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Abstract

This paper presents characterizations of optimality for the abstract convex program
(P) v = inI{p(x):g(x)(E-S,x<Ea}>

when S is an arbitrary convex cone in a finite dimensional space, U is a convex set and/; and g are
respectively convex and S-convex (on Q). These characterizations, which include a Lagrange
multiplier theorem and do not presume any a priori constraint qualification, subsume those presently
in the literature.
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1. Introduction

In this paper we continue the study of the abstract convex program (P), for
which the constraint has finite dimensional range. Massam (1979) used the faces
of the cone S to present a characterization of optimality for (P). In Borwein and
Wolkowicz (1980), we presented a corrected and strengthened version of this
characterization and showed that this characterization does not yield a meaning-
ful Lagrange multiplier relation. The main result of this paper, see Theorem 4.1,
presents a Lagrange multiplier result which characterizes optimality for (/>)
without any constraint qualification. In particular, we show that the BBZ
conditions, presented for ordinary convex programs in Abrams and Kerzner
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(2 I Optimality for abstract convex programs 391

(1978) and Ben-Israel and others (1976) are directly contained in our results, see
Example 6.1. In section two we define our optimization problem (P) and present
the necessary preliminaries. In section three we introduce the necessary facial
notions and the concept of a minimal cone for (P). In section four we derive our
central results. These results produce primal and dual characterizations of
optimality for (P) with no constraint qualifications assumed, and include a
strong duality theorem and a first order subgradient characterization. In section
five we sketch extensions of our development to various concepts of vector
optimization. Section six contains a decomposition principle for product orders
and concludes with several examples. In particular we show that the BBZ
conditions, presented for ordinary convex programs in Ben-Israel and others
(1976) and Ben-Tal and Ben-Israel (1976) are directly contained in our results.
Section seven applies our theory to an approximation problem involving sym-
metric matrices.

Our approach in this paper is to reduce (P) to an equivalent problem to which
the "standard Lagrange multiplier theorem" can be applied. This reduction can
be used whenever constraint regularization is desirable. This approach was used
in Borwein and Wolkowicz (1979) for the case when S is not finite dimensional.
Another approach to this problem is given in Craven and Zlobec (1980).

2. Preliminaries

In this paper we consider the convex programming problem

(2.1) (P) ,x =

where p : X-*R u { +oo), g: X-^ Y u { + <»}; X and Y are real locally
convex (separated topological vector) spaces; Y is finite dimensional with an
abstract maximal element + oo (Peressini (1967)); S2 c X and S c Y are convex
and moreover 5 is a cone (not necessarily closed), that is Xs lies in 5 whenever 5
is in S and A is non-negative; p is a convex (extended) functional and g is
S-convex (on fl), that is

(2.2) tg{xx) + (1 - t)g(x2) - g(txx + (1 - t)x2) e 5,

for any xx, x2 (in fl) and any t in [0, 1].
The set of x for which g(x) is finite is the domain of g, dom g. From (2.2) it

follows that dom g is convex. As is well known a convex cone S induces an
ordering >s on Y given by

(2.3) xx >s x2<=>x, — x2 e S
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392 J. M. Borwein and H. Wolkowicz [3]

which is transitive and reflexive. It is antisymmetric exactly when S is pointed,
that is S n -S = {0}. It will be convenient to introduce the following notation

(2.4) F = g-\-S), A = g-l(-S) n B.

Thus A is the feasible set for (P) and we make the additional routine assump-
tion that

(2.5) domp DA^0.

Let X* and Y* denote the continuous dual spaces of X and Y respectively. We
suppose throughout that A"* is endowed with the weak star topology o(X*, X)
(see Robertson and Robertson (1964) for details).

Given any set K in X the dual cone of K is the set in X*

(2.6) K+ = [x' G X*:x'x > 0, if* G K).

Correspondingly if K' is in X*

(2.7) K'+ = {x G X: x'x > 0, if x' G K'}.

Then K +(K'+) is always a closed convex cone and

(2.8) K + + =(K + )+((K+)+) = coneK,

where cone K denotes the closure of the convex cone generated by K. In
particular, for a convex cone S, S + + = S. The functionals in S + will be said to
be positive (for S). Given any two convex cones 5, and S2 in X

(2.9) (S, n S2)
+ = S,+ + S2

+ .

For proofs of these and other related results the reader is referred to Borwein
(1978) and Holmes (1975). It will also be convenient to denote the annihilator of
a set AT in A'

(2.10) K^ = K+ n (~K + ) .

The directional derivative of g at a is defined by

(2.11) Vg(a; d) - lim g ( * + * ° " 8{a) •
|0 t

Then Vg(a; d) will exist for each direction d if g is convex on X, continuous at a
and S is closed and pointed, Zowe (1974).

A continuous linear operator T: X —> Y is a subgradient for g at a if

(2.12) 7W < s g(a + d) - g(a) for all d in X.

