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FINITELY GENERATED IDEALS IN THE DISK ALGEBRA

RAYMOND MORTINI

Let / i , . . . , /JV G -A(B). It is shown that the ideal / ( / i , . . . , /jv) generated by the
functions fj (j = 1, . . . , N) equals the ideal

if and only if the functions fj have no common zero on the boundary of the unit
disk D.

1. INTRODUCTION

Let H°° be the algebra of bounded analytic functions on the open unit disk D =
{z 6 C : \z\ < 1} and let A(W) be the disk algebra, that is, the subalgebra of all those
functions in H°° which have a continuous extension to the closure D = {z £ C : \z\ ^ 1}
of D.

If R is any commutative algebra, we denote by

the ideal generated by the fj (fj£R,j = l,...,N).

In [1] Rubel states the following problem: If R = .4.(0) or H°°, give necessary

and sufficient conditions on a function / G -R which ensure that / belongs to the ideal

For example, in the algebra H(G) of all analytic functions in a domain G C C it
is well known that a function / € S{G) belongs to the ideal J ( / i , . . . , /;v) generated
by the functions fj £ H(G) if and only if

o rd ( / , z0) ^ min ord(/,-,z0)

for every zo £ G, where o rd ( / , ZQ) is the usual multiplicity of the zero ZQ of / .
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522 R. Mortini [2]

In order to solve Rubel's problem for the disk algebra, the ideals

N

J(fi,- • • ,/N) = { f G A(B) : 3 C = C(f) : \f\ ^ C V \fj\ on

have shown to be a valuable tool. Obviously, / ( / i , . . . , /N) is contained in J(fi ,•••, /N)
whenever fj 6 A(H>). It has been shown by von Renteln [8] that, whenever the functions
fj (j = 1 , . . . , N) have no common zero on the boundary T — dU> = {z £ C : \z\ = 1}
of the unit disk, then the ideals / ( / i , . . . ,/jv) and J ( / 1 } . . . ,fu) coincide. On the
other hand, it is quite easy to see that, in general, J ( / i , . . . ,/AT) is a proper subideal
of J(fi,... , / J V ) , even in the case of one single generator. In fact, the function
(1 - 2)e-(i+*)/(i-*) belongs to 7(1 - z) but not to 7(1 - z).

The main result of this note is to show that the converse of von Renteln's result
holds. We also include a closely related result on divisors of disk algebra functions.

2. DIVISORS OF DISK ALGEBRA FUNCTIONS

A major tool in working with bounded analytic functions on the unit disk is the
Riesz-Smirnov factorisation theorem (see, for example, [2, Section 2]). It states that,
for every / G H°° , / ^ 0, there exists a finite positive Borel measure fj., singular with
respect to Lebesgue measure on T such that

/(*) = eieB(z)S^z)F(z),

where

is the Blaschke produkt associated with the zero sequence (an) of / ,

and

The function F is called the outer part of / , the function ip = BS^ the inner part.

If / € A(H>), then F G A(B) (see [2, p.78]). Let Sing <p denote the set of boundary
singularities of the inner function cp and let Z(f) = {z G B>: f(z) = 0} be the zero set
of / G A(B). Then Singp C Z(f) HT = Z(F) (see [2, p.78]). Moreover, if / G
and if <p is an inner function with Sing^j C Z(f) PI T, then (pf £ A(H>).
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Let fj 6 H°° (j = 1 , . . . ,N). It is well known that the functions fj have a
greatest common divisor in H°°, denoted by d = g c d ( / i , . . . ,/jv) (see [7]). It can be
written in the form

(1) d = BS^F,

where B is the Blaschke product associated with the common zeros of fj in D, where

5^ is the singular inner function with measure fj, defined by

(2) n(E)=infJ£im^NN(Ek)

(V is the set of all finite measurable partitions {Ei,... ,Ek} of the Borel set E (see

[3, p.85] respectively [2, p.84])), and where

(3)

Of course, if h is invertible in H°°, then hd is another greatest common divisor of the

fj. In particular, this applies for functions fj G A(3) . In general, however, neither d

nor the quotients fj/d are in A(B) whenever fj 6 A(D).

