (24)
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as x(t, s) = x0 for t ∈ [t0, s1]�. For t ∈ (s1, s2]�, (17) and (21) yield

|x(t, s1) − x(t, s2)| = |x(t, s1) − x0|

≤
∫ t

s1

|ξ (t, u)| |x(u, s1)| �u

≤ k
∫ s2

s1

|x(u, s1)|�u.

This along with (22) implies that for t ∈ (s1, s2]�

|x(t, s1) − x(t, s2)| ≤ k
∫ s2

s1

|x0| exp(k(T − t0))�u

= k |x0| (s2 − s1) exp(k(T − t0)). (25)

For t ∈ (s2, T ]�, we have

|x(t, s1) − x(t, s2)| =
∣∣∣∣
∫ t

s1

ξ (t, u)x(u, s1)�u −
∫ t

s2

ξ (t, u)x(u, s2)�u
∣∣∣∣

=
∣∣∣∣
∫ t

s1

ξ (t, u)x(u, s1)�u −
∫ t

s2

ξ (t, u)x(u, s1)�u

+
∫ t

s2

ξ (t, u)x(u, s1)�u −
∫ t

s2

ξ (t, u)x(u, s2)�u
∣∣∣∣

≤
∫ s2

s1

|ξ (t, u)| |x(u, s1)| �u

+
∫ t

s2

|ξ (t, u)| |x(u, s1) − x(u, s2)|�u.

Using (22) again we have

|x(t, s1) − x(t, s2)| ≤ k |x0| (s2 − s1) exp(k(T − t0)) + k
∫ t

s2

|x(u, s1) − x(u, s2)|�u

for all t ∈ (s2, T ]�. Equation (25) shows that the last inequality also holds for t = s2.
By Gronwall’s inequality we have

|x(t, s1) − x(t, s2)| ≤ k |x0| (s2 − s1) exp(k(T − t0)) exp(k(t − s2)) (26)

for all t ∈ [s2, T ]�. Combining (24–26) we get

|x(t, s1) − x(t, s2)| ≤ k |x0| (s2 − s1) exp(2k(T − t0)) (27)

for all t ∈ [t0, T ]� and s1, s2 ∈ [t0, T ]� with s2 > s1. Obviously, (27) is also true for
s1 = s2. We conclude that

|x(t, s1) − x(t, s2)| ≤ k |x0| |s1 − s2| exp(2k(T − t0)) (28)

for all t ∈ [t0, T ]� and s1, s2 ∈ [t0, T ]�, which implies (23). Consequently, x(t, s) is
continuous on [t0, T ]� × [t0, T ]� by Theorem 6. Since T was arbitrary, x(t, s) is
continuous on [t0,∞)� × [t0,∞)�, and hence, continuous on 	. �
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4. Principal matrix solution. For a fixed s ≥ t0 let S denote the set of all solutions
x(t, s) of (16) on the interval [s,∞)�κ corresponding to initial vectors. If x(t, s) and
x̃(t, s) are two such solutions satisfying x(s, s) = x0 and x̃(s, s) = x̃0, then linearity
of (16) implies the principle of superposition, namely, that the linear combination
c1x(t, s) + c2x̃(t, s) is a solution of (16) on [s,∞)�κ for any c1, c2 ∈ �. This shows that
the set S is a vector space. Note that S includes all solutions that have their initial
values specified at t = s, but not those for which an initial function is specified on an
interval [s, t1]�κ for some t1 > s.

THEOREM 12. For a fixed s ∈ [t0,∞)�κ , let S be the set of all solutions of (16) on the
interval [s,∞)�κ corresponding to initial vectors. Then S is a n-dimensional vector space.

Proof. We have already shown that S is vector space. It remains to be shown that
dim S = n. Let e1, e2, ..., en be the standard basis for �n, where ei is the vector with the
components ei

j, given by

ei
j =

{
1 if i = j,
0 if i �= j.

By Theorem 9, there are n unique solutions xi(t, s) of (16) on [s,∞)�κ satisfying
xi(s, s) = ei (i = 1, 2, ..., n). Linear independence of e1, e2, ..., en implies that the
solutions xi(t, s) (i = 1, 2, ..., n) are linearly independent. We need to show that

S = span{x1(t, s), ..., xn(t, s)}. (29)

Let x(t, s) ∈ S be any solution of (16) on [s,∞)�κ with x(s, s) = x0. Let ν1, ν2, ..., νn be
any scalars such that

x0 =
n∑

i=1

νiei.