The set of all such subgradients is denoted 9g(a). In case Y = R, S = R+ these
definitions reduce to the standard ones and so apply to p. It follows from a
result of Zowe's (1974) and (1975a) that when A" is a weakly compactly
generated Banach space (for example X is reflexive or separable), and g is
convex on X and continuous at a, with S closed pointed and convex, then dg(a)
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(4) Optimality for abstract convex programs 393

is non-empty and for any s + in S +

(2.13) s + Vg(a;d) = max s + T(d),
Te 3g(a)

for each d in A\ When Y = R and S = R+, then (2.13) holds true in any locally
convex space X. Note that when Vg(a; td) exists, then for / > 0

(2.14) g(a + td) - g(a) - Vg(a; td) G S.

The reader is refered to Zowe (1974) and Borwein (1980) for more details.
Any other terms are, whenever possible, consistent with usage in Holmes

(1975). We will use the symbol 0 for both the zero element and subspace of a
vector space.

3. Facial reduction

Our results are based on identifying the smallest face of S which contains
-g{F). In this section we introduce the necessary facial notions and prove
several preliminary results.

DEFINITION 3.1. (a) K is a face of a convex cone S if K is a convex cone, and

(3.1) S | , J 2 £ S , j , + 5 2 e / : = > S | , s 2 e ^

(b) Sf denotes the (unique) smallest face of S which contains -g{A).
Note that S* is just the intersection of all the faces of S which contain -g(A).

PROPOSITION 3.1. If K is a face of S then

(3.2) (K - K) n S = K.

PROOF. Suppose s = kl — k2 with s in 5 and kt, k2 in K. Then s + k2 = kt is

in K and by (3.1) s lies in K. The reverse inclusion is clear.

Recall that every convex set C in finite dimensions has non-empty relative
interior, denoted ri C, which is the interior of C viewed as a subset of its affine
span, Rockafellar (1970). The next lemma is fundamental to our subsequent
results.

LEMMA 3.1. If A is non-empty, then

(3.3) (a) g{A)n - r i 5 / # 0 .

(3.4) (b) g(A) + Sf is convex.

PROOF. See Borwein and Wolkowicz (1980), Lemmas 3.1 and 3.2.

https://doi.org/10.1017/S1446788700017882 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017882


394 J. M. Borwein and H. Wolkowicz I s ]

The above lemma shows that when S has interior, then Sf = S exactly when
Slater's condition holds for (P), that is there exists

(3.5) x Efl withg(x) G -int S.

where int denotes interior.

4. A general multiplier theorem

In this section we present the Lagrange multiplier characterization of optimal-
ity for (P), see Theorem 4.1. This characterization holds without any constraint
qualification and is further used to derive primal and dual characterizations of
optimality, see Corollaries 4.1 and 4.3. First, we need the following two defini-
tions of cones.

DEFINITION 4.1.

(4.1) (a) Dg
=(a) = {d: 3a(d) > 0 withg(a + td) G Sf - Sf if

0 < / <

(4.2) (b) D<(a) = {d: 3a(d) > 0 with g(a + td) G Sf - S if

0 < t <a(d)}.

If Y = Rm and 5 = R+, that is (P) is equivalent to the ordinary convex program
with m convex inequality constraints, then (4.1) (resp. (4.2)) corresponds to the
intersection of the cones of directions of constancy denoted Dq-(a) (resp.
non-increase denoted D^-{a)) of the equality constraints, that is the constraints
which are identically 0 on the feasible set. These cones are the cones employed
in the BBZ conditions. These relationships are made explicit in section 6. We
now have the following two propositions. Note that part (d) of Proposition 4.1
shows that D<f-(a) in the BBZ conditions is always convex.

PROPOSITION 4.1. Suppose that a G A. Then

(4.3) (a) g-\s
f - s) n Q = g~\sf - sf) n a.

(b) Hence

(4.4) D^(a) n cone(fi - a) = D~(a) n cone(fi - a).

(c) Both g~\Sf - Sf) fi fi and D~(a) n cone(12 - a) are convex.
(d) / / Q, = X, then D<(a) = Dg"(a) and both are convex.
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[6 ] Optimality for abstract convex programs 395

PROOF, (a) Let x lie in 9, n g~\Sf - S). By Lemma 3.1, choose x in
ft n g-'(-ri Sf). Then

(4.5) g(x) = s{- si with s{ e Sf, s{ G S.

For 0 < X < 1, xA = Xx + (1 - X)x G B and

g(Xx + (1 - X)i) e Xg(x) + (1 - X)g(x) - S, since g is 5-convex,

cX*{+ (1 - X ) g ( x ) - ( S + AJ,)-

For small X, Xr{ + (1 - X)g(x) lies in -ri S* and hence in -S. Thus xx is feasible
and g(xx) lies in -5^. Now, again by S-convexity of g, for small X

(4.6) g(x) e X-'g(xA) - X"'(l - X)g(jc) + S c X - X / .

