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Abstract

Given a class � of curves in [0, 1]2, we ask: in a cloud of n uniform random points, how
many points can lie on some curve γ ∈ �? Classes studied here include curves of length
less than or equal to L, Lipschitz graphs, monotone graphs, twice-differentiable curves,
and graphs of smooth functions with m-bounded derivatives. We find, for example, that
there are twice-differentiable curves containing as many as OP (n1/3) uniform random
points, but not essentially more than this. More generally, we consider point clouds in
higher-dimensional cubes [0, 1]d and regular hypersurfaces of specified codimension,
finding, for example, that twice-differentiable k-dimensional hypersurfaces in R

d may
contain as many asOP (nk/(2d−k)) uniform random points. We also consider other notions
of ‘incidence’, such as curves passing through given location/direction pairs, and find,
for example, that twice-differentiable curves in R

2 may pass through at most OP (n1/4)

uniform random location/direction pairs. Idealized applications in image processing and
perceptual psychophysics are described and several open mathematical questions are
identified for the attention of the probability community.
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1. Introduction

Several well-known games in popular culture require a player to travel through an arena scat-
tered with ‘goodies’ and to gather as many of them as possible in a given amount of time; exam-
ples include the 1960s television show Supermarket Sweep (see http://www.supermarketsweep.
com/) and the 1980s video game PacMan (see, for example, http://www.miniclip.com/pacman.
htm).

Consider a geometric probability problem. Suppose that we have n points, X1, . . . , Xn,
scattered uniformly at random in the unit square [0, 1]2. We try to visit as many points as
possible while traveling a path with total length less than or equal to λ. This problem is similar
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to the above-mentioned popular games, if we think of the goodies as being located at the
points Xi , and imagine ‘participants’ traveling at unit speed for a length of time less than or
equal to λ. The probability problem is to estimate the maximal number of points we can visit,
i.e. to determine how many goodies we could typically gather by following the best possible
path among (some subsets of) the random points.

To answer this question formally, we introduce some notation: let Xn = {X1, . . . , Xn} and
let Cλ be the class of rectifiable curves of length less than or equal to λ. For a curve γ ∈ Cλ,
let Xn(γ ) be the number of points Xi found along γ . Let Nn(Cλ) = max{Xn(γ ) : γ ∈ Cλ}.
In this paper we will establish the following theorem.

Theorem 1. For each λ > 0,

P{ 1
5λ

√
n ≤ Nn(Cλ) ≤ 17λ

√
n} → 1, n → ∞.

We mention this result not because it is our principal aim in this paper – it is actually an easy
warm-up exercise – but to make concrete the kind of result we pursue in this paper.

1.1. Generalization

This ‘Supermarket Sweep/PacMan’ problem is a particular instance of a class which we call
connect-the-dots (CTD) problems. In each such problem, we have a uniformly scattered set of
points and a class, �, of curves, γ , and we ask for the maximum number of points on any curve
γ ∈ �. In the case just discussed � = Cλ, the collection of all finite-length curves with length
at most λ, and we get order-of-magnitude estimates OP (λ

√
n).

Before continuing with a technical discussion, we comment on our terminology. To avoid
confusion, we mention that CTD terminology is currently used in popular culture in two different
ways, evoking different responses. On one hand, the term is used in discussing a classic
children’s coloring-book game where a cloud of nonrandom points is presented to the budding
artist, whose task is to connect every dot in a particular sequence and see a picture emerge
– we are not thinking of this usage. We think instead of recent usage in political discourse
[30], [10], [24], where CTD refers to the identification of a small subset of facts among many
random conflicting ones, thereby detecting a subtle pattern. Thus, journalists writing in [30],
[10], and [24] all used the CTD phraseology to convey the failure of policymakers to winnow
from many apparently random pieces of information at their disposal a few specific precursors
to important events. The lengthier terminology ‘connect the dots amid heavy clutter’ would
also be appropriate, where the term ‘clutter’ evokes the many irrelevant sources of confusion
that one does not connect. The modern journalistic usage of the term CTD is broadly consistent
with our own usage, and with potential applications in signal detection and pattern recognition
(see below).

In our study of CTD problems, we will consider several choices for �: twice-differentiable
curves, graphs of functions of bounded variation, graphs of increasing functions, and graphs
of m-times-differentiable functions. We will see that, in each case, the maximum number of
points on a curve in the given class will grow asNn(�) = OP (n

ρ), where the growth exponent
ρ = ρ(�) depends on the size of the class �. Thus, we obtain the following results.

• 2-smooth curves. Let Cλ(2, κ) denote the class of twice-differentiable curves taking
values in [0, 1]2 with length less than or equal to λ and curvature less than or equal to κ ,
pointwise. Then ρ(Cλ(2, κ)) = 1

3 .

• Graphs of bounded variation. Let BVGrτ denote the class of graphs (x, f (x)) taking
values in [0, 1]2, where the total variation is ‖f ‖TV ≤ τ . Then ρ(BVGrτ ) = 1

2 .
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• Lipschitz graphs. Let LipGrτ denote the class of graphs (x, f (x)) in which f is a
function with range [0, 1] and slope controlled by |f (x) − f (x′)| ≤ τ |x − x′|. Then
ρ(LipGrτ ) = 1

2 .

• m-fold-differentiable graphs. Let DiffGrm,τ denote the class of graphs (x, f (x)) in
which f is anm-times-differentiable function with range [0, 1] and ‖f (m)‖∞ ≤ τ , where
‖ · ‖∞ is the maximum value function. Then ρ(DiffGrm,τ ) = 1/(m+ 1).

In all these results, the size of the class� enters through the growth exponent of the ε-entropy
of the class.

We generalize beyond point clouds in dimension 2 by considering the case in which Xi ,
i = 1, . . . , n, are random points in the d-dimensional hypercube, with d > 2. In this
setting, we also generalize the CTD problem from the connection of dots using curves to the
connection of dots using hypersurfaces and, more generally, k-dimensional immersions with
1 ≤ k ≤ d − 1.

We also generalize the problem from the connection of points to where we have a curve
passing through points with tangents having prescribed orientations; we call this the connect-
the-darts problem.

1.2. Motivation

The CTD problem is interesting from several viewpoints.

I. Probability theory. The CTD problem generalizes two known problems of considerable
interest among probabilists.

1. Length of the longest increasing subsequence. Suppose that we let IncrGr denote the
class of increasing curves, i.e. of sets {(x, f (x)) : x ∈ [0, 1]} in which f : [0, 1] →
[0, 1] is monotone increasing. Then Nn(IncrGr) measures the result of last-passage
percolation [4]. Also, if we writeXi = (xi, yi), letπ denote the sorting permutation (such
that xπ(1) ≤ xπ(2) ≤ · · · ), and define wi = yπ(i), i = 1, . . . , n, then Nn(IncrGr) is the
length of the longest increasing subsequence among the numbers w1, w2, . . . , wn. The
problem of determining the asymptotic behavior of the length of the longest increasing
subsequence of n such random numbers (sometimes called Ulam’s problem) attracted
considerable attention in the 1990s, with concentration of measure estimates [17], massive
computational studies [28], and, finally, results on asymptotic distributions [5]. In the
1970s, Vershik and Kerov [35] and Logan and Shepp [25] showed that, asymptotically,
Nn(IncrGr) ∼ 2

√
n. (Groeneboom [18] gave a particularly simple proof of this.) The

more delicate fluctuation distributional properties have been determined by Baik et al. [5],
who showed that the asymptotic distribution follows the Tracy–Widom distribution [34].
It turns out that similar asymptotic results hold for a different CTD problem, in which
the class � consists of Lipschitz graphs. The fact that study of the CTD problem extends
the range of such limit phenomena seems interesting per se, especially in view of other
universality results regarding the Tracy–Widom distribution [32].

2. Traveling salesman problem. Probabilists and operations researchers have been interested
for decades in the problem of determining the shortest path through every point in a cloud
of n uniform random points. This path length grows like 0.7124

√
n, where 0.7124 is

an approximation to the Beardswood–Halton–Hammersley constant [20]. The CTD
problem instead considers the maximum number of points on a curve of fixed length, λ,
independent of n. While the two problems would thus be closely connected if λ were
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variable, with λ = λn ≈ 0.7124
√
n, we do not consider this case in our approach. This

leads to differences in application and interpretation – differences that might be stimu-
lating to traveling salesman problem researchers. In addition, an interesting connection
between these two problems is described at the end of Section 2.1.2.

II. Geometric discrepancy theory. Number theorists, harmonic analysts, and numerical analysts
have long been interested in the problem of determining whether a set of points is nearly
uniformly distributed. It is standard to measure the discrepancy from uniform by comparing
the fraction of points in a set with the fraction of volume in that set, and one maximizes the
discrepancy over a class of sets (rectangles, disks, convex sets, etc.) [6], [26]. As a referee
has pointed out, CTD could be considered a variant of this approach, maximizing discrepancy
over classes of curve. Since classes of curve involve objects of zero volume, measuring the
discrepancy reduces to measuring the maximal number of points on a curve. Despite the
apparent differences – studying ‘vanishingly thin sets’ rather than ‘thick’ geometric objects –
a quantitative connection is sketched in Appendix A.8; results on CTD imply bounds on the
geometric discrepancy of random point-sets.

III. Filament detection. The CTD problem is relevant to inference problems in image analysis.
Suppose that we observe n points scattered about the unit square. Consider the hypothesis
testing problem, in which

• under hypothesis H0, the points are independent, random, and uniform on [0, 1]2, and

• under hypothesis H1,�,n, the vast majority of the points are again independent, random,
and uniform on [0, 1]2, but a small fraction εn of points are actually uniformly sampled
at random along an unknown curve γ ∈ �.

This inference problem models data given as the output of a spatially distributed array of
detectors, such as particle detectors in high energy physics [1] or, more recently, sensor
networks forming a smart dust [21]. Sensor alarms caused by ‘background’are ‘false detections’
uniformly scattered in space; sensor alarms caused by something interesting (a particle or
intruder) are scattered along the path of the interesting object, but immersed in the irrelevant
‘clutter’ of these false detections.

It is clear that, if the fraction εn defining the alternative hypothesis exceeds the typical
behavior for Nn(�)/n under H0, then reliable detection is possible. A sketch of the idea
is illustrated in Figure 1, which shows three examples of scattered points in [0, 1] and the
corresponding CTD solution. In each case the class, �, of curves is the set of Lipschitz graphs.
Panels (a), (c), and (e) show the point-sets only, while panels (b), (d), and (f) show the maximal
Lipschitz curves, with 31, 35, and 54 points, respectively, out of a total of n = 500 points.
Panel (a) shows a uniformly distributed random point-set. Panels (c) and (e) show clouds with
a small number of points on a Lipschitz curve, in addition to uniform random points. It seems
unlikely that visual inspection would detect nonuniform structure in (c) (compare (a)); however,
a statistical test based on CTD counts can reliably establish its presence. Hence, it is of some
interest to determine the asymptotic behavior of Nn(�), as we do in this paper. For more on
such problems, see [2] and [19].