Our first objective is now to show that, whenever fj £ J4(ID>) , then there exists an

outer function h invertible in H°° such that hd 6 A(H). Hence there exists in H°° a

smooth greatest common divisor of the fj .

The proof is based on the following lemma from [5, p.11].

LEMMA 1 . 1 . Let u be a continuous positive function on an open interval I C R .
Then there exists a continuously differentiable function v on I such that

\u — v\ 3j — u on I.

We note that the proof follows from Carleman's approximation theorem after hav-

ing mapped / by a continuously differentiable bijective map onto K.

PROPOSITION 1 . 2 . Let / i , . . . , / N 6 A(&). Then there exists, with respect
to the algebra H°°, a greatest common divisor which belongs to A(JD>).

PROOF: Let fjFj = fj be the inner-outer factorisation of the functions fj and
let d = (BS^F = <pF be the greatest common divisor of the fj according to (1)(2)(3).
Obviously,

N N

Single f]Z(fj)nT=f\Z(Fi)
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and

N

(4) \d\ = \F\ = 2_] \fj\ almost everywhere on T.

Because

log\F(z)\ =

is the Poisson integral of an extended continuous function, we see that |.F(z)| has a
continuous extension u on D satisfying

N

\°) u — 2^i\h\ •

N

Let E = f| Z{fj)r\T. Suppose first that E = 0. Then, by (4), F is invertible in

H°° . Moreover, Sing <p = 0; therefore <p is a finite Blaschke product. Hence we have

found a greatest common divisor which belongs to A(W) .

Now suppose that E ^ 0. Because £ is a compact subset of T of measure

zero, there exist at most countably many pairwise disjoint open arcs Ij C T so that

T \ E = U Ij. Let Ij = (aj,f}j) be any of these arcs. Then u > 0 on Ij and

By Lemma 1.1 there exist functions Vj £ C1(/7) f~l C(T,) , v;- ^ 0, so that

(6) |M-«;I ^ J'"' °n Ij'

Let g(e*') = Vj(eil) if e** £ Ij and g = 0 otherwise. Then (6) implies that q is

continuous on T, continuously differentiate on T\Z(q) and logq £ Ll{T). Hence, by

[6, p.52], the function

is an outer function in the disk algebra with

Z(Q) = E and |Q| = q on T.

By (4)-(6) we have

— ^ —— ̂  — almost everywhere on T.
2 1̂ 1 2
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Let
+ z <?

Then /i e #°° and satisfies 1/2 ^ |/i| ^ 3/2 on P. Hence h is invertible in ff°°.
Moreover,

Q = Fh.

Let / = fQ. Then / 6 J4(D) and / is, with respect to H°° , a greatest common divisor
of the functions fj . D

REMARK. Note that the quotients fj/f do not belong to A(W) in general. If this
happens, then the functions fj obviously have a greatest common divisor with respect
to the algebra A(W) . In that case, the ideal generated by the fj is a principal ideal
(see [6]).This highly contrasts with the situation in H°°.

It is now a natural question to ask whether any countable set of functions in A(D)
has, with respect to the algebra H°°, a greatest common divisor. For example, it is
easy to see that any set of inner functions has this property (see [3,p. 85] or [2, p. 84]).

It is now rather surprising that this is no longer true for outer functions. The
following example has been communicated to me by H.-M. Lingenberg. I want to thank
him for allowing me to include his example in this paper.

EXAMPLE. Let fj = (1 - z)1 /2 ' {j = 0,1,2,... ). Assume that the functions fj have
a greatest common divisor d 6 H°°. Then d2 divides fj for every j = 0,1,2,... . In
particular, d2 divides fk for k = 0,1,2,... . Since d is a greatest common divisor, we
see that d2 divides d. Hence d is invertible in H°°.

But on the other hand, the function

2 \tf «M dt

is a proper divisor of the fj. This contradiction shows that the fj do not admit a
greatest common divisor.

3. THE IDEALS J ( / i , . . . , fN) AND J ( / I , . . . ,fN)

For an ideal / C A(B) let Z(I) = f| Z(f) denote its zero set. Ideals in A(B)

whose zero sets are contained in the open unit disk are easily described. In fact, we
have the following result (see [4, p. 13]).