Thus by (4.5) and (4.6)

g(x) = s{ - st = s2 - s{, sv s2 e S; s{, s{ e S-̂ .

Hence
Jl + 2̂ = J{ + S2 G ^

and since Sf is a face of 5, sx lies in S*. Thus by (4.5), g(x) lies in Sf — Sf which
yields the desired containment. The reverse containment is immediate.

(b) It suffices to show that

D£*(a) n cone(S2 - a) c Dg"(a) n cone(S2 - a).

Now if d lies in D^(a) n cone(fi - a), there is some S > 0 with

g(a + l r f ) £ X / - 5 , a + to? G S, for all 0 < t < 8.

By part (a)

g(a + td) G Sf - SJ, a+ td G fl for all 0 < t < S,

and */ lies in Dg
=(a) n cone(fl — a).

(c) g''(5-^ — 5) is convex since S* — 5 is a convex cone and g being S convex
is S — Sf convex. Thus g l(Sf — S) n fi is convex as is Dg**(a) n cone(Q — a)
which is just the smallest cone containing (g~\Sf — S) n 0) — a.

(d) is now immediate.

PROPOSITION 4.2. 77ie constraint g is S^-convex on

AJ = u r\ g-\s
f - s).

PROOF. Let *,, x2 lie in A1. Let 0 < r < 1. Then x, = txx + (1 — r)x2 lies in
^ and so by (4.3)

Thus

/g(x.) + (1 - t)g(x2) - g(x,)
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396 J. M. Borwein and H. Wolkowicz [7]

Again as g is S-convex on fl

tg(Xl) + (l - t)g{x2) - g{x,) E {sf - Sf)n S = Sf

as claimed.

We can now present our central result.

THEOREM 4.1. (a) Suppose that fi is the finite optimal value of (P) given by (2.1).
Then

(4.7) p{x) + Xg(x) > n, for all x (E SI n g~\Sf - S)

for some X in (S*) +.

(b) If (i is actually attained by p(a), a EL A, then in addition

(4-8) \g(a) = 0

and (4.7) and (4.8) characterize optimality of a in A.

PROOF. We rewrite (P) as {Ps)

(Pf) M = inf [p{x): g{x) G -Sf, x G fl n g~\S' - S)},

which clearly has the same optimum as (P) since

(4.9) A cg-l(-S')nA'cg-\-S)nSlcA.

Now g considered as a mapping gf defined only on Af is 5-̂ -convex and maps Af

into Sf — Sf, by Propositions 4.1 and 4.2. Then if x lies in A and g(x) lies in
-ri Sf, as promised by Lemma 3.1, x is a Slater point for

(4.10) n = inf {/>(*): gf(x) G - ^ a n d x G fl n g~l(Sf - S)}.

Both (a) and (b) now follow from the standard Lagrange multiplier theorem (see
for example Holmes (1975) and Luenberger (1969)) on extending X arbitrarily
from Sf - Sf to Y.

We now list two further characterizations of optimality of a feasible point a in
A. Recall that D<(a) n cone(S - a) = D~(a) n cone(S2 - a), by (4.4).

COROLLARY 4.1. Suppose that both g and f have finite directional derivatives at
the feasible point a in A. Then

(i) a is optimal for (P) if and only if
(ii) there is some X in (S*)+ with

(4.11) Vp(a;d)+X(Vg(a;d) + g(a))>0

for all d in D^{a) n cone(fi — a), if and only if

(4.12) (iii) Vp(a; d) < 0
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(8) Optimality for abstract convex programs 397

(4.13) Vg(a; d) + g(a) e -Sf

(4.14) d G D^-iyd) n cone(« - a)

was no solution d in X.

PROOF, (i) =* (ii) follows from (4.7) and (4.8) on taking directional derivatives
and observing once more that cone(y4^ — a) = D^(a) n cone(fi - a).

(ii) => (iii) is immediate.
(iii) => (i). If a G A is not optimal one can find d with p{a + d) < p(a) and

a + d in A. Then as g is S^-convex on /I

(4.15) Vg(a; d) + g(a) G - 5 / + g(a + d) c - S y

and

(4.16) V/»(a; <0 < />(a + d) - p(a) < 0.

Finally that d satisfies (4.14) is clear. A little more work allows one to replace Sf

by ri Sf.

In certain cases the multiplier X in (4.7) may be supposed to be in S+, as in
the standard Lagrange multiplier theorem, and not just in the larger cone (S*)+.
We now characterize this situation.

COROLLARY 4.2. Theorem 4.1 and Corollary 4.1 hold, with S+ replacing (S*)+,
for all linear (S-convex) g exactly when

(4.17) S + + (Sf)x = (Sfy

or equivalently, when S is closed, if

(4.18) S+ + (S7)"1- is closed.