IV. Vision research. An interesting stream of vision research started with the experiments
described in [16] and [23]. Both experiments presented specially prepared images to human
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(f) Maximal Lipschitz curve

Figure 1: Examples of connect-the-dots.

subjects, who were asked to (quickly and reflexively) judge whether the images were ‘purely
random’ or ‘contained a curve buried in clutter.’ In detail, the images showed a collection
of graphical elements that, like in the signal detection problem mentioned above, were either
purely randomly scattered or else contained, in addition to randomly scattered points, a small
fraction scattered along a curve.

Compare Figure 2: a special feature of this experiment was that the graphical elements were
not points, but instead oriented patches. Panel (a) shows a collection of n = 200 darts taking
uniform random positions and directions, panel (b) shows the maximal Hölder-2 function with
first-order contact, and panel (c) extracts this function and its points of contact. Panels (d)–(f)
are similar to panels (a)–(c), except that 15 of the 200 points are now nonuniform; they are
chosen to be in first-order contact with a specific Hölder-2 function. In both cases, the Hölder
constant is β = 15. The power of the test is nearly 1.

In one experiment, the patches were used as if they were simply points; their orientation was
meaningless and chosen at random. In another experiment, the patches were used as tangents,
i.e. when points were sampled from a curve, the patches were chosen tangent to the curve.
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Figure 2: Examples of connect-the-darts.

A question of particular interest to vision researchers is, how does the detection performance
of the human visual system compare to that of an ideal observer – a mathematically optimal
detector? Our results provide such an ideal observer with which to compare human performance.
They also explain why the second experiment is substantially easier for humans than the first.
Indeed, the second experiment involves not just passing through points, but passing through
points at given angles. The growth exponents ρ are smaller in such cases; this provides a
rigorous and quantitative sense in which one can say that detection exploiting orientations can
be more sensitive than detection based on points alone.

1.3. Contents

Our aim in this paper is to formalize a class of problems in stochastic geometry and give
some initial results and methods. Accordingly, in Section 2 we provide a concrete approach
to determining growth exponents for the class of curves of bounded length and curves of
bounded curvature. Our concrete arguments use discrete structures found useful in building
the algorithms in [2]. Then, in Section 3, we develop an abstract approach based on ε-entropy
that allows us to efficiently derive growth exponents in a wide range of classes; examples
such as graphs of smooth functions and graphs of bounded variation functions are also given
in that section. In Section 4, we apply this abstract machinery to the connect-the-darts case.
Our main question about this class of problems concerns the set of questions beyond growth
exponents. In Section 5, we consider the question of whether Nn(�)/nρ tends to a limit in
probability, and the behavior of the fluctuations of Nn(�). Such results are known in the case
of longest increasing subsequences, mentioned above, and we review evidence indicating that
they hold more generally. We point out that a simple application of a concentration-of-measure
result of Talagrand controls the standard deviation of Nn(�) and gives exponential bounds on
fluctuations of Nn(�) − median{Nn(�)}. Perhaps some probabilists will be inspired by this
article to complete the picture and derive more detailed distributional properties of Nn(�).
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Figure 3: A rectifiable curve γ and its associated piecewise-linear path πn(γ ).

2. Concrete approaches

We begin by discussing concrete methods for estimating the order of growth of Nn(�), for
two specific choices of �.

2.1. CTD with bounded length

First consider the case � = Cλ mentioned in Theorem 1. We consider upper and lower
bounds for Nn(Cλ) separately.

2.1.1. Upper bound. We construct a graph Gn = (Vn, En), associate paths in the graph with
tubular sets in the plane, and estimate the numbers of points in such tubes. The vertex set Vn
corresponds to the grid points {(k1ε1, k2ε1)} with integer ki such that 0 ≤ k1, k2 ≤ √

n = 1/ε1.
Consider the line segments joining grid points (k1ε1, k2ε1) and (k′

1ε1, k
′
2ε1), with the restriction

that |k′
1 − k1| ≤ 1 and |k′

2 − k2| ≤ 1. These line segments form the edges En of our graph Gn.
We permit k′

i = ki, i = 1, 2, in which case the line segment consists of the single point (k1, k2).
In this graph, a path π is a sequence of vertices in Vn connected by edges in En. Such a path

π has an image Im(π) in the unit square, defined as the ε-neighborhood (in Hausdorff distance)
of the union of the line segments that π traverses, where ε = 5

4ε1. The choice of ε comes from
the proof of Lemma 1, as follows.

Lemma 1. Fix λ > 0 and assume that n > n0 is sufficiently large. For each curve γ ∈ Cλ,
there is a pathπ through Gn whose image in the unit square covers γ , i.e. γ ⊂ Im(π). Moreover,
π may be chosen (π = πn(γ )) so that it traverses at most λ

√
n+ 1 vertices.

Proof. See Figure 3. Fix γ ∈ Cλ and choose a unit-speed parametrization denoted by
γ ([0, 
]), where 
 = length(γ ). Consider a 1

2ε1-covering of [0, 
], denoted by {sj : j =
1, . . . , J }, chosen so that J ≤ 
/ε1 + 1 ≤ λ/ε1 + 1. For each j = 1, . . . , J , let bj be a closest
grid point to γ (sj ). Note that |γ (sj )− bj | ≤ ε1/

√
2. Since

|bj+1 − bj | ≤ |γ (sj+1)− bj+1| + |γ (sj+1)− γ (sj )| + |γ (sj )− bj |
≤ ε1√

2
+ ε1

2
+ ε1√

2
< 2ε1,

the line segment [bj , bj+1] is in En. Therefore, we may define π to be the path b1, . . . , bJ .
Moreover, since

max{|γ (s)− γ (sj+1)|, |γ (s)− γ (sj )|} ≤ 1
2ε1
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for sj ≤ s ≤ sj+1, the piece of curve γ ([sj , sj+1]) is within Hausdorff distance 1
2ε1+ε1/

√
2 <

5
4ε1 of the edge [bj , bj+1]. Thus, π passes through at most λ

√
n vertices and its image

contains γ . This completes the proof.

We extend our definition ofXn(S) so that, whenever S is a subset S ⊂ [0, 1]2, not necessarily
a curve, we have Xn(S) = card{i : Xi ∈ S} (i.e. the size of S), and so that, whenever S is a
collection of subsets S ∈ [0, 1]2, not necessarily a collection of curves, we have Nn(S) =
max{Xn(S) : S ∈ S}. Also define Yn so that if π is a path in Gn, then Yn(π) = Xn(Im(π));
and for � a family of paths, let Mn(�) = sup{Yn(π) : π ∈ �}.

Now let
�nλ = {πn(γ ) : γ ∈ Cλ}.

It follows, from our definition of Yn and the previous lemma, that Nn(Cλ) ≤ Mn(�
n
λ),

which in turn implies that

P{Nn(Cλ) > Bλ
√
n} ≤ P{Mn(�

n
λ) > Bλ

√
n}.

Since �nλ is finite, Boole’s inequality gives, for all B > 0,

P{Mn(�
n
λ) > Bλ

√
n} ≤ card(�nλ) max

π∈�nλ
P{Yn(π) > Bλ

√
n}.

Lemma 2. For n > n0(λ), Yn and �nλ have the following properties.

1. card(�nλ) ≤ 1.1n · 9λ
√
n.

2. For any path π ∈ �nλ, Yn(π) ∼ bin(n, |π |), where bin(n, p) denotes the usual binomial
distribution and |π | is the area of Im(π); moreover, |π | ≤ 6λ/

√
n.

Property 1 simply combines the fact that every element in�nλ is a chain of at most λ
√
n+ 1

vertices with the observations that, from each vertex, there are (at most) nine possibilities for
the next vertex on the path, and that there are (

√
n+ 1)2 ≤ 1.1n possible starting vertices (for

sufficiently largen). In property 2, Im(π) is contained in the union of the 5
4n

−1/2-neighborhoods
of the line segments that π connects; there are no more than λ

√
n + 1 such regions and each

one of them has area not exceeding (
√

2ε1 + 2ε)ε ≤ 11/2n.
Using this lemma, we obtain the bound

max
π∈�nλ

P{Yn(π) > Bλ
√
n} ≤ P{bin(n, 6λ/

√
n) > Bλ

√
n},

which is valid for all B > 0. Hoeffding’s inequality [31] gives us control over the tail of the
binomial distribution.

Lemma 3. For C > 2,
P{bin(n, p) > Cnp} ≤ ϕ(C)np,

where

ϕ(C) = exp

(
−3(C − 1)2

2(C + 2)

)
.

We immediately find that, for B > 1 and n > n0(λ),

P{bin(n, 6λ/
√
n) > Bλ

√
n} ≤ ϕ( 1

6B)
6λ

√
n.
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Combining all the above, we have

P{Nn(Cλ) > Bλ
√
n} ≤ 1.1n · 9λ

√
nϕ( 1

6B)
6λ

√
n

= 1.1n exp(−λ√n(−6 log(ϕ( 1
6B))− log(9))).

We now choose B = 17, so that −6 log(ϕ( 1
6B)) > log(9), making the right-hand side tend to 0

as n tends to infinity. This proves the upper bound in Theorem 1.
We remark here that the general idea of the upper bound proof is to find a sufficiently small

set of regions (property 1), each of which is of sufficiently small area (property 2) that every
curve in the class is contained in a region. The abstraction in Section 3 treats the regions as
a set of ε-balls in the associated Hausdorff metric, such that they cover the class of curves.
Property 1 corresponds to the volume of each ε-ball being sufficiently small, and property 2
corresponds to the ε-entropy (the logarithm of the least number of balls in an ε-covering) being
sufficiently small.

2.1.2. Lower bound. To control Nn(Cλ) from below, we start from the n random points in Xn.
We analyze these points and extract a random subset of Jn,λ ordered points, p1, p2, . . . . We
connect successive points by linear interpolation, argue that the result has length less than or
equal to λ, and then show that, with probability tending to 1, Jn,λ ≥ Aλ

√
n.