PROPOSITION 2 . 1 . Let I ^ (0) be an ideal in A(B) such that

z{i) n T = 0.
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Then I is a principal ideal generated by a finite Blaschke product.

For the reader's convenience, we present the proof.

PROOF: Because Z(I)C\T = 0 and / ^ (0), the set Z(I) is either finite or empty.
In the latter case, / = A(W) = (1), and the assertion is trivial.

Now let B be the finite Blaschke product associated with the common zeros of
the functions in / (including multiplicities). Obviously, B is a common divisor of all
functions in I. Hence / C (B). But by construction we have Q Z(f/B) = 0.

By compactness, there exist finitely many fj G / so that

N

fl'GO-
Hence, by the corona theorem for A(D), we have

i IN

i'"' '~B

This implies that B G ( / i , . . . , /N) Q I- Altogether we have I = (B). U

Next we recall some definitions from the theory of bounded analytic functions.

1. Let / G H°°. Then, for a G T, the cluster set of / at a will be denoted
by Cl ( / , a ) , that is,

Cl( / ,o) - {ft G C : 3 zn G D, zn -» a, f(zn) -»/?}.

We note that / has a continuous extension to a G T if and only if Cl (/, a)

is a singleton.
3. A sequence (zn) is called an interpolating sequence if

It is well known [3, p.204] that any sequence in D converging to the
boundary has an interpolating subsequence. Blaschke products associated
with interpolating sequences are called interpolating Blaschke products.

We are now ready to prove the main result of this paper.

THEOREM 2 . 2 . Let / i , . . . , /N be functions in the disk algebra. Then the ideal
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if and only it the functions fj have no common zero on the boundary of the unit disk.

PROOF: 1. Let / = / ( / i , . . . ,/JV) and J = J(fi,... ,/AT). Suppose that the
functions fj have no common zero on the unit circle T. Then Z(I) = Z(J) C ID.
Hence, by Proposition 2.1, I — J = (B), where B is the finite Blaschke product
associated with the common zeros of the fj (including multiplicities).

2. Now let I = J. We have to show that Z(I) D T = 0. Assume the contrary.
Without loss of generality, let 1 6 Z(I)C\T. According to Proposition 1.2, let d G A(O)
be a greatest common divisor of the functions fj (with respect to the algebra H°°).
Then fj = dgj for some g, 6 H°°. We claim that there exists j0 E {1 , . . . , N} so that

Otherwise, each of the gj would have a continuous extension to z = 1 with value 0
there. Then the function

n N

would be a noninvertible common divisor of the gj , which is a contradiction to the fact
that any common divisor of the gj is invertible.

Now choose a sequence (zn) in D with Iim2n = 1 so that gj(zn) converges to some
ay £ C for every j £ {1 , . . . , N}. Without loss of generality let (zn) be an interpolating
sequence. By (*) we may also assume that aj0 ^ 0 for some ig G {I,--- ,N}. Let b
be the interpolating Blaschke product associated with the sequence (z2n)- Then

n=l

for all I £ N.
Obviously, Sing6 = {1}. Hence bfio G A(B). Moreover, \bfio\ < |/;0|. Therefore

bfi0 £ J • The hypothesis 1 = 3 implies that there exists xj G A(U>) such that

N N

bfi0 =

Dividing by d, we obtain
N
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Let Xj(l) = 0j. Then
N

0 = lim bgio{z2i) =
l—KX

on the one hand, but

N

0 ^ 6aio < liminf \bgio(z2l+i)\ =
I—»OO

on the other hand.
This contradiction shows that Z(I) l~l T must be empty. Hence the functions fj

have no common zero on the boundary of the unit disk. U

COROLLARY 2 . 3 . Let fj e A(D) (j = l,...,N). Then I{fu...,fN) =

J(fi>--- >/W) if and only if I (respectively J) is a principal ideal generated by a
finite Blaschke product.

PROOF: Let 1 = 3. Then by Theorem 2.2, Z(I) D T = 0. Hence by Proposition
2.1, / = (B), where B is a finite Blaschke product.

The converse of the assertion has already been proved by von Renteln [8]. It also
follows immediately from our theorem. U
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