PROOF. (4.17) and (4.18) are equivalent by virtue of (2.9) and Proposition 3.1.
Now if (4.17) holds and X satisfies (4.7) and (4.8) one can solve X = s+ + sx

with s+ in S +, s1- in (S r ) x . Hence for any x in Af

(4.19) Xg(x) = s+g(x) + s xg(x) = s +g(x)

since g{Af) <z Sf — Sf. Thus s +g(x) may be substituted for Xg(x) in (4.6) and
(4.7).

Conversely, suppose <J> lies in (Sf)+ and let P be the orthogonal projection of
Y on Sf - Sf. Consider

(4.20) (P) n = mf{<j>P{y): -Py £ -S emdy G Y).

Then PP'\S) = PP~\Sf) = Sf and so ju = 0. Also -P-\S' - Sf) = Y so that
(4.7) yields

(4.21) §Py + X(~Py) > 0, for ally G Y.
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398 J. M. Borwein and H. Wolkowicz [91

Since we now assume that A G S + we derive that

(4.22) <f> = (<f>-\)(I- P) + \

Since <j> is an arbitrary member of (S^)+ we see that (4.17) holds.

Corollary 4.2 shows that multipliers in S+ exist whenever S is polyhedral
since this ensures that (4.17) holds, Rockafellar (1970).

EXAMPLE 4.1. Let S, = {(x,y, z): 2xy > z2, x > 0, y > 0} and S2 =

cone{5, U (1,0, 1)}.
(a) When S = 5,, there are three possibilities for S{ in (P).
(i) Slater's condition holds and 5, = S{, S{ - S{ is R3. This is standard;
(ii) S{ is a boundary ray and S{ — S{ is a single line;
(iii) S{ = {0} whence g(A) is empty or {0} while Af is also either empty or

{0}. Thus only case (ii) is interesting. Although S, is not polyhedral S,+ + (S{)x

is always closed and Corollary 4.2 is applicable. The closure of S,+ + (•Sf)"1" can
be checked directly. It also follows from the observation that the projection of
R3 on S{ - S{ sends S, to S{.

(b) When S = 52 it is possible for (4.17) to fail. Let us illustrate this with

(P2) n = min{z: (~x, 0, -z) G -S2).

This satisfies (2.1) with

p = (0, 0, 1), g =

An examination of S2, shows that g(g~^(-S2)) = -S2 is the convex cone
generated by (1, 0, 1) and (1,0, 0). S{ - 5^ is the plane y = 0 and in this plane z
is non-negative. Thus n = 0 and (4.7) yields A in (S{)+ with

(4.23) z + X(-x, 0, z) > 0, for all (x ,^ , z) G g~l(S{ - S{) = R3.

Now solving for A = (A,, A2, A3) in (4.23) yields A, = 0, A3 = 1 and so A =
(0, A2, 1) for some A2 in R. A possible A in (S{)+ is (0, 0, 1). There are no
possibilities in (52) + . Indeed as 5 , C S2

(S2)
+ c 5,+ = 5,

since 5,+ is self dual. But (0, A2, 1) G Sx implies 0 = 0A2 > (I)2 which is impos-
sible.

REMARK 4.1. (i) As in the previous example, if there is any projection of Y on
Sf - Sf which sends S to Sf, positive multipliers (in S+) will exist and (4.17)
will hold.

1
0
0

0
0
0

0
0

-1
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11 o ] Optimality for abstract convex programs 399

(ii) Although (4.17) will not hold in general there will generally be an
asymptotic version of (4.7) and (4.8). Indeed one has, for x in A1 and X in (Sf) + ,
(4.24) Xg(x) = Hm sn

+g(x)

for appropriate s* in 5 + . Indeed when S is closed

(y = s+

always holds.

COROLLARY 4.3. Suppose that (4.17) holds. Suppose also that S is closed and
pointed with p and g continuous at a and g S-convex on X with X a weakly
compactly generated Banach space. Then a & A is optimal if and only if

(4.25) 0 G dp(a) + s + dg(a) - ( ^ ( a ) n cone(fi - a)) +

for some s+ in S+ with s +g(a) = 0.

PROOF. Since (4.17) holds it follows from (4.7) and (4.8) that for some s+ in
S +

(4.26) 0(Ed(p + s+g+ iA,){a)

where iAi{x) is the indicator function of A1: that is iAAx) is 0 in A* and +oo
elsewhere. Sincep and s+g are continuous at a and iAi is finite at a

(4.27) 0 G dp(a) + d(s+g)(a) - (Dfia) n cone(fi - a)) +

since (D^ia) n cone(fi - a))+ is -diA/(a) (see Rockafellar (1970a), Corollary
23.5.4). It remains to observe that

d(s+g)(a) = s + dg(a).

This follows from the central result in Zowe (1974) or (2.13).