To extract the points, subdivide [0, 1]2 into ε1 × ε1 squares as in Section 2.1.1. We define a
zigzag ordering of the squares, starting in the upper-left corner as shown in the following array:

Q1 Q2 Q3 Q4

Q8 Q7 Q6 Q5

Q9 Q10 Q11 Q12

Q16 Q15 Q14 Q13

Let I = {i : Xn(Qi) ≥ 1}, indexing the nonempty squares. For each i ∈ I , pick one
distinguished point pi ∈ Qi . We arrive in this way at a well-defined sequence of points (pi).
Connect successive points by linear interpolation, stopping just when the total length of the
curve reaches λ. Denote the constructed curve by γn,λ. It is random, as its construction depends
on Xn, and certainly belongs to Cλ.

Let Jn,λ denote the (random) number of nonempty squares in the first 
λ√n/√2� squares
of our ordering. Even if all the squares in this initial set were nonempty, connecting points
associated with such squares could not lead to a length exceeding λ. Hence, Yn(γn,λ) ≥ Jn,λ
and, so, Nn(Cλ) ≥ Jn,λ. Now, Jn,λ is essentially a binomial random variable; elementary
calculations, given in Appendix A.1, show that the following lemma holds.

Lemma 4. P{Jn,λ ≥ 1
5λ

√
n} → 1 as n → ∞.

The lower bound in Theorem 1 follows.
The above probabilistic analysis used a ‘selection plus interpolation’ (select–interpolate)

approach that can serve as a common framework in later results. In this particular setting,
a nonprobabilistic analysis is also possible, invoking previous research about the traveling
salesman problem. In 1955, L. Few proved that, given n points on a unit square, there is a curve
of length not exceeding

√
2n+ 7

4 that traverses all the n points [15]. Divide such a path into
m = �(√2n+ 7

4 )/λ� consecutive pieces γ1, . . . , γm, with lengths less than or equal to λ. By
definition, Nn(Cλ) is larger than each Xn(γi) and, so, larger than their average. Hence,

Nn(Cλ) ≥ Xn(γ1)+ · · · +Xn(γm)

m
= n

m
≈ 1√

2
λ
√
n.
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2.2. CTD with bounded curvature

We now increase the assumed regularity of our curves, controlling both the curvature and
length. Let Cλ(2, κ) denote the class of C2 curves with lengths bounded by λ and curvatures
bounded pointwise by κ . We are interested in Nn(Cλ(2, κ)).

Note that a constraint on κ may imply a constraint on the length. The ‘turning radius’ for
a curve in the plane is of course 1/κ , so, if a curve has curvature less than or equal to κ and
its image lies in [0, 1]2, then, for small enough κ , the curve will not be able to ‘wind around’
within the unit square; this constrains the achievable lengths. For a given bound κ on curvature,
let λ0(κ) give the maximum length subject to that bound. There is a threshold κ0 such that
λ0(κ) < ∞ for κ < κ0. In the extreme case κ → 0, curves in Cλ(2, κ) are almost straight;
hence, λ0(κ) → √

2 as κ → 0 and, if κ < κ0, we assume that λ < λ0(κ), ensuring that at least
one curve in Cλ(2, κ) has length greater than or equal to λ.

By imposing the curvature constraint, we dramatically reduce the maximum number of
points that can lie on a curve.

Theorem 2. There exist A,B > 0 such that, for each pair (λ, κ) with 0 < λ < λ0(κ),

P{Aλκ1/3n1/3 ≤ Nn(Cλ(2, κ)) ≤ Bλκ1/3n1/3} → 1, n → ∞.

In particular, the growth exponent ρ(Cλ(2, κ)) = 1
3 is considerably smaller than the value

ρ(Cλ) = 1
2 , which pertained when curvature was unconstrained. This is reflected in the

difference between Figure 3 and Figure 8 (see below).
We again divide the proof into separate arguments for upper and lower bounds.

2.2.1. Upper bound. As in the case of unconstrained curvature, we construct a graph, associate
paths in the graph with tubular sets in the plane, and estimate the number of points in such
tubes. The graph will have a more complex structure than before, and the association of paths
with regions in the plane will reflect the underlying reason for the ρ = 1

3 growth exponent.
Our graph Gn has a vertex set Vn with vertices corresponding to special planar line segments

called beamlets, defined as follows. We first define special collections of grid points, then join
pairs of endpoints to form our special line segments. Consider the vertical and horizontal grid
points {(k1ε1, k2ε2)} and {(k2ε2, k1ε1)}, respectively. Here 0 ≤ k1 ≤ 1/ε1 and 0 ≤ k2 ≤ 1/ε2,
where εi = 2−mi with

• m2 = 1
3 (2�log2(n)� − 
log2(κ)�), so that ε2 ≈ κ1/3n−2/3, and

• m1 = 1
2 (m2 + k + �log2(κ)�), where k is a universal (integer) constant defined in

Appendix A.2.

Then consider line segments that join two vertical or horizontal grid points such that their
angle with the horizontal or, respectively, vertical direction does not significantly exceed 45◦;
formally, such a line segment is defined by its endpoints (k1ε1, k2ε2) and (k′

1ε1, k
′
2ε2), or,

respectively, (k2ε2, k1ε1) and (k′
2ε2, k

′
1ε1), with the restriction that

|k′
1 − k1| = 1 and |k′

2 − k2| < ε1

ε2
+ 1.

Such line segments will be respectively called horizontal or vertical beamlets; see Figure 4.
Roughly speaking, the beamlets have lengths comparable to n−1/3 and slopes chosen from a
grid of spacing � n−2/3, i.e. the spacing has an asymptotic order of n−2/3.
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(a) (b)

Figure 4: Panel (a) shows all the horizontal beamlets passing through a vertical grid point, while panel (b)
shows all the vertical beamlets passing through a horizontal grid point.

Figure 5: Diagonal beamlets passing through a vertical grid point.

We also consider line segments joining vertical and horizontal grid points belonging to the
same square and making an angle close to 45◦ with the horizontal direction; formally, such a
line segment is defined by its endpoints (k1ε1, k2ε2) and (k′

2ε2, k
′
1ε1), with the restriction that,

if k2 = k21ε1 + k22ε2 with 0 < k22 < ε1/ε2,

• k′
1 = k21 or k′

1 = k21 + 1, and

• |k′
2 − (k1ε1/ε2 + k22)| ≤ 1 or |k′

2 − (k1ε1/ε2 − k22)| ≤ 1.

Such line segments will be called diagonal beamlets; see Figure 5.
The set of vertices Vn is made up of all beamlets defined above. They provide an efficient,

dyadically organized, multiscale, multiorientation organizational structure. The graphical
structure we build using them is a variant of the beamlet graph defined in [12], [3], and [11].

The set of edges in Gn, which is denoted by En, links any two line segments in Vn that
are in ‘good continuation’, which here means that their directions are sufficiently similar [2].
Formally, two horizontal beamlets connected in En are of the form

[(k1ε1, k2ε2), ((k1 + 1)ε1, k
′
2ε2)] and [((k1 + 1)ε1, k

′
2ε2), ((k1 + 2)ε1, k

′′
2ε2)],

with the restriction that |k′′
2 − 2k′

2 + k2| ≤ 2. Similar statements hold for two vertical beamlets
or two diagonal beamlets; see Figure 6. Moreover, a diagonal beamlet and a horizontal (or
vertical) beamlet are connected if they share an endpoint and are in good continuation (in the
same sense); see Figure 7.
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(a) (b) (c)

Figure 6: Panel (a) shows a horizontal beamlet and its horizontal neighbors, panel (b) shows a vertical
beamlet and its vertical neighbors, while panel (c) shows a diagonal beamlet and its diagonal neighbors.

(a) (b)

Figure 7: Panel (a) shows a diagonal beamlet and its neighboring horizontal beamlets, while panel (b)
shows a diagonal beamlet and its neighboring vertical beamlets.

In the graph Gn = (Vn, En), a path π is a sequence of vertices in Vn connected by edges
in En. Such a path π has an image Im(π) in the unit square: the tubular region defined as the
ε-neighborhood of the union

⋃
p∈π p of beamlets visited by π , where ε = κ1/3n−2/3. The

following analog of Lemma 1 is proved in Appendix A.2.

Lemma 5. For each curve γ ∈ Cλ(2, κ), there is a path π ∈ Gn such that Im(π) covers γ .
Moreover, π may be chosen (π = πn(γ )) so that it visits at most cλκ1/3n1/3 vertices of Gn.

See Figure 8.

Figure 8: A smooth curve γ and its associated piecewise-linear path πn(γ ).
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Now define�nλ,κ = {πn(γ ) : γ ∈ Cλ(2, κ)}, Yn(π) = Xn(Im(π)), and |π | = area(Im(π)).

Lemma 6. Yn and �nλ,κ satisfy the following properties.

1. card�nλ,κ ≤ cn2 · 14cλκ
1/3n1/3

.

2. For any path π ∈ �nλ,κ , Yn(π) ∼ bin(n, |π |) with |π | ≤ cλκ1/3n−2/3.

The first property comes from the facts that vertices in Gn have degree less than or equal to 14
and there are fewer than (2ε−1

1 ε−1
2 )2 ≤ cn2 vertices in total. The second property comes from

the fact that Im(π) is contained in the union of the κ1/3n−2/3-neighborhoods of the beamlets
that π connects; there are at most cλκ1/3n1/3 beamlets in π , and the κ1/3n−2/3-neighborhood
of each one has area bounded by cn−1.

With these lemmas established, the upper bound follows in the same way as in the corre-
sponding proof of Theorem 1.

2.2.2. Lower bound. Here again, as in Subsection 2.1.2, we subdivide into boxes, select one
point per box, and interpolate. Details are given in Appendix A.3.

3. Abstraction and generalization

As implied in the introduction, the two results proved so far are merely examples of a much
wider class of possible results. Here is a far-reaching example. Suppose now that X1, . . . , Xn
are points in [0, 1]d . We ask: how many of these points can possibly lie on a k-dimensional
surface with smoothness index α?

Our answer requires a more formal statement of the question.

• Forα a positive integer, let Hk,1(α, β)denote the functions {g : [0, 1)k → [0, 1)} obeying

|g(α1,...,αk)(s)− g(α1,...,αk)(t)| ≤ (α − 1)! β‖s − t‖
for all s, t ∈ [0, 1)k and all (α1, . . . , αk) ∈ N

k such that α1 + · · · + αk = α − 1. Here
g(α1,...,αk) is a partial derivative, with αi being the order of differentiation with respect to
the ith coordinate.

• For α > 1 not an integer, let Hk,1(α, β) denote the functions {g : [0, 1)k → [0, 1)}
obeying

|g(α1,...,αk)(s)− g(α1,...,αk)(t)| ≤ (
α�!)β‖s − t‖{α}

for all s, t ∈ [0, 1)k and all (α1, . . . , αk) ∈ N
k such that α1 + · · · + αk = 
α�.