By linearity of (16), the linear combination

η(t, s) =
n∑

i=1

νixi(t, s) (30)

is a solution of (16). Since η(s, s) = x0, uniqueness part of Theorem 9 implies

x(t, s) =
n∑

i=1

νixi(t, s) (31)

and (29). The proof is complete. �
Hereafter, we shall denote by Z(t, s) the n × n matrix function,

Z(t, s) := [x1(t, s), x2(t, s), ..., xn(t, s)], (32)

where the columns xi(t, s) (i = 1, 2, ..., n) are the vectors constituting the basis defined
in the proof of Theorem 12. Combining (31) and (32) we get

x(t, s) = Z(t, s)x0. (33)
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Since xi(s, s) = ei for i = 1, 2, ..., n, we have

Z(s, s) = I, (34)

where I denotes the n × n identity matrix.

REMARK 13. Linearly independence of solutions {x1(t, s), x2(t, s), ..., xn(t, s)} for a
fixed s ∈ [t0,∞)�κ does not imply their linear independence for all s ∈ [t0,∞)�κ . That
is, det Z(t, s) may vanish for some (t, s) ∈ 	.

DEFINITION 14. The principal matrix solution of (16) is the n × n matrix function
Z(t, s) defined by (32).

Theorem 11 implies that each of the columns xi(t, s) (i = 1, 2, ..., n) of Z(t, s) are
continuous on 	. Hence, we arrive at the following result.

THEOREM 15. The principal matrix solution Z(t, s), defined in (32), is continuous
on 	.

Since the ith column of Z(t, s) is the unique solution of (16) whose value at t = s
is ei, Z(t, s) is the unique matrix solution of the initial value problem,

Z�t (t, s) = A(t)Z(t, s) +
∫ t

s
B(t, u)Z(u, s)�u, (35)

Z(s, s) = I

for (t, s) ∈ 	. Equivalently, it is the unique matrix solution of

Z(t, s) = I +
∫ t

s

[
A(u) +

∫ t

σ (u)
B(v, u)�v

]
Z(u, s)�u

by (17) and (18).

5. Variation of parameters formula. Consider the homogeneous equation

x�(t) = A(t)x(t), (36)

where A is an n × n matrix of continuous functions and x is a column vector of
�-differentiable functions.

In [4, Theorem 5.8] existence of the unique solution of non-homogeneous equation

x�(t) = A(t)x(t) + f (t) (37)

satisfying xp(τ ) = x0 is proven. Moreover, in [4, Theorem 5.24] a variation of
parameters formula for the unique solution is given as follows:

xp(t) = eA(t, τ )x0 +
∫ t

τ

eA(t, σ (s))f (s)�s,

where eA is the matrix exponential function (see [4, Definition 5.18]). For more on
matrix exponential on time scales, we refer to [4, Section 5] and [19] and references
therein).

https://doi.org/10.1017/S0017089511000073 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000073


476 MURAT ADIVAR

If A is regressive (i.e. I + μ(t)A(t) is invertible for all t ∈ �κ , see [4, Definition
5.5]), then as we did in the proof of Theorem 12, one may show by using the existence
theorem [4, Theorem 5.8] that the set of solutions of equation (36) is a vector space of
dimension n. If (x̃1, ..., x̃n) is such a basis, then the matrix X whose columns are the
vectors x̃i, i = 1, 2, ..., n, is called a fundamental matrix for equation (36).

In this section, we employ fundamental matrix solution X(t) of homogeneous
equation (36) to provide an alternative variation of parameters formula for the unique
solution xp of non-homogeneous equation (37) satisfying xp(τ ) = x0. We also point
out that similar argument cannot be applied to the non-homogeneous equation (11)
since the principal matrix solution Z(t, s) of (16) may be singular for some s in �.
Finally, we end the section by proposing a variation of parameters formula that does
not require any condition for det Z(t, s).