It is possible to formulate a version of Corollary 4.3 without assuming (4.17)
to hold. One may do that by restricting attention entirely to g! rather than g. We
can now easily establish the following duality theorem. Define / / , the restricted
Lagrangian by

(4.28) Z/(X) = inf{/>(*) + Xg(x): x e A1}

and the restricted dual problem {Df) by

(4.29) (Df) d = sup { Z/(X): X <E (Sf)+ }.

Then (D*) is a concave optimization problem and one obtains

THEOREM 4.2. (Restricted Strong Duality). When (P) has a finite optimum,

(4.30) inf {/>(*): *(*) G S , x G fi} = max{Z/(X): X G ( S ' ) * } -

Moreover, if (4.17) /io/*, ( S ' ) + way be replaced by S+ in (4.29) and (4.30).
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PROOF. It suffices to observe that for any X in (S^)+ and any x in A

(4.31) Z/(X) </>(*)•

Thus n > d. Now Theorem 4.1 guarantees the existence of X in (S^)+ with
> ft. This yields (4.30). The final conclusion follows from Corollary 4.2.

It seems worth noting that while weaker constraint qualifications can be used
to derive Lagrange multiplier theorems, Slater's condition is the weakest con-
sistent with a bounded set of Lagrange multipliers, Gauvin and Tolle (1977) and
Zowe and Kurcyusz (1978). We only prove the following:

COROLLARY 4.4. Let Af denote the {non-empty) solution set for (Df). Then A*
considered as a subset of (S* — Sf)* is compact.

PROOF. It is easily verified that A-̂  is closed. Now let x E A with g(x) G
-ri Sf. Let No = {x <E Sf - Sf: \\x\\ <S}, where 8 > 0 and || • || is Euclidean
norm, be a bounded symmetric neighbourhood of 0 in S* — S* with g{x) + No

C -Sf. Then g(x) + Sf contains Â o and it follows that

p(x) + X(n0) > n

for any A in A^ and n0 in No. Since Â o is symmetric

(4.32) \\\\\No= sup \X(no)\ < p(x) - M.

Now || - J| ̂ v is a norm on (S* — Sf)* and as Sf - Sf is finite dimensional,
induces the original topology on S^ — SA Thus Af is bounded.

Finally let us observe that the considerations of this section apply immediately
to programs in which g and 12 are convex but p is not. One such case, in which p
is quasiconvex, has been studied in Luenberger (1968) and Borwein (1977).

5. Vector optimization

The substance of section four involves only the constraint structure and not
the objective function. It is relatively straight forward to extend the results of the
last section to various types of vector optimization. We suppose/?: X—*Z is
AT-convex where Z is a partially ordered topological vector space ordered by a
convex cone K. We consider three types of vector optimum and sketch the
extensions.
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[12] Optimality for abstract convex programs 401

DEFINITION 5.1.;? we say has a weak minimum over ,4 at a in A if

(5.1) A n {x:p(x) - p(a) G -int K) = 0.

In this case one may separate the convex sets p(A) + K and p(a) — int K by
some non-zero functional k+ in K+ (assuming of course that int K is non-
empty). It follows that

(5.2) (P+) min{k+p(x): g(x) G -S, x G fl}

is an equivalent scalar problem to which the results of section four may be
applied. Note also that any optimum for (Pk+) is automatically a weak-optimum
for p over A. The reader is referred to Borwein (1980a) or Penot (1978) for
further details.

DEFINITION 5.2. We say p has a Pareto minimum or efficient solution over A at

am A if

(5.3) A n {x:p(x) - p(a) G -AT \ 0} = 0.

If int AT is non-empty any Pareto optimum is a weak optimum. If K has a
weakly-compact base and a is a proper efficient point, Geoffrion (1968), Penot
(1978), Borwein (1977a), Borwein (1980a), then there is a strictly positive multi-
plier k+ in K+ (that is k + {k) > 0 if k ¥= 0 G K) such that a minimizes (Pk+),
given by (5.2). Again, conversely, any minimum of (Pk+) with k+ strictly positive
yields a proper efficient point for p over A.

DEFINITION 5.3. We say p has a strong minimum over A at a if

(5.4) ,4 c {*:/>(*) £/>(<») + * } •
Clearly any strong minimum is a Pareto minimum. If K is an order complete

convex cone one may apply the duality results in Zowe (1975b) or Borwein
(1980b) to

(5.5) (VP) p{a) = mxnK{p(x):g(x) G -Sf, x G A1}

and derive the existence of a continuous linear operator T mapping Y into Z
such that

(5.6) p{x) + Tg{x) >Kp{a) for all xG/I- '

where T(5r) c A" and Tg(z) G AT c -AT.
Note that in this case the continuity of T follows trivially since Y is finite

dimensional and hence K need not be assumed normal, Peressini (1967). In this
case, as distinct from the previous two, it is critical that (VP) actually has a
Slater-point and does not just satisfy a weaker constraint qualification.

If p and g are continuous at a, (5.6) may be replaced by

(5.7) 0 G dp{a) + B(Tg)(a) - (D<(a) n cone(fl - a ) ) '
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when K is normal and CK denotes the continuous linear operators mapping C
into K.