Here 
·� denotes the integer part and {·} denotes the fractional part (not to be confused with the
single-member set – this will be clear from context).

Speaking very loosely, β measures the size of the αth derivative. Define, for k < d, a class
of k-dimensional immersions in R

d ,

Hk,d(α, β) = {g = (g1, . . . , gd) : gj ∈ Hk,1(α, β), j = 1, 2, . . . , d},
and consider the corresponding class of ‘surfaces’ viewed merely as point-sets,

Sk,d(α, β) = {g([0, 1)k) : g ∈ Hk,d(α, β)}.
Let Nn(Sk,d(α, β)) be the maximum number of uniform random points lying on any such
surface.
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Theorem 3. For some A,B > 0 and a function τ ≡ τ(k, d, α, β),

P{Aτn1/(1+α(d/k−1)) ≤ Nn(S
k,d(α, β)) ≤ Bτn1/(1+α(d/k−1))} → 1, n → ∞.

We could approach this by adapting our previous methods; however, we prefer to develop
an abstract upper bound, which we then apply to Theorem 3 as well as several other examples.

3.1. Upper bound (abstract setting)

Let X be a probability space with probability measure denoted by µ. Let X1, . . . , Xn ∈ X

be independent with common distribution µ. We consider S, a class of subsets of X, and let
Nn(S) = maxS∈S X

n(S), where, as before, if S ⊂ X then Xn(S) = card{i : Xi ∈ S}. Let δ be
a semimetric on X and let � be the corresponding Hausdorff semimetric on the subsets of X.
For a subset S ⊂ X, and ε > 0, let (S)ε denote the ε-neighborhood of S in the � semimetric.

We denote by H(ε) the ε-entropy of S with respect to �. Let {Si : i = 1, . . . , exp(H(ε))}
be a minimal ε-covering with respect to �. Let S ∈ S and i be such that �(S, Si) ≤ ε. By
definition, S ⊂ (Si)ε. Therefore, Nn(S) ≤ maxi Xn((Si)ε).

We measure the volume of ε-neighborhoods of sets in S as follows:

M(ε) = sup
S∈S

µ{(S)ε}.

Lemma 7. (Upper bound.) Suppose that there exist a, b > 0 and c1, c2 > 0 such thatH(ε) ≤
c1ε

−b and M(ε) ≤ c2ε
a . Then, for B large enough,

P{Nn(S) > Bnb/(a+b)} → 0, n → ∞. (1)

Proof. We just saw that

P{Nn(S) > u} ≤ P
{

max
i
Xn((Si)ε) > u

}
.

Since there are a finite number of Si , we are able to use Boole’s inequality:

P
{

max
i
Xn((Si)ε) > u

}
≤ exp(H(ε))max

i
P{Xn((Si)ε) > u}.

Now, for a given S, Xn((S)ε) follows a binomial distribution, i.e.

Xn((S)ε) ∼ bin(n, µ{(S)ε}).
Hence,

max
i

P{(Si)ε > u} ≤ P{bin(n, c2ε
a) > u},

since µ{(S)ε} ≤ c2ε
a for all S ∈ S.

Again using Hoeffding’s inequality, as in Lemma 3, and with ϕ as defined there, we have

P{bin(n, c2ε
a) > Cc2nε

a} ≤ ϕ(C)c2nε
a

.

Hence,
P{Nn(S) > Cc2nε

a} ≤ exp(c1ε
−b + c2nε

a logϕ(C)). (2)

We choose ε = εn, solving ε−b = nεa . Then, (2) becomes

P{Nn(S) > Cc2nε
a} ≤ exp((c1 + c2 logϕ(C))nb/(a+b)). (3)
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For C such that c1 + c2 logϕ(C) < 0, the right-hand side of (3) tends to 0 as n increases.
Rewriting the left-hand side of (3), we obtain

P{Nn(S) > Cc2n
b/(a+b)} → 0, n → ∞,

for C sufficiently large. Equation (1) follows upon defining B = Cc2. From the fact that
ϕ(C) ≤ exp(− 1

6C) for C > 2, we see that (1) holds for B ≥ 6 max{c2, c1}.
3.2. Application to Hölder immersions

We now use the abstract approach to prove the upper bound in Theorem 3. In that setting
X = [0, 1]d , µ is the uniform density on X, δ is the usual Euclidean distance, and� is the usual
Hausdorff distance. The classes Hk,d(α, β) and Sk,d(α, β) are as defined at the beginning of
Section 3.

Our first step is to transfer the calculation of entropies from the class of sets to the function
class. The following lemma is basically self-evident.

Lemma 8. Let f, g : [0, 1]k → [0, 1]d . Then, with f ([0, 1]k) denoting the image of [0, 1]k
under f , and similarly for g([0, 1]k), we have

�(f ([0, 1]k), g([0, 1]k)) ≤ ‖f − g‖∞. (4)

Now let Hε(Sk,d(α, β);�) denote the ε-entropy of the collection of sets Sk,d(α, β) with
respect to Hausdorff distance, and let Hε(Hk,d(α, β); | · |∞) be the ε-entropy of the function
class Hk,d(α, β) with respect to the supremum norm. From Lemma 8, we obtain

Hε(S
k,d(α, β);�) ≤ Hε(H

k,d(α, β); | · |∞), ε ∈ (0, 1).

We now recall a very well-known result on the ε-entropy of Hölder classes.

Theorem 4. (Kolmogorov and Tikhomirov [22].) For a constant, ck,d,α ,

Hε(H
k,d(α, β); | · |∞) ≤ ck,d,α(β/ε)

k/α, ε ∈ (0, 1).

Finally, we estimate the key volumetric quantity M(ε). We note the connection with the
notion of Minkowski content (see [14]). Indeed, fix S ∈ Sk,d(α, β); then

µ((S)ε)

vd−kεd−k
→ vol(S), ε → 0,

where vd−k denotes the volume of the (d − k)-dimensional unit ball and vol(S) is the
k-dimensional Hausdorff measure of S (see [14, Equation (3.2.39)]). We have the following
lemma.

Lemma 9. Fix α ≥ 1, β > 0, k, and d . Set

M(ε) = sup
S∈Sk,d (α,β)

µ((S)ε).

Then, for sufficiently small ε and a constant, ck,d ,

M(ε) ≤ ck,dβ
kεd−k.
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Proof. First notice that, if α ≥ 1, we have (by repeated integration by parts)

Sk,d(α, β) ⊂ Sk,d(1, β).

Therefore, without loss of generality, we assume that α = 1.
Let S ∈ Sk,d(1, β) and g ∈ Hk,d(1, β), such that g([0, 1]k) = S. Fix ε > 0 and take a

ε/β-covering of [0, 1]k – call it {sj : j = 1, . . . , J }. Note that J ≤ min{v−1
k (β/ε)k, 1}, where

vk is the unit ball in k dimensions. Let x ∈ (S)ε; by definition, there exists an s ∈ [0, 1]k such
that |g(s)− x| ≤ ε. Also by definition, there exists a j such that |s− sj | ≤ ε/β, which implies
that |g(s)− g(sj )| ≤ ε. Therefore,

(S)ε ⊂
J⋃
j=1

B(g(sj ), 2ε).

For d, k, and β fixed and ε small, this implies that

µ((S)ε) ≤
J∑
j=1

µ(B(g(sj ), 2ε)) = Jvd(2ε)
d ≤ c2d

vd

vk
βkεd−k.

We now combine these results with Lemma 7 to obtain the upper bound of Theorem 3.
The authors do not know an abstract lower bound technique. Using the select–interpolate

method, we give a lower bound for Hölder objects in Appendix A.4. This matches the order of
magnitude of the upper bound and completes the proof of Theorem 3.

3.3. Graphs of bounded variation

To illustrate the generality of the abstract upper bound, we now consider the class BVGrτ
mentioned in the introduction. We make use of the following theorem.

Theorem 5. (Clements [8].) Let Hε(BVGrτ ) denote the ε-entropy of the class of graphs of
functions f with |f |TV ≤ τ and |f |∞ ≤ 1, with respect to the usual Hausdorff distance. Then

Hε(BVGrτ ) ≤ Cτ/ε, ε ∈ (0, 1).

In a fashion analogous to Lemma 9, we can prove the following lemma.

Lemma 10. Fix τ > 0 and let

M(ε) = sup
S∈BVGrτ

µ((S)ε).

Then
M(ε) = O(ε), ε → 0.

Theorem 5 and Lemma 10 give us the raw ingredients to apply Lemma 7 with exponents
a = 1 and b = 1, yielding ρ(BVGrτ ) ≥ 1

2 . A matching lower bound follows immediately,
from the inclusion

H1,1(1, τ ) ⊂ BVGrτ , τ > 0,

and the monotonicity of Nn(·) under inclusion.
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3.4. Increasing graphs

For later reference, we point out a special case of BVGrτ . As in the introduction, let IncrGr
denote the class of graphs of increasing functions f with values in [0, 1]. We have the inclusion

IncrGr ⊂ BVGr1,

from which it follows that Nn(IncrGr) = OP (n
1/2). Of course, we have already pointed out

that Nn(IncrGr) = 2n1/2(1 + oP (1)) [35], [25], which illustrates that our general approach
does not give the sharpest known results in specific cases. We return to this point in Section 5,
below.

3.5. Convex graphs

Continuing to illustrate the generality of the abstract upper bound, we now consider the
class, ConvGrd , of graphs {(x, f (x))} in R

d of convex functions f : [0, 1]d−1 → [0, 1].
Theorem 6. (Bronšteı̆n [7].) Let Hε(ConvGrd) denote the ε-entropy for the class ConvGrd
with respect to the usual Hausdorff distance. Then

Hε(ConvGrd) ≤ Cdε
−(d−1)/2, ε ∈ (0, 1).

We state the next lemma without proof.

Lemma 11. Fix d and let
M(ε) = sup

S∈ConvGrd
µ((S)ε).

Then
M(ε) = O(ε), ε → 0.

Combining Theorem 6 and Lemma 11 with Lemma 7, we obtain the exponents a = 1 and
b = 1

2 (d − 1), yielding ρ(ConvGrd) ≥ (d − 1)/(d + 1). A matching lower bound follows
by a separate argument, which we omit. Notice that this exponent matches the result for
twice-differentiable surfaces: ρ(Sd−1,d (2, β)) = (d − 1)/(d + 1).

3.6. Lipschitz graphs

We now consider the class LipGrτ , also mentioned in the introduction. This may be viewed
as the special, particularly elementary case α = 1 in the scale of Hölder classes.

Now let Lipτ be the set of functions f with Lipschitz constant less than or equal to τ and
0 ≤ f ≤ 1, and let LipGrτ be the collection of graphs of such functions.

