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ZETA FUNCTIONS OF
PREHOMOGENEOUS AFFINE SPACES

ATSUSHI MURASE AND TAKASHI SUGANO

§0. Introduction

Let p be an algebraic homomorphism of a linear algebraic group G into the

affine transformation group Aff(K) of a finite dimensional vector space V. We say

that a triplet (G, V, p) is a prehomogeneous affine space, if there exists a proper

algebraic subset S of V such that V — S is a single p(G)-orbit. In particular,

(G, V, p) is a usual prehomogeneous vector space (PV, briefly) in the case where

p(G) c GL(V) (cf. [5], [7]). In the preceding paper [2], we defined zeta functions

associated with certain prehomogeneous affine spaces and proved their analytic

continuation and functional equations.

In the case of the PV's, M. Sato and Shintani [8] and F. Sato [3] established

the theory of zeta functions associated with regular PV's (for the definition of a

regular PV, see [5, Ch. 1, §1] or [7, §4, Definition 7]). Thus it is desirable to ex-

pand a similar theory for general prehomogeneous affine spaces. However there

seems to be no appropriate definition of the dual of a prehomogeneous affine space

and this causes a serious difficulty in studying zeta functions in the framework of

prehomogeneous affine spaces.

In the present paper, we introduce the notion of an affine datum D = (G, V,

p, a) and its dual D , where p:G~*Aff(V) is an algebraic homomorphism and

a: V x G-* Ga is an affine 1-cocycle with respect to p. We say that D is a pre-

homogeneous affine datum (briefly, PAD) if (G, V, p) is prehomogeneous. As in

the case of the PV's, the dual of a PAD is not necessarily prehomogeneous and we

are led to introduce the notion of a refular PAD (for definition, see §2). In fact, we

show that the dual of a regular PAD is also prehomogeneous and regular (Proposi-

tion 2.4). The object of the paper is to define zeta functions associated

with regular PAD's and prove their analytic continuation and functional equations
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9 2 ATSUSHI MURASE AND TAKASHI SUGANO

under certain mild assumptions.

We now explain a brief account of each section. In the first section, we state

several elementary properties of a PAD without proofs since they are to be shown

by the standard arguments in the theory of PV's. In §2, regular PAD's are defined

and their fundamental properties are proved. The next two sections are devoted to

the study of ^-functions and ύ-functions of a regular PAD. The proofs are done

by the arguments used in [5] with a slight modification (see also [6]). In §5, we

consider (modified) complex powers of relative invariants of a regular PAD and

study their Fourier transforms. In §6, we introduce zeta functions associated with

a regular PAD and prove their functional equations by using the Poisson summa-

tion formula together with the results of §5. In the last §7, we explain several ex-

ample of PAD's, one of which is closely related to the classical Hurwitz-Lerch

zeta functions.

The authors would like to express their gratitude to Prof. F. Sato and Dr. H.

Ochiai for their valuable suggestions, by which the authors are able to improve

Proposition 5.1. They are also grateful to the referee for helpful advices.

Notation. As usual, we denote by Z, Q, R and C the ring of rational inte-

gers, the rational number field, the real number field and the complex number

field, respectively. We put e W = exp(2πix) for x e C. For a finite dimensional

vector space V over R, ώ(V) stands for the space of rapidly decreasing smooth

functions on V. Denote by V the dual of V. The contragredient A ^ GL(V ) of

A e GUV) is defined to be (Ax, A~x*> = <χ, x*>(x e V, x* e V*), where

< , > is the natural pairing of V and V

§1. Prehomogeneous affine datum

Let G be a connected linear algebraic group and V a finite dimensional vector

space with a right G-action p, all defined over C. Assume that p is an affine ac-

tion (that is to say, p defines an algebraic homomorphism of G into the group

Aίί(V) of affine transformations of V). A regular rational function a on V x G is

called an affine 1-cocycle with respect to p if a satisfies the cocycle condition

(1.1) a(x, ggΊ = a(xp(g), g') + a(x, g) (x e V, g, gr e G)

and if the mapping x—* a(x, g) — α(0, g) is linear on V for every g e G. We

call a quartet D = (G, V, p, a) an affine datum if a is an affine cocycle with re-

spect to p.