6. Decomposition of product orderings

A generalization of the BBZ conditions, Ben-Israel and others (1976), will be
exhibited below. We begin with a preliminary series of results about product
orderings.

Consider g, S, Y, A as before but now specialized so that g, Y and S are finite
products:

(6-1) g

Thus g is S-convex exactly when each g, is S,-convex and so on. To make the
identification complete

(6.2) F u { + o o } = I I ( r , . u { + oo})
9

as long as any product elements with an infinite entry are identified. Let P̂ have
finite cardinality m.

DEFINITION 6.1.

(6-3) Sf=(-gi(A)Y.
That is: Sf is the minimal face of 5, containing -gt(A), which necessarily lies in

PROPOSITION 6.1. When A is non-empty

(6.4) II Sf = S'.
9

PROOF. Since the product of faces is a face, it is clear that Ii^S/ is a face of S
containing g(A) and hence S*. To show the converse containment it suffices to
show that

(6.5)

as containment will follow from the extremality of S^. Analogous reasoning to
Lemma 3.1, applied to g, and 5, on A, shows that since g, is S/-convex on A one
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can solve

(6-6) {&(«,-)} n - r i S / ^ 0 , a,GA.

Now set a = \/m1lk£9ak. Then for each ;' in ty

&(«) e — 2 &•(«*) " S{ (by S/-convexity),
m

C -^ &.(«,) - 5/ c -ri Sf - S{, by (6.6),

= -n Sf.

Thus

(6.7) g (a )G- I I r i S / = -

9

But since g(d) lies in -5^, (6.7) establishes (6.5).

Defining D<(a), D=(a) analogously with D^(a), D~(a) but with St replacing
5 throughout (4.1) and (4.2) we gain a decomposition result.

THEOREM 6.1. Let a lie in A.

(6-8) (a) D~{a) = fl D~{a);
9

(6.9) (b) D<(a) = f l D<(a).

PROOF. We prove only (a). Now d lies in D~{a) exactly when for some a > 0
and all 0 < a < a

g(a + ad) G Sf - Sf

= Y[S{-US{, by (6.3),
<3> 9

whence g,(a + a ^ ) lies m ^ / ~ ${ a s desired. The opposite containment is
identical since 9 is finite.

One may combine (6.3), (6.8), (6.9) and

(6.10)
9

to decompose the results in the previous sections. We will examine this for a
special case which includes the BBZ conditions and Slater's condition.
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EXAMPLE 6.1. In (6.1) let <3> = {0, 1, . . . , m - 1}. Let Yo be a finite dimen-
sional space and let Yi (1 < i < m - 1) be R and 5, (1 < i < m - 1) be R+.
Suppose A is non-empty. Then for 1 < / < m — 1, either

(6.11) gi(A) = 0 and 5 / = 0

or

(6.12) g / z O ^ O and Sf = R + .

The indices for which (6.11) holds coincide with the set of equality constraints
'3 '" used in the BBZ conditions. Indeed if / is in <3)=, then

(6.13) D=(a) = {d: 3a(d) > 0, gl{a + ad) = gi(a), 0 < « < a(d)};

(6.14) D<(a) = {d: 3a(d) > 0, gi(a + ad) < g.(a), 0 < a < a(</)};

which coincide respectively with the cones of constancy and nonincrease defined
in Ben-Israel and others (1976). If /' is not in '3 ' " , it is immediate that

(6.15) Dg~(a) = D£°(a) = cone(dom g, - a)

as Sf — Sf = I7, = R in this case. Notice also that if

(6.16) ^o(^) H m t So ̂  0 (Slater's condition)

then similarly
(6.17) D=(a) = £>g<(a) = cone(dom g0 - a).

Indeed in the case Yt = R, 5, = R + either (6.11) holds or Slater's condition
does. For general S this dichotomy fails. Suppose that a is interior to dom g, for
each / i n <3>. Then supposing (6.16) holds we derive from (4.17), (4.25) and our
discussion:

(6.18) a in A is optimal for (P)

is equivalent to
m-\

(6.19) 0 e 3/(a) + 3Xogo(a) + 2 \3&(a)
i - i

) +

for some \ in So
+ and A,, . . . , Xm_, non-negative. Letting fl be X and g0 some

constant in -int So we have rederived the dual BBZ conditions. Even here we
have an improvement in that our development allows descent cones rather than
just equality cones in (6.19) (and avoids the redundant use of conv C\<$-D~{a)).
Letting m = 1, (6.19) reduces to the classical Lagrange multiplier theorem. Note
that it is an immediate consequence of (6.4) that when all the cones involved are
either polyhedral or satisfy Slater's condition on A, then (4.17) holds and
multipliers exist in S+. Note also that Sf, Sf - S and Sf - Sf have overt
descriptions as follows from (6.4), (6.11), (6.12) and (6.16).
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The primal characterization for the ordinary convex program can also be
specialized as above. Moreover, unlike Ben-Israel et al. (1976) our results still
apply if in (P) the optimum is not attained. We may still use (6.4) to decouple
the constraint set A f.