Theorem 7. (Kolmogorov and Tikhomirov [22].) LetHε(Lipτ ; | · |∞) denote the ε-entropy of
the class of functions f with Lipschitz constant less than or equal to τ and |f |∞ ≤ 1, with
respect to the usual supremum norm. Then

Hε(Lipτ ; | · |∞) ≤ Cτ/ε, ε ∈ (0, 1).

LetHε(LipGrτ ;�) denote the ε-entropy of this class of graphs with respect to the Hausdorff
distance �. Then, from (4), we have

Hε(LipGrτ ;�) ≤ Hε(Lipτ ; | · |∞), ε ∈ (0, 1).

By arguments similar to those supporting Lemma 9, we obtain our next result.
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Lemma 12. Fix τ > 0 and let

M(ε) = sup
S∈LipGrτ

µ((S)ε).

Then
M(ε) = O(ε), ε → 0.

By combining Theorem 7 and Lemma 12, we obtain the exponents a = 1 and b = 1.
Lemma 7 then gives ρ(LipGrτ ) ≥ 1

2 . A matching lower bound follows immediately, from the
inclusion

H1,1(1, τ ) ⊂ LipGrτ , τ > 0,

and the monotonicity of Nn(·) under inclusion. Our simulations and theoretical analysis show
that

Nn(LipGrτ ) = 2
√
n(1 + oP (1)).

3.7. Besov and Triebel graphs

The modern trend in studying functional classes views the traditional regularity classes based
on Hölder, Lipschitz, and Sobolev regularity simply as special cases of the more general Besov
and Triebel scales [27], [9], [13, p. 105]. It turns out that results very similar to those in the
Hölder case hold over these more general scales, even though the notion of regularity can be
quite different.

We use Bk,d
p,q(α, β) to denote classes of immersions built from Besov function classes

Bαp,q [0, 1]d in a fashion analogous to our earlier construction of Hölder graphs. Recall that
Hk,d(α, β) consists of graphs of vector functions f (x) = (f1(x), . . . , fd−k(x)) with compo-
nents fj obeying the Hölder condition ‖fj‖Hα ≤ β. In a parallel fashion, we now constrain
the components of such an f to each have Besov norm ‖fj‖Bαpq ≤ β.

In the Besov scale, α > 0 measures smoothness, while p and q are second-order parameters
measuring the ‘uniformity’ of that smoothness. Thus, Bα∞,∞[0, 1]d with α nonintegral is
equivalent to the usual Hölder class, and Bα2,2[0, 1]d is equivalent to the usual L2-Sobolev class
of smoothness α. The bump algebra B1

1,1[0, 1] is an interesting approximation to bounded
variation [27], and several other interesting spaces can be obtained by a proper choice of α, p,
and q.

We use F k,d
p,q (α, β) to denote classes of immersions built from Triebel function classes

Fαp,q [0, 1]d . Again, α > 0 measures smoothness, p and q are second-order parameters
measuring the uniformity of that smoothness, and Fα2,2[0, 1]d is the usual L2-Sobolev space of
smoothness α, while several other interesting spaces (e.g. bounded mean oscillation and H 1

[27]) can be obtained by a proper choice of α, p, and q.
We extend the notion of growth exponent slightly.

Definition 1. A sequence (Nn) has critical growth exponent ρ̂ if and only if Nn = OP (n
ρ̂+ε)

for each ε > 0 but for no ε < 0.

In Appendix A.5, we sketch the proof of the following theorem.

Theorem 8. Let α > k/p and 1 ≤ p, q ≤ ∞. Then, with � being either Bk,d
p,q(α, β) or

F k,d
p,q (α, β), Nn(�) has critical growth exponent ρ̂ = 1/(1 + α(d/k − 1)).

In fact, the most points any Besov or Triebel graph can possibly carry will be OP (nρ̂) for
ρ̂ = 1/(1 +α(d/k− 1)); also, for each ε > 0, with overwhelming probability for large n there
are graphs carrying at least nρ̂−ε points.
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4. Extension: connect-the-darts

We now generalize the CTD problem to encompass ‘higher-order’ interpolation. We suppose
that we are given a sequence of points and directions (xi, θi), where xi ∈ [0, 1]2 and θi ∈
[0, 2π), and we are interested in whether a curve of given smoothness can pass through a large
collection of such points, while taking as tangents the directions given at those points.

We say that a C2 unit-speed curve γ makes first-order contact with this point-set at
N ≡ N(γ, (xi, θi)

n
i=1) points if there are N indices 1 ≤ i1 < i2 < · · · < iN ≤ n and

corresponding arc length parameters sj such that γ (sj ) = xij and, at such intersections, the
tangent γ̇ (sj ) = exp{iθij }. This was illustrated in Figure 2, above. Thinking of the point and
direction together as a ‘dart’, we call this a connect-the-darts problem.

As mentioned in the introduction, this problem is motivated by perceptual psychophysics
[16], [23], in which human subjects are shown pictures containing many randomly oriented
objects. It may or may not be the case, in a given picture, that a small fraction of objects lie
distributed along a smooth curve, with each object oriented parallel to the curve.

In fact, this problem can be treated as an ordinary CTD problem in a more abstract setting.
Let S1 denote the unit circle, and let X = (0, 1)2 × S1. Suppose that we have n observations

Xi = (xi, eiθi )
i.i.d.∼ µ = uniform(0, 1)2 × uniform(S1),

where ‘i.i.d.’ means that the observations are independently and identically distributed. We are
interested inC2 unit-speed curves of length less than or equal toλ and curvature less than or equal
to κ . (This is the class Cλ(2, κ) that was defined earlier.) Each such curve γ in [0, 1]2 induces a
curve (γ (s), γ̇ (s)) in X. In this way, the class Cλ(2, κ) of curves induces the collection�λ(2, κ)
of corresponding point-sets. As before, for a subset S of X, write Xn(S) = card{i : Xi ∈ S}
and, for the class �λ(2, κ), write

Nn(�λ(2, κ)) = sup
S∈�λ(2,κ)

Xn(S).

Theorem 9. There are constantsA,B > 0 such that, for each pair (λ, κ) with 0 < λ < λ0(κ),
we have

P{Aλκ1/2n1/4 ≤ Nn(�λ(2, κ)) ≤ Bλκ1/2n1/4} → 1, n → ∞.

Comparing this result with the CTD problem for C2 curves, we see that incorporating the
direction-matching constraint reduces the exponent ρ from 1

3 to 1
4 . We will see below that this

difference in growth exponents is reflected in finite-sample behavior. The behavior matches
results of psychophysical experiments: for each given number of objects on a curve embedded
in clutter, the curve is far more detectable when the objects are aligned with the curves’ tangent
field than when the objects are randomly aligned.

Figure 9 displays maximal Hölder-2 curves for four random point clouds. Comparable
examples for the connect-the-darts problem were shown in Figure 2. There are noticeably
more points on the curves in Figure 9 than there are in Figure 2.

In Figure 10, the maximum number of points and darts onC2 curves in some finite simulations
are compared. The histograms demonstrate that a detector decision based on unusually many
points in a connect-the-darts problem can be dramatically more sensitive than a decision based
on unusually many points in a connect-the-dots problem. These ‘ideal observer’results correlate
strongly with the performance of humans in curve detection experiments [16]. The results are
also consistent with our theoretical results on growth exponents.
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Figure 9: Examples of maximal Hölder-2 curves, with n = 200. The Hölder constant is 30.

We will use the abstract upper bound machinery. However, this time we directly define a
metric on �λ(2, κ): for S1, S2 ∈ �λ(2, κ), define

�(S1, S2) = inf ‖γ1 − γ2‖∞, (5)

where the infimum is over γ1, γ2 ∈ Cλ(2, κ) such that

Si = {(γi(s), γ ′
i (s)) : s ≥ 0}.

It may at first be surprising that we use�, which is not sensitive to orientation; a metric like

�∗(S1, S2) = inf max{‖γ1 − γ2‖∞, ‖γ ′
1 − γ ′

2‖∞}
seems intuitively more appropriate. However, it transpires (seeAppendixA.6) that, on�λ(2, κ),
� is essentially equivalent to the less controversial discrepancy

�∗∗(S1, S2) = inf max{‖γ1 − γ2‖∞, ‖γ ′
1 − γ ′

2‖2∞}.
We first derive a bound on Hε(�λ(2, κ);�), the ε-entropy of �λ(2, κ) for the metric �.

Lemma 13. There is a constant c1 > 0 such that, for each pair (λ, κ) with 0 < λ < λ0(κ)

and 0 < ε < ε0(λ, κ), we have

Hε(�λ(2, κ);�) ≤ c1λκ
1/2ε−1/2.

Proof. To prove the lemma, recall that the metric� introduced in (5) ignores the orientation
component. Hence, we have the identity

Hε(�λ(2, κ);�) = Hε(Cλ(2, κ);�),
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Figure 10: Histograms for the maximal number of points on a Hölder-2 curve (panel (a)) and the maximal
number of darts tangent to a Hölder-2 curve (panel (b)). The sample size, n, is shown in each chart. The

Hölder constant is chosen to be 30 in all cases.

where, on the right-hand side, � denotes Hausdorff distance with respect to the Euclidean
distance.

From here, we use the graph Gn constructed in Section 2.2.1, but with

m2 = 
log2(1/ε)�
so that ε2 ≤ ε. In the proof of Lemma 5 (in Appendix A.2), we see that a curve γ ∈ Cλ(2, κ)
is contained in the ε2-neighborhood of its associated path πn(γ ). Since there are at most

c(ε1ε2)
−1 · 14cλ/ε1 ≤ cκ1/2ε−3/2 · 14cλκ

1/2ε−1/2

such paths, we have, for 0 < ε < ε0(λ, κ),

Hε(Cλ(2, κ);�) ≤ c1λκ
1/2ε−1/2.

We next estimate the order of magnitude of

M(ε) = sup{µ((S)ε) : S ∈ �λ(2, κ)},
with (S)ε the ε-neighborhood of S with respect to �. For the proof, see Appendix A.6.

Lemma 14. There is a constant c2 such that, for each pair (λ, κ) with 0 < λ < λ0(κ) and
0 < ε < ε0(λ, κ), we have

M(ε) ≤ c2λκ
1/2ε3/2, ε → 0.

Now, by applying Lemma 7 with exponents a = 3
2 and b = 1

2 , we obtain the upper bound
presented in Theorem 9. To establish a matching lower bound with the same growth exponent,
we use the (by-now-familiar) select–interpolate method. For details, see Appendix A.7.
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5. More precise asymptotics

So far, we have only mentioned general ‘rate’ results, e.g. Nn(�) = OP (n
ρ(�)). The

following refinements seem plausible.