LEMMA 16. Let X(t) be any fundamental matrix solution of the homogeneous
equation (36) and A be a regressive matrix (i.e. det(I + μ(t)A(t)) �= 0). Then for a
given x0 ∈ �n,

1. the solution xh(t) of homogeneous equation (36) satisfying xh(τ ) = x0 (τ ≥ t0)
is

xh(t) = X(t)X−1(τ )x0; (38)

2. the solution xp(t) of the non-homogeneous equation (37) satisfying xp(τ ) = x0

(τ ≥ t0) is

xp(t) = X(t)X−1(τ )x0 +
∫ t

τ

X(t)X−1(σ (s))f (s)�s. (39)

Proof. By definition, the columns of a fundamental matrix solution X(t) are linearly
independent solutions of (36). Hence, by linearity of (36) for c ∈ �n we know that

xh(t) = X(t)c

is a solution of (36). If xh(τ ) = x0, then X(τ )c = x0. Since X(τ ) is non-singular, the
unique solution for (36) satisfying x(τ ) = x0 is xh(t) = X(t)X−1(τ )x0. This is (38). Now,
let’s look for the solution xp(t) of the non-homogeneous equation (37) of the form

xp(t) = xh(t)u(t), (40)

where u : � → � is a �-differentiable function. Differentiating (40) we get

x�
p (t) = x�

h (t)u(t) + xσ
h (t)u�(t),

which along with (37) and (38) implies

f (t) = xσ
h (t)u�(t) = X(σ (t))X−1(τ )x0u�(t)

and

x0u�(t) = [X(σ (t))X−1(τ )]−1f (t). (41)
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The matrix X(σ (t)) in (41) is non-singular since X(t) is supposed to be a fundamental
matrix solution for (36). By (41)

x0u(t) = x0 +
∫ t

τ

X(τ )X−1(σ (s))f (s)�s,

since u(τ ) = 1 by (40) with xp(τ ) = xh(τ ) = x0. From (38) and (40) we obtain (39). The
proof is complete. �

Notice that (39) turns into (38) when f = 0.
Using

xσ
h (t) = xh(t) + μ(t)x�

h (t) = [I + μ(t)A(t)] xh(t)

and applying the similar procedure in the proof of the preceding lemma we can rewrite
(39) as follows:

xp(t) = X(t)X−1(τ )x0 +
∫ t

τ

X(t)X−1(s) [I + μ(s)A(s)]−1 f (s)�s. (42)

REMARK 17. For the derivation of variation of parameter formulas (39) and (42),
the essential element is that X(σ (t)) is non-singular at each t ∈ [τ,∞)�κ or equivalently
the matrix A is regressive (i.e. det(I + μ(t)A(t)) �= 0) and X(t) is singular at each t ∈
[τ,∞)�κ . Note that in [4, Theorem 5.8] regressivity of the matrix A and rd-continuity of
f are proposed as sufficient conditions for the existence and uniqueness of the unique
solution of equation (37).

For the integro-dynamic equation (16), the counterpart of (38) is (33), which we
state in the following.

LEMMA 18. The solution of

x�(t) = A(t)x(t) +
∫ t

τ

B(t, u)x(u)�u (43)

on the interval [τ,∞)�κ satisfying x(τ ) = x0 is

x(t) = Z(t, τ )x0, (44)

where Z(t, τ ) is the principal matrix solution of (43).

If B = 0 (zero matrix), then (38) and (44) and uniqueness of solutions imply that

Z(t, τ ) = X(t)X−1(τ ).

In this case, (39) turns into

x(t) = Z(t, τ )x0 +
∫ t

τ

Z(t, σ (s))f (s)�s. (45)

Evidently, (45) turns into (38) when f = 0.
Up to now, we obtained the variation of parameters formula (45) for non-

homogeneous equation (37) by using the solution (38) of the homogeneous equation
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(36). This may lead us to look for a variation of parameters formula for the non-
homogeneous equation (11) by using the principal matrix solution Z(t, s) of the
homogeneous equation (16). However, unlike the fundamental matrix solution X(t)
of equation (36) (see Remark 17), the principal matrix solution Z(t, s) for equation
(16) may be singular at some points as we have stated in Remark 13. To see this in
the special case � = �, one may refer to [6, p. 86]. This shows that we cannot derive a
formula for the non-homogeneous equation (11) as we did in Lemma 16 .

The next theorem provides the variation of parameters formula (47), which satisfies
(46) even though Z(t, s) is singular for some (t, s) ∈ 	.