The descent algorithms suggested in Ben-Israel and others (1976) for the
ordinary convex program have immediate application to (6.19). Indeed, in this
case it is possible to compute "3"", Abrams and Kerzner (1978), effectively and,
with suitable restrictions on g, also the relevant cones of decrease or constancy.

EXAMPLE 6.2. Proposition 6.1 and Theorem 6.1 allow one to derive the
previous results for arbitrary convex fi from the case fl = X. Indeed the
constraint set A given by

(6.20) go(x) G -So, x e Q

can be rewritten as

(6.21) g(x) = (go(x), gi(x)) e - (So, S,) = S

where g,: Af-^Ru { + 00} is the indicator function of £2 and 5, = R + . Then
from the definitions

(6.22) S& = (-go(g-l(-S))f = (-go(A)Y (in So),

(6.23) S{ = (-gl(A)Y = ( 0 / = 0 (in S,).

Now Dg~(a), D^(a) are exactly as before (with g0, So replacing g, S) while

(6.24) D~(a) = D< (a) = {d: 3a(d) > 0, gt(a + ad) < 0, 0 < a < a{d)}

= cone(S2 — a),

since g, is zero on Q and + 00 elsewhere. Hence

(6.25) D~{a) = D=(a) n cone(S2 - a)

and this intersection is convex. Thus we could have developed the results of the
previous sections only for i2 = X and then substituted (6.25) and other similar
formulae to reach the general case.

Equally if & is closed in a normed space, one can set

(6.26) g , ( x ) = i n f { | | x - « | | : w e a }

and still derive (6.24), (6.25) while keeping g, everywhere finite.

EXAMPLE 6.3. Consider (P) with X = Y = R2, S = R2
+ and S2 = X. Set

(6.27) g(xx, x2) = (x2 + x, - 1, 1 - xx).
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Then A = g~\-S) = {(1, 0)}, Sf = 0 and

(6.28) D<(\, 0) = {(«/„ d2): Ba(d) > 0, a2d* + adl < 0,

- a x , < 0, forO < a < a(d)}

= 0 = D-(l, 0).

Also

(6.29) D<(l,0)=0u{(dvd2):dl>0};

while

(6.30) D-(\,0) = 0

and

(6.31) Dg2(\,0)={{dx,d1):dl>0},

while

(6-32) D~(l,0)= {(dvd2):dx=O}.

Thus, while (6.28), confirms the promised equality of Propositions 4.1 and 6.1,
the constancy and non-increase cones differ for both g, and g2. Note, in
addition, that (6.29) shows that Dg^(l, 0) is not closed even though g, is
faithfully convex, Rockafellar (1970b). It is also reasonably easy to give exam-
ples in which Dg

={a) is not convex, Ben-Tal and others (1976). If, however, g is
differentiable we have the following general result.

PROPOSITION 6.2. Let g: X —> Y be S-convex and differentiable. Let E be a face
of S containing -g(a). Then when S is closed

(6.33) C(E) = {d: Ba(d) > 0 with g(a + ad) <E E - E for 0 < a < a(d)}

is convex. As a consequence when g is differentiable both D~(a) and D~(a) are
convex {independent of £2).

PROOF. Let d0, dx lie in C(E). Let d, = tdl + (1 - t)d0 for 0 < / < 1. Then for
small positive a

g(a + ad,) - g(a) <s tg(a + adt) + (1 - t)g(a + ad0) - g(a)

and, as g(a) lies in E,

(6.34) g{a + ad,) - g(a) GE-E-S = E-S.

In addition, for ; = 0, 1,

(6.35) Vg(a)(rf) = hm G E — E
aj.0 a
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as E - £ is closed. Thus, for a > 0,

(6.36) g(a + ad,) - g{a) >s aVg(a)d, = afVg(a)(<A) + a( l - t)Vg(a)(d0),

because g is 5-convex and differentiable.
Thus by (6.34), (6.35), (6.36)

(6.37) g(a + ad,) - g(a) e (S - E) n (E - S)

for small positive a. It follows from the extremality of E that (5 - E) n
(E - S) c E - E and the first conclusion is obtained. The second conclusion
follows on specializing E to be Sf or Sf.

7. Applications in matrix theory

Let S be the cone of m X m psd matrices in the space Y = R("I2+"1>/2
 of

m X m real symmetric matrices and suppose that we are given the matrix b in Y
and the subspace L in Rm. (By abuse of notation we also use lower case letters,
such as a, b, x, s +, to denote matrices.) Consider the problem:

, , Find the closest (in Euclidean norm) matrix to b which is
negative semi-definite (nsd) on L.