1. Scaling laws for centering. Nn(�)might fluctuate around a center obeying the power-law
scaling principle

median{Nn(�)} = Anρ(1 + o(1))

for some A > 0, with growth exponent ρ = ρ(�).

2. Negligible fluctuations. The fluctuations might be relatively small, i.e.

|Nn(�)− median{Nn(�)}| = oP (n
ρ).

In this section, we summarize evidence supporting such refinements. In particular, the relative
negligibility of fluctuations can be strengthened and proven in considerable generality.

5.1. Longest increasing subsequence

As mentioned in the introduction, in the 1990s there was intense interest in understanding the
longest increasing subsequence problem. This is essentially the CTD problem with� = IncrGr,
the class of increasing graphs. In this case, we know that for Nn ≡ Nn(IncrGr), the longest
increasing subsequence,

• median{Nn} ∼ 2
√
n (see [35] and [25]);

• |Nn − median{Nn}| = Op(n
1/3) (see [17]); and

• (Nn − E{Nn})/SD{Nn} has the Tracy–Widom distribution [5].

Thus, for example, the mean, the median, the standard deviation (SD), and even the (non-
Gaussian) shape of the limit distribution are known.

While the longest increasing subsequence problem is undoubtedly very special, it has
connections to problems in quantum gravity, random matrix theory, and growth in random
media, so there appears to be some universality to the conclusions. As it turns out, properties
like those seen in the longest increasing subsequence problem appear to hold in at least one
other CTD problem.

5.2. Lipschitz graphs

Consider the collection of Lipschitz graphs LipGr1, mentioned both in the introduction and
in Section 3.6. We have observed the following properties for Nn ≡ Nn(LipGr1):

• median{Nn} ∼ 2
√
n, both empirically and in theory;

• |Nn − median{Nn}| = Op(n
1/3), empirically; and

• (Nn − E{Nn})/SD{Nn} has the Tracy–Widom distribution, empirically.

These properties are entirely analogous to those in the longest increasing subsequence
problem. The similarity has a simple explanation. There is a simple transformation that maps
one problem onto a variant of the other, and the variation seems not to affect these characteristics;
see [19]. Furthermore, the fact that we have nice centering and fluctuation properties for at
least two CTD problems encourages us to suppose that such nice properties might hold in many
other CTD problems.
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Figure 11: Histograms of the maximal number of points on Lipschitz graphs for uniform random samples
of different sample sizesn. The values ofNn(LipGr1) are divided by

√
n. Clearly, the median is converging

to 2
√
n. Statistical analysis shows that the histogram shape is nonnormal and matches the Tracy–Widom

distribution.

5.3. Simulations

In [19], the authors described a software library, CTDLab, that can solve a range of CTD
problems. We have applied this library to (pseudo)random uniform point clouds and observed
numerous patterns consistent with power-law scaling of median{Nn(�)} for the classes studied.
As a simple example, we display in Figure 11 a sequence of histograms ofNn ≡ Nn(LipGr1) for
various values of n. The histograms show increasing concentration around 2

√
n as n increases.

They also show convergence towards the Tracy–Widom law.

5.4. Concentration of measure

While, at the moment, we have no proof of the scaling law median{Nn(S)} ∼ Anρ for
general S, there is a general proof of the asymptotic negligibility of fluctuations, in a very
strong sense.

Theorem 10. Let S be a nonempty class of sets and let Mn = median{Nn(S)}. Then

|Nn(S)−Mn| = Op(
√
Mn), n → ∞.

Deviations of size t
√
Mn have a probability that decays exponentially in |t |, uniformly in

{n : Mn ≥ 1}.
Note that this applies to all kinds of CTD problems: curves, hypersurfaces, etc. The

proof of this apparently powerful result is actually just a simple application of a framework of
Talagrand [33]. Let us introduce Talagrand’s key abstract notion.
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Definition 2. (Talagrand [33, Definition 7.1.7].) L : X
n → R is a configuration function if,

given any xn = (xi) ∈ X
n, there exists a subset J of {1, . . . , n}, with card(J ) = L(xn), such

that, for each yn = (yi) ∈ X
n, we have L(yn) ≥ card{i ∈ J : yi = xi}.

We now check that this notion covers our setting.

Lemma 15. For every CTD problem in our sense,Nn(S) is the valueL(Xn) of a configuration
function in Talagrand’s sense.

Proof. If there is an S0 ∈ S interpolating Xij , j = 1, . . . , Nn(S), then take

J = {i1, . . . , iNn(S)}.
Then, if (Yj )j∈J has k entries in common with (Xj )j∈J , there are of course at least k entries
of Yn in S0 and, hence, the maximal number of entries of Yn in any S ∈ S is at least k.

Theorem 10 is now immediate from Talagrand’s concentration-of-measure result for config-
uration functions, as follows.

Theorem 11. (Talagrand [33, Theorem 7.1.3].) Let L = L(Xn) be a configuration function
applied to a random uniform point cloud Xn with median{M} = median{L}. Then, for u > 0,

P{L > M + u} ≤ 2 exp

( −u2

4M + u

)
and P{L < M − u} ≤ 2 exp

(−u2

4M

)
.

6. Conclusions

We have introduced the notion of connect-the-dot problems and derived asymptotic growth
properties for a range of such problems. We have developed an abstract approach for upper
bounds, which is easy to apply in all the CTD problems we considered, and for which there is
a lower bound with matching order.

We have pointed out that concentration-of-measure results hold for such problems, and have
reviewed evidence for the conjecture thatNn(�)/nρ tends in probability towards a limit, while
a suitably standardized version of Nn(�) converges in distribution – in a few cases to the
Tracy–Widom limit.

We remind the reader of the computational efforts reported in [19]. These showed clearly
that the asymptotic theory of growth exponents developed in this paper accurately describes the
behavior in moderately sized random point clouds. We hope our work inspires further research
into this class of problems.

Appendix A. Proofs

A.1. Proof of Lemma 4

The total number of points falling in the first m = 
λ√n/√2� squares, denoted by Kn,m,
has distribution bin(n,m/n). Also, given Kn,m, the distribution of Jn,λ is simplified:

P{Jn,λ ≥ 
 | Kn,m} ≥ 1 −
(
m




)(



m

)Kn,m
.

Now,
P{Jn,λ ≥ 
} = P{Jn,λ ≥ 
 | Kn,m ≥ 1

2m} P{Kn,m ≥ 1
2m}.
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By the law of large numbers,

P{Kn,m ≥ 1
2m} → 1, n → ∞.

Clearly,

P{Jn,λ ≥ 
 | Kn,m ≥ 1
2m} ≥ 1 −

(
m




)(



m

)m/2
.

Now use the fact that, for u ∈ (0, 1) fixed and m ≥ m0(u),(
m

�um�
)

≤ (uu(1 − u)1−u)−m.

Hence, for n ≥ n0(λ),

log

[(
m

�um�
)
um/2

]
≤ −m(log(uu(1 − u)1−u)− 1

2 log(u)).

Now, for u = 0.29,
log(uu(1 − u)1−u)− 1

2 log(u) > 0,

and, so, um ≥ 1
5λ

√
n for n ≥ n1(λ). This completes the proof of Lemma 4.

A.2. Proof of Lemma 5

Here, by vertical and horizontal grid lines we mean the lines that traverse the vertical and
horizontal grid points, respectively.

Fix γ ∈ Cλ(2, κ). We choose a smooth parametrization by arc length, also denoted γ (·).
Let 
 = length(γ ). We need two inequalities.

Lemma 16. Let γ ∈ Cλ(2, κ). Then, for arc lengths s and t ,

|γ (t)− γ (s)− (t − s)γ ′(s)| ≤ 1
2κ(t − s)2.

Lemma 17. Let γ ∈ Cλ(2, κ). Then, for all arc lengths r , s, and t with r < s < t ,∣∣∣∣γ (s)− γ (r)− s − r

t − r
(γ (t)− γ (r))

∣∣∣∣ ≤ κ(t − r)2.

Lemma 16 is a simple Taylor expansion, and yields Lemma 17 after some simple algebra.
Letu = (1, 0) be the horizontal unit vector pointing to the right. If | cos(� (γ ′(0), u))|, where

γ ′(0) is the unit-norm tangent vector at the beginning of the curve γ , is greater than or equal to
1/

√
2, or less than 1/

√
2, then let a0 be the first intersection of the ray {γ (0)− tγ ′(0) : t ≥ 0}

with a vertical or horizontal grid line, respectively. We then extend γ by adding the line
segment [a0, γ (0)]. Hence, we may assume that γ starts on a vertical or horizontal grid line
with | cos(� (γ ′(0), u))| greater than or equal to 1/

√
2 or less than 1/

√
2, respectively.

Let a0 = γ (0), v0 = γ ′(0), and s0 = 0. Starting at s = s0 = 0, we recursively define
a1, . . . , aI in the following way: using ai , vi , and si , if | cos(� (vi, u))| is greater than or equal
to 1/

√
2 or less than 1/

√
2, let ai+1 = γ (si+1) be the first intersection of γ with a vertical or

horizontal grid line, respectively, if γ ((si, 
]) intersects such a line; otherwise, set I = i and
stop. If ai+1 has been defined then vi+1 = γ ′(si+1). If sI < 
 and | cos( � (vI , u))| is greater
than or equal to 1/

√
2 or less than 1/

√
2, define aI+1 as the first intersection of the half-line

{γ (
)+ tγ ′(
) : t ≥ 0} with a vertical or horizontal grid line, respectively. Lemma 18, below,
implies that this aI+1 is well defined. It is a direct consequence of Lemma 16.
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Lemma 18. There exists a constant c1 > 0 such that, for a sufficiently small ε1 > 0, we have

si+1 − si ≤ √
2ε1 + c1κε

2
1 .

If | cos(� (vi, u))| is greater than or equal to 1/
√

2 or less than 1/
√

2, let a′
i be the first

intersection of the ray {ai + tvi : t > 0} with a vertical or horizontal grid line, respectively. The
following lemma is a direct consequence of Lemma 17.

Lemma 19. There exists a constant c2 > 0 such that, for a sufficiently small ε1 > 0, we have
|ai+1 − a′

i | ≤ c2κε
2
1 .

Let ξa = ⋃
i[ai, ai+1], a union of line segments. Then, Lemma 17 implies that the Hausdorff

distance between ξa and γ does not exceed c3κε
2
1, for a constant c3 > 0.

Definition 3. (Definition of k.) We choose k large enough that 2k ≥ 2 max{c1, c2, c3}, so that
ε2 ≥ 2ciκε2

1 for i = 1, 2, 3.