THEOREM 19. (Variation of parameters). The solution of

x�(t) = A(t)x(t) +
∫ t

τ

B(t, u)x(u)�u + f (t), τ > t0 (46)

on [τ,∞)�κ satisfying the initial condition x(τ ) = x0 is

x(t) = Z(t, τ )x0 +
∫ t

τ

Z(t, σ (s))f (s)�s, (47)

where Z(t, s) is the principal matrix solution of

Z�t (t, s) = A(t)Z(t, s) +
∫ t

s
B(t, u)Z(u, s)�u.

Proof. By Theorem 9 there is a unique solution x(t) of (46) on [τ,∞)� such that
x(τ ) = x0. Let us show that

H(t) := Z(t, τ )x0 +
∫ t

τ

Z(t, σ (s))f (s)�s (48)

solves (46). Define Z(t, s) = I for σ (s) > t. Then Z(t, s) is continuous on [t0,∞)� ×
[t0,∞)� by Theorem 15. This and (35) show the continuity of Z�t (t, s) on [t0,∞)�κ ×
[t0,∞)�κ . From Theorem 4 we conclude that the integral term in (48) is differentiable
and that

H�(t) = Z�(t, τ )x0 + Z(σ (t), σ (t))f (t) +
∫ t

τ

Z�t (t, σ (s))f (s)�s

=
[

A(t)Z(t, τ ) +
∫ t

τ

B(t, u)Z(u, τ )�u
]

x0 + If (t)

+
∫ t

τ

[
A(t)Z(t, σ (s)) +

∫ t

σ (s)
B(t, u)Z(u, σ (s))�u

]
f (s)�s

= A(t)
[

Z(t, τ )x0 +
∫ t

τ

Z(t, σ (s))f (s)�s
]

+
[∫ t

τ

B(t, u)Z(u, τ )�u
]

x0

+ f (t) +
∫ t

τ

[∫ u

τ

B(t, u)Z(u, σ (s))f (s)�s
]

�u

= A(t)H(t) +
∫ t

τ

B(t, u)H(u)�u + f (t),
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where we change the order of integration by using [1, Lemma 2.1]. Thus, the function H
defined by (48) is a solution of (46) on [τ,∞)�κ . By (48), H(τ ) = x0. Hence, x(t) = H(t)
on [τ,∞)�κ by uniqueness theorem. The proof is complete. �

COROLLARY 20. Let ϕ ∈ C[t0, τ ]� for any τ > t0. The solution of

x�(t) = A(t)x(t) +
∫ t

t0

B(t, u)x(u)�u + f (t) (49)

on [τ,∞)�κ satisfying the condition x(t) = ϕ(t) for t ∈ [t0, τ )�κ is

x(t) = Z(t, τ )ϕ(t) +
∫ t

τ

Z(t, σ (s))f (s)�s

+
∫ t

τ

Z(t, σ (s))
{∫ τ

t0

B(s, u)ϕ(u)�u
}

�s. (50)

Proof. Since x ≡ ϕ on [t0, τ ]�, we can rewrite (49) as follows:

x�(t) = A(t)x(t) +
∫ t

τ

B(t, u)x(u)�u + g(t), (51)

where

g(t) := f (t) +
∫ τ

t0

B(t, u)ϕ(u)�u.

By Theorem 9, equation (51) has a unique solution x that is continuous on [τ,∞)�κ

such that x(τ ) = ϕ(τ ). By Theorem 19 the solution is

x(t) = Z(t, τ )ϕ(τ ) +
∫ t

τ

Z(t, σ (s))g(s)�s,

which is (50). This completes the proof. �

REFERENCES

1. M. Adıvar and Y. N. Raffoul, Existence of resolvent for Volterra integral equations on
time scales, Bull. Aust. Math. Soc. 82(1) (2010), 139–155.

2. L. C. Becker, Principal matrix solution and variation of parameters for a Volterra
integro-differential equation and its adjoint, E. J. Qual. Theory Differ. Equ. 14 (2006), 1–22.

3. M. Bohner, Some oscillation criteria for first-order delay dynamic equations, Far East
J. Appl. Math. 18(3) (2005), 289–304.

4. M. Bohner and A. Peterson, Dynamic equations on time scales, in An introduction with
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