We let the inner-product in Y be, where tr denotes trace,

(x,y} = tr xy.

We now solve (7.1) by considering the problem as a programming problem and
using the fact that every symmetric matrix can be diagonalized by a unitary
transformation (of eigenvectors). Recall that 5 is self dual, Berman and Ben-
Israel (1969).

THEOREM 7.1. Suppose that the matrix b in Y and the subspace L in Rm are
given. Then the unique closest matrix (in Euclidean norm) to b which is nsd on L is

(7.2) a = UA_U' + 9b,

where: PLbPL = UAU' = UA+U' + UA_U'; PL is the (orthogonal) projection
in Y on the subspace L in Rm; U is a unitary matrix of eigenvectors; A is the
diagonal matrix of eigenvalues; A + and A_ are the diagonal matrices of positive
and negative eigenvalues; and the projection

9 • = I - PL- PL

PROOF. Choose an m X m matrix D, not necessarily symmetric, such that

(7.3) L = <&(/)),

where f̂l(Z>) is the range of D. Now x in Y is nsd on L if and only if y = D'xD
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is nsd, since

(7.4) (D'xDa, a) = (x(Da), (Da)), a G Rm.

Thus our problem is equivalent to the abstract convex program

| minimizep(x) = \\\x - b\\2

[subject to g(x) = D'xD G -S, x G X,

where X = Y. Let us solve (P) using Corollary 4.3. Since L need not be all of
Rm, the matrix D may be singular in which case Slater's condition fails for (P).
Let

(7.6) P = projection on 9l(D),

where 9l(Z>) is the null space of D. First, we show that

(7.7) S ' = S n { i > } x .

We need only show that, see Barker and Carlson (1975)

(7.8) Sf= {y&S: 5L(>-) D 9l(Z>)}.

Suppose -y G g(F), i.e. -y = g(x) = D'xD G -S. Then 9l(>>) D 9l(Z>) is
clear. Conversely, suppose^ G - 5 and 91 O>) D 9L(£>). We need to find x such
that 7 = D'xD. Choose

(7.9) x = DnyD\

where f denotes the generalized inverse, Ben-Israel and Greville (1973). Then

D'xD =

= y, since 9i(y) D

Thus we have shown that

(7.10) -g(F)(ZSn {P}± C-g(F)

which proves (7.7). In fact, we get that

(7.11) ~g(F)=S'.

Moreover,

(7.12) (/ - P)S(I - P) = Sf.

For if y = (/ - P)s(I - P) and s G S, then 9l(j>) D 91(7 - P) = <&(P) and
7 G S which implies that^ G Sf. Conversely, if y G Sf, then

^ = -D'xD, for some x G A" by (7.11)

= - (/ - P)D'xD(I - P), since I - P = P<
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Thus (7.12) exhibits a projection of S onto Sf. This implies that Corollary 4.3 is
applicable and we conclude that a solves (P) if and only if

(7.13) 0 e Vp(a) + Vs+g(a) - {Dg-{a))+ ,

for some s+ G S+ and g(a) G - 5 with s+g(a) = 0. Now, by (4.1) and linearity
of g, we get

Dg
m(a) = {d: D'dD G Sf - Sf) = X,

since

Sf - S / = (/ - P)(S - S)(I - P), by (7.12)

= (I - P)Y(I - P)

and I - P = Pg^o-y Therefore, (7.13) becomes

(7.14) b = a + Ds+D',g(a) G -S,s+ G 5 + ,

and

(7.15) tr s+D'aD = 0.

Set

(7.16) a = UA_U' + 9b

and

(7.17) s+

Then

g(a) = D'aZ)

= D'(PLUA_U'PL

by the definitions in the statement of the theorem,

= D'UAM'D, since L = <&{D)

G -S, since A_ is diagonal and nsd;

s+ G S + = 5, since A+ is diagonal and psd;

a + Ds+D' = 9b + UAU', since t /A + t / ' = PLUA+U'PL,

and
tr s+D'aD = tr Ds+D'a

= tr UA+U'a

= tr 0 = 0,

since PL • PL and "5P are orthogonal projections, A + A_= 0 and <3l(t/A+t/') c
L.
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Thus (7.14) and (7.15) are satisfied and a, given in (7.16), solves (P). The

uniqueness follows by strict convexity of p.

The theorem gives the following unique decomposition of a symmetric matrix.

COROLLARY 7.1. Suppose that b is a real m X m symmetric matrix and L is a

subspace of Rm. Then b can be decomposed uniquely as

b = c + d with tr cd = 0,

where c is nsd on L, d is psd and <3l(d) C L.

PROOF. Set c = a and d= Ds+D' in (7.14). Then c is nsd on L since

D'aD <E -S. Moreover, <&(</) c L, since 9l(rf) D 9l(Z?') = L x , and d is psd

since J + is psd.

Note that if L = R"\ then we get the unique decomposition of b into

orthogonal psd and nsd matrices.
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