We now define a sequence of beamlets. For i = 0, . . . , I + 1, let bi be one of the grid points
closest to ai . Lemma 19 implies that, for all i = 0, . . . , I + 1, [bi, bi+1] is a beamlet. Also,
two successive beamlets, e.g. [bi, bi+1] and [bi+1, bi+2], are in good continuation. Indeed, by
construction, two successive beamlets are either both vertical, both horizontal, or one of them
is diagonal. For example, assume that they are both horizontal. Then bi+2 is a vertical grid
point. Let V be the vertical grid line it belongs to, i.e. such that bi+2 ∈ V . Then, if b′

i+2 is
the grid point defined by the intersection of the line segment [bi, bi+1] with V , we need to
show that |b′

i+2 − bi+2| < 3ε2. For that, it suffices to show that |ai+2 − b′
i+2| < 5

2ε2. Now,
because |ai − bi | ≤ 1

2ε2 and |ai+1 − bi+1| ≤ 1
2ε2, we find that |a′

i+2 − b′
i+2| ≤ 3

2ε2. Hence,
by Lemma 19,

|ai+2 − b′
i+2| ≤ 3

2ε2 + cκε2
1 ≤ 2ε2.

Moreover, with ξb = ⋃
i[bi, bi+1], the Hausdorff distance between ξb and γ is bounded by

ε2. This comes from the fact that the Hausdorff distance between ξb and ξa is bounded by 1
2ε2,

since this is the case for [bi, bi+1] and [ai, ai+1] for all i = 0, . . . , I .
Finally, since γ ([si, si+2]) has a length of at least ε1, we have I ≤ 2(1 + 
/ε1) ≤ 2λ/ε1

(for ε1 < ε0(λ)).

A.3. Proof of a lower bound for Cλ(2, κ)

We extend the interpolation methods used earlier. We assume that λ ≤ 1, for simplicity.
Pick a C2 bump function ψ : R → [0, 1] that has support in [− 1

2 ,
1
2 ] and satisfies ψ(0) = 1.

Introduce ηn and v, chosen so that

v = κ/‖ψ ′′‖∞,
vη3
n = 1/n. (6)

Partition [0, 1
2λ] intom = 
λ/2η� intervals of lengthη, and denote these by Ii, i = 1, . . . , m.

‘Thicken’ these intervals so that they become a row of η × vη2 rectangles Qi = Ii × [0, vη2].
Note that the area of each is |Qi | = 1/n, so we expect each Qi to contain one point of Xn.
Now consider only those even-numbered Qi that are not empty (i.e. Xn(Qi) > 0). Rename
these rectanglesRj , j = 1, . . . , J , and notice that both J and the {Rj } are random. In eachRj ,
select one point, say Xij , and label its components (tj , zj ). With overwhelming probability,
J/m is roughly 1

2 (1 − e−1). Hence, with overwhelming probability, for large n there are

J ≥ 0.3161m ≈ 0.3161λ/2η > 0.1508‖ψ ′′‖−1/3∞ λκ1/3n1/3
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rectanglesRj . We will next show that at least the J pointsXij = (tj , zj ) ∈ Rj lie on a curve in
Sλ,κ . Hence, we can set A = 0.1508‖ψ ′′‖−1/3∞ in the statement of Theorem 2.

We now construct a smooth function whose graph passes through the Xij . Let fj (t) =
zjψ((t − tj )/η) for j = 1, . . . , J . By construction, fj (tj ) = zj , and the regions of support
of the different fj are disjoint. Hence, f (t) = ∑J

j=1 fj (t) obeys f (tj ) = zj , j = 1, . . . , J .
Also, f is twice continuously differentiable, being a finite sum of smooth functions. Moreover,
since, for fixed t , there is at most one nonzero term in the sum, we have

‖f ‖∞ ≤ max
j

‖fj‖∞ = max
j
zj ≤ vη2 ≤ 1

and

‖f ′′‖∞ ≤ max
j

‖f ′′
j ‖∞ ≤ v‖ψ ′′‖∞ = κ.

Hence, the graph of f is contained in the unit square and has maximum curvature bounded
by κ . We also need to control the total length of graph(f ). On [0, 1

2λ] \ ⋃
j [tj − 1

2η, tj + 1
2η],

f takes the value 0 and, thus, its graph is flat in this region. On [tj − 1
2η, tj + 1

2η], the length
of graph(f ) is bounded by η

√
1 + vη‖ψ ′‖∞. Therefore, the length of graph(f ) tends to 1

2λ as
η → 0. Hence, for a sufficiently small η, the total length of graph(f ) does not exceed λ. By
(6), we have η → 0 as n → ∞ and graph(f ) ∈ Cλ(2, κ) for sufficiently large n.

A.4. Proof of a lower bound for Hölder objects

We again extend the interpolation methods used earlier. We give a proof valid for α > 1.
Take a function ψ : R

k → [0, 1] that is �α�-times continuously differentiable, has support in
[− 1

2 ,
1
2 ]k , and satisfies ψ(0) = 1. Introduce a v > 0 chosen so that if α is an integer, then

v‖ψα‖∞ ≤ (α − 1)!β, (7)

while if α is not an integer, then

v‖ψ
α�‖∞ ≤ (
α�)!β. (8)

Also introduce an η ≡ ηn chosen so that

vηk+α(d−k) = 1/n. (9)

We partition [0, 1]k into hypercubes with sides of length η and denote these hypercubes
by Ii , where i = (i1, . . . , ik). To each such hypercube, we associate the hyperrectangle
Qi = Ii×[0, vηα]d−k in [0, 1]d . According to (9), eachQi has volume 1/n and, so, we expect to
find one point ofXn in eachQi . Now consider only those even-numberedQi (i.e. with i1, . . . , ik
all even) that are not empty (i.e. Xn(Qi) > 0). Rename these rectangles Rj , j = 1, . . . , J ;
again, notice that both J and the {Rj } are random. In each Rj , select one point Xij and group
the ‘independent’ and ‘dependent’ components together as (tj , zj ) ∈ [0, 1]k × [0, 1]d−k .

We now define the ‘independent’ and ‘dependent’ components of g:

• for i = 1, . . . , k, set gi(s) = si ;

• for i = 1, . . . , d− k, set gk+i (s) = ∑
j fij (s), where fij (s) = zjiψ((s− tj )/η) and zji

is the ith coordinate of the vector zj .
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This construction guarantees that the image g([0, 1]k) includes {(tj , zj ) : j = 1, . . . , J }.
Again, J is a random variable and we are able to give a concrete estimate for an A > 0
such that P{J ≥ Ac(α, β, k)nk/(k+α(d−k))} → 1, n → ∞, where the constant c(α, β, k) only
depends onα, β, and k. Hence, we have at least nk/(k+α(d−k)) points on a k-surface in dimension
d. We next show that this surface has the required regularity.

Since at most one term in the sum defining g is positive, g is �α�-times differentiable.
However, the regularity condition we seek is quantitative and componentwise. Since we assume
that α > 1, and the independent components gi are all linear for i ≤ k, they all belong to
Hk,d(α, β). It remains to show that this also holds for the dependent components. We can
write

‖g
α�
k+i‖∞ = max

j
‖f 
α�
ij ‖∞ ≤ v‖ψ
α�‖∞η{α}, (10)

‖g�α�
k+i‖∞ = max

j
‖f �α�
ij ‖∞ ≤ v‖ψ�α�‖∞η−r(α), (11)

with r(α) = 0 if α is an integer and r(α) = 1 − {α} otherwise.
Consider the following two cases.

• α is an integer. Using (11) and a Taylor expansion gives

|gα−1
k+i (s)− gα−1

k+i (t)| ≤ v‖ψα‖∞‖s − t‖.
• α is not an integer. Using (10) and the fact that gk+i takes the value 0, we can prove that

|g
α�
k+i (t)− g


α�
k+i (s)| ≤ v‖ψ
α�‖∞η{α}.

Hence, for ‖t − s‖ > η, we have

|g
α�
k+i (t)− g


α�
k+i (s)| ≤ v‖ψ
α�‖∞‖t − s‖{α}.

Using (11) and a Taylor expansion gives

|g
α�
k+i (t)− g


α�
k+i (s)| ≤ v‖ψ�α�‖∞η−(1+{α})‖t − s‖.

Hence, for ‖t − s‖ ≤ η, we also have

|g
α�
k+i (t)− g


α�
k+i (s)| ≤ v‖ψ
α�‖∞‖t − s‖{α}.

In both cases, (7) and (8) guarantee that gk+i ∈ Hk,d(α, β), as required.

A.5. Besov and Triebel objects

The following results are classical (see [13, p. 105]).

1. We have the inclusions
Bαp,p∧q ⊂ F α

p,q ⊂ Bαp,p∨q, (12)

where F ⊂ B, say, means that ‖f ‖B ≤ C‖f ‖F for some C > 0.

2. If α1 −α2 −k(p−1
1 −p−1

2 )+ > 0, where p1, p2, q1, q2 ∈ (0,∞] and −∞ < α2 < α1 <

∞, then
Bα1
p1,q1

⊂ Bα2
p2,q2

, (13)

where ‘⊂’ again means continuous inclusion.
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3. For α > k/p, the ε-entropy of the unit ball in Bαp,q , for the supremum norm, is of
order ε−k/α .

Notice that the parameter q does not play a critical role in these results. This will translate
into the fact that (using (12)) Nn(B

k,d
p,q(α, β)) and Nn(F

k,d
p,q (α, β)) are of the same order of

magnitude in most cases.
From now on, we assume that α > k/p. Using (13), for all α′ > α and a certain constant

C(α, α′), we have Hk,d(α′, C(α, α′)β) ⊂ Bk,d
p,q(α, β). Hence, Nn(B

k,d
p,q(α, β)) is of order at

least n1/(1+α′(d/k−1)), for all α′ > α.
On the other hand, the usual entropy approach yields an upper bound (using (1)) of order

n1/(1+α(d/k−1)). Therefore, the order of Nn(B
k,d
p,q(α, β)) is somewhere between these bounds,

and Nn(F
k,d
p,q (α, β)) is of the same order because of (12).

A.6. Proof of Lemma 14

Fix S ∈ �λ(2, κ). The first component of S traces out a curve γ in the unit square. If

 = length(γ ) ≥ 6ε, we show below that

(S)ε ⊂
⋃

(x,v)∈W
ball(x, ε)× cone(v, θε,
), (14)

where θε,
 = 16 max{ε/
, κ1/2ε1/2}. If 
 < 6ε, we use the obvious fact that

(S)ε ⊂
⋃
x∈γ

ball(x, ε)× S1.

Assume that 
 ≥ 6ε and that we have proved (14). Choose a unit-speed parametrization of γ
(also denoted γ (·)) and notice that S = {(γ (s), γ ′(s)) : s ∈ [0, 
]}. Now consider an ε-covering
of [0, 
], which we denote by {sj : j = 1, . . . , J } with J ≤ 
/ε + 1. For |s − sj | ≤ ε,

ball(γ (s), ε) ⊂ ball(γ (sj ), 2ε)

and cone(γ ′(s), θε,
) ⊂ cone(γ ′(sj ), θε,
 + κε). The first inclusion is due to γ being Lipschitz
with constant 1, while the second inclusion comes from γ ′ being Lipschitz with constant κ .
Therefore, for ε < ε0(κ) small,

(S)ε ⊂
J⋃
j=1

ball(γ (sj ), 2ε)× cone(γ ′(sj ), 2θε,
).

Since µ(ball(x, r)× cone(v, θ)) = r2 min{θ, π}, we have

µ((S)ε) ≤ J (2ε)2 min{θε,
, π} ≤ 4
εmin{θε,
, π} + 4πε2,

and

1. if 
 ≤ ε1/2/κ1/2 then θε,
 = 16ε/
 and, so, µ((S)ε) ≤ 64ε2 + 4πε2; while

2. if 
 > ε1/2/κ1/2 then θε,
 = 16κ1/2ε1/2 and, so,

µ((S)ε) ≤ 64
κ1/2ε3/2 + 4πε2 ≤ 64λκ1/2ε3/2 + 4πε2.

In either case, when ε < ε0(λ, κ) we have µ((S)ε) ≤ 65λκ1/2ε3/2.
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In a similar way, if 
 < 6ε then

(S)ε ⊂
J⋃
j=1

ball(γ (sj ), 2ε)

and, so, µ((S)ε) ≤ 28πε2 ≤ 65λκ1/2ε3/2 for ε < ε0(λ, κ).
We still must prove (14). To do so, let S1 ∈ (S)ε. By definition, there exist γ, γ1 ∈ Cλ(2, κ)

such that S = {(γ (s), γ ′(s)) : s ≥ 0}, S1 = {(γ1(s), γ
′
1(s)) : s ≥ 0}, and ‖γ − γ1‖∞ ≤ ε. Let


 = length(γ ) and 
1 = length(γ1). Also, let θ0 = maxs≤0 |� (γ ′(s), γ ′
1(s))| and let s0 be a

maximizer (we need only consider s0 ≤ max{
, 
1}).
If s0 > min{
, 
1} then, because

|γ ′(s0)− γ ′(
1)| ≤ κ|s0 − 
1| and |γ ′
1(s0)− γ ′

1(
)| ≤ κ|s0 − 
|,
we have |γ ′(s0)− γ ′

1(s0)| ≤ κ|
− 
1|. We now use the following result.

Lemma 20. Let γ, γ1 ∈ Cλ(2, κ) with ‖γ − γ1‖∞ ≤ ε < ε0(κ). Then,

|length(γ )− length(γ1)| ≤ 3ε.

Proof. Assume that 
 ≤ 
1. For 
 ≤ s ≤ 
1, we have |γ1(s) − γ (
)| ≤ ε and |γ1(
) −
γ (
)| ≤ ε; hence, |γ1(s) − γ1(
)| ≤ 2ε. Now, using Lemma 16 with 
 ≤ s, we obtain
(s − 
) − 1

2κ(s − 
)2 ≤ 2ε. From this, we see that s − 
 cannot take the value 3ε when
ε < 2/9κ . Hence, 
1 < 
+ 3ε.

In light of this result, we assume that s0 ≤ min{
, 
1}. Since 
 ≥ 6ε, we have 1
2
 ≤ 
1 ≤ 3

2
.
This implies that either s0 + 1

4
 ≤ min{
, 
1} or s0 − 1
4
 ≥ 0. Both cases are treated similarly,

so we will assume that the former is true. Then, for s0 ≤ s ≤ s0 + 1
4
, we have

γ (s)− γ1(s) = γ (s)− γ (s0)− γ ′(s0)(s − s0)+ γ (s0)− γ1(s0)

+ (γ ′(s0)− γ ′
1(s0))(s − s0)− (γ1(s)− γ1(s0)− γ ′

1(s0)(s − s0)).

By Lemma 16,
|γ (s)− γ (s0)− γ ′(s0)(s − s0)| ≤ 1

2κ(s − s0)
2

and
|γ1(s)− γ1(s0)− γ ′

1(s0)(s − s0)| ≤ 1
2κ(s − s0)

2.

We also have |γ (s)− γ1(s)| ≤ ε and |γ (s0)− γ1(s0)| ≤ ε. Hence, we obtain

‖γ ′(s0)− γ ′
1(s0)‖∞(s − s0)− κ(s − s0)

2 ≤ 2ε.

Let D0 = ‖γ ′(s0)− γ ′
1(s0)‖∞ and η = s − s0. The inequality then becomes

p(η) = κη2 −D0η + 2ε ≥ 0

for all η ∈ [0, 1
4
]. There are two possibilities: either

1. D0 ≤ 23/2κ1/2ε1/2, in which case θ0 = arccos(1− 1
2D

2
0) ≤ 6κ1/2ε1/2, for ε < ε0(λ, κ);

or

2. D0 > 23/2κ1/2ε1/2, in which case p(4ε/D0) < 0, implying that 1
4
 < 4ε/D0.

In both cases, D0 ≤ 16 max{ε/
, κ1/2ε1/2} and (14) follows.
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A.7. Proof of a lower bound for connect-the-darts

We again use the method of Section A.3. We assume that λ ≤ 1, for simplicity. We take
ψ, φ : R → R to be twice continuously differentiable, supported in [− 1

2 ,
1
2 ], and to satisfy

• 0 ≤ ψ ≤ 1 with ψ(0) = 1, and

• −1 ≤ φ ≤ 1 with φ′(0) = 1.

Introduce v,w, ηn > 0, chosen as follows:

v = κ/2‖ψ ′′‖∞, (15)

w = κ/2‖(ψφ)′′‖∞, (16)

2vη3
n arctan(wηn) = 1/n. (17)

Partition [0, 1
2λ] into intervals of length η, and denote these intervals by Ii , where i =

1, . . . , 
λ/2η�. To each interval we associate a Qi = Ii × [0, vη2] × {eiθ : |θ | ≤ wη}. By
(17), the volume of each Qi is 1/n, and so we expect to find one point in each Qi . We now
consider only those even-numbered Qi that are not empty (i.e. Xn(Qi) > 0). Rename these
sets Rj , j = 1, . . . , J ; once again, both J and the Rj are random. In each Rj , select one point
Xij = (tj , zj , eiθj ).

Now consider f (t) = ∑
j fj (t), where

fj (t) = zjψ

(
t − tj

η

)(
1 + η tan θj

zj
φ

(
t − tj

η

))
.

By construction, f interpolates the points Xij , i.e. f (tj ) = zj and f ′(tj ) = tan(θj ). Again,
for a sufficiently small A0, and with overwhelming probability as n increases, there are at least
J ≥ A0λ/η = A0c

−1λκ1/2n1/4 pointsXij lying on f and with directions tangent to f ; for the
purposes of Theorem 9, we may take A = A0c

−1.
We now verify that f has sufficient regularity. By construction, f is nonnegative and twice

differentiable. Moreover, since for fixed t there is at most one nonzero term in the sum, we
have

‖f ‖∞ ≤ max
j

‖fj‖∞ and ‖f ′′‖∞ ≤ max
j

‖f ′′
j ‖∞.

First, ‖fj‖∞ ≤ zj (1 + η| tan θj |/zj ), meaning that ‖f ‖∞ ≤ vη2 + η tan(wη) ≤ 1 for
sufficiently small η, i.e. sufficiently large n. Next, since

f ′′
j (t) = zj

η2ψ
′′
(
t − tj

η

)
+ tan θj

η
(ψφ)′′

(
t − tj

η

)
,

we have ‖f ′′‖∞ ≤ v‖ψ ′′‖∞ + w‖(ψφ)′′‖∞. By (15) and (16), the graph of f has maximum
curvature bounded by κ . The length is controlled exactly as in Section A.3, ensuring that, for
sufficiently small η, the total length of graph(f ) does not exceed λ. However, since ηn → 0
as n → ∞, we conclude that graph(f ) ∈ Cλ(2, κ) for sufficiently large n.

A.8. CTD and geometric discrepancy theory

We mentioned in the introduction that there is a quantitative connection between our CTD
problem and geometric discrepancy theory. Here we give a simple example. Suppose that C is
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the class of all convex sets in [0, 1]2. We are given a set {Xi} of points in [0, 1]2 and are
interested in the discrepancy

�(C) = sup
C∈C

|Nn(C)− n area(C)|.

It is known, from work of Schmidt [29] and [6, Theorem 15], that for any collection of n
points, �(C) ≥ cn1/3.

CTD leads to the same conclusion for random point-sets. Suppose that the point-set (Xi) is
uniform and random. Consider the class ConvGr2 of convex graphs in the unit square. From
our analysis in Section 3.5, we know that, with overwhelming probability, there is a curve γ
that is the graph of a convex function f , say, and which passes through cn1/3 points.

Consider the convex set C formed as the convex hull of the range of γ . For ε > 0, consider
also the slightly shifted curve γε based on the convex function fε = f + ε, and define the set
Cε to be the convex hull of the range of γε. Now set ε = 1/n2; we can be practically certain
that Cε contains exactly the same points as C, and that their areas differ by at most cε. Define
the discrepancy for a specific set by

Dn(C) = |Nn(C)− n area(C)|;
clearly

|Dn(C)−Dn(Cε)| > Nn(γ )− c/n.

We conclude that
max{Dn(C),Dn(Cε)} ≥ 1

2Nn(γ )− c/2n.

Hence, with overwhelming probability for large n,

�(C) = sup
C∈C

|Dn(C)| ≥ max{Dn(C),Dn(Cε)} ≥ cn1/3.

Thus, CTD theory gives lower bounds on the discrepancy over the class of convex sets, among
random point-sets.

Since Schmidt’s bound for arbitrary point-sets is of the same order, one gets the crude
impression that the ‘cause’ of discrepancy is the number of points that can lie on the boundary
of a convex set, and that uniform random point-sets are near-optimal for near-uniform behavior
near boundaries. (They are badly suboptimal for behavior over classes of ‘large’ sets such as
squares and rectangles.) This set of connections seems worth pursuing. (We thank a referee
for asking us whether there was a connection between the two types of problems.)
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