Denote by (x, x ) the natural pairing of V and its dual V . The dual D of

https://doi.org/10.1017/S0027763000004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004657


ZETA FUNCTIONS OF PREHOMOGENEOUS AFFINE SPACES 9 3

an affine datum D = (G, V, p, a) is defined to be an affine datum (G, V , p ,

a ) which satisfies

(1.2) (xpig), x*^ + aix, g) — Cr, x*p*ig~1)} + a*ix*, g"1)

for any x e V, x ^ V and g ^ G. It is easy to see that the dual D always

exists and is uniquely determined by the condition (1.2). To describe D in an ex-

plicit manner, we define aig) ^ GL(V), big) e Vand c*(g) ^ V* to be

(1.3) xpig) = a(g)(x) + big)

(1.4) aix, g) = <x, c*(^)> + α(0, # ) .

Then p and α are given by

(1.5) x*p*ig) =a(gΓx* + c*ig-1)

(1.6) α*(x*, #) = ( δ ^ " 1 ) , x*> + α(0, ̂ " ' )

for x* e K* and ̂  e G. Note that the dual of D* is D.

An affine datum D = (G, V, p, a) is called a prehomogeneous affine datum

(briefly a PAD) if there exists a proper algebraic subset S of V such that V — S

is a single G-orbit under p. We call S the singular set of D. Note that the dual of

a PAD is not necessarily prehomogeneous.

Let D = (G, V, p, a) be a PAD. Let XiG) be the group of rational charac-

ters of G. A non-zero rational function P on V is called a relative invariant of D

corresponding to χ e XiG) if PCzp(#)) = χ(g)P(x)Gr e V, g e G). As in the

case of PV's, a relative invariant is uniquely determined by the corresponding

character up to a constant multiple and any prime divisor of a relative invariant

is also a relative invariant. Note that relative invariants are not necessarily

homogeneous in our case (compare with [7] see §7 for examples of non-

homogeneous relative invariants).

For any subfield K of C, an affine datum D = (G, V', p, a) is said to be de-

fined over K if G and V admit K-structures such that p and a are defined over K.

It is obvious that the dual D of D is defined over K if so is D. In the remaining

part of this section, we assume that D = (G, V, p, a) is a PAD defined over a

fixed subfield K of C. Denote by Gλ the normal closed subgroup of G generated by

the commutator subgroup [G, G] of G and the stabilizer Gix) = {g ^ G\

xpig) — x} for a generic point x <Ξ V — S. The group Gγ does not depend on the

choice of x. Put XpiG) — {χ ^ AXG) | χ is trivial on G j . It is shown that

XpiG) coincides with the group of rational characters of G corresponding to rela-

tive invariants of D (cf. [7, §4 Prop. 19]). Denote by XpiG)κ the subgroup of
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9 4 ATSUSHI MURASE AND TAKASHI SUGANO

XP(G) consisting of rational characters in XP{G) defined over K. The next two

lemmas are proved in the same manner as Lemma 1.1 and Lemma 1.2 of [3].

LEMMA 1.1. Let S be the singular set ofΌ and S' the union of the irreducible

components of S of codimension one. Then both of S and S' are defined over K.

LEMMA 1.2. (i) There exists a finite Galois extension L of K such that every rela-

tive invariant of D is expressed as a product of a complex number and a rational func-

tion with coefficients in L.

(ii) Let P(x) be a relative invariant of D corresponding to χ ^ XP(G). Then P(x) is

expressed as a product of a complex number and a rational function with coefficients in

K if and only if χ e XP(G)K.

Let Slf. . . ,SW be the if-irreducible components of S of codimension one and

Plf. . . ,Pn be if-irreducible polynomials that define Slt . . . ,Sn respectively. The

following results are proved in quite a similar manner as in the case of the PV's

(see [3, §1]).

LEMMA 1.3. The polynomials Pv . . . ,PW are algebraically independent relative in-

variants corresponding to χlf . . . ,χw ^ XP(G)K respectively. Furthermore any relative

invariant P(x) with coefficients in K is of the form P(x) = c P1(x)Ml * * Pn(x)mn

( c e K, mlf...,mu e Z).

LEMMA 1.4. The group XP(G)K is a free Z-module of rank n generated by

Xl» >Xn-

§2. K-regulur PAD

In this section we let D be a PAD defined over a fixed subfield K of C. The

next lemma is easily verified.

LEMMA 2.1. The following conditions are equivalent:

( i ) a(x0, G(x0)) = 0 for some x0^ V — S.

(ii) a(x, G{x)) = 0 for any x^ V - S.

(iii) There exists a regular rational function β on V — S that is defined over K and

satisfies

(2.1) a(x, g) = β(xρ(g)) ~ β(x) (x^V-S,g^G).
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{Recall that G(x) is the stabilizer subgroup of x in G)

From now on, we always assume that D satisfies the above equivalent condi-

tions and fix a function β satisfying (2.1) once and for all. Let g, gL and Q(X)(X €Ξ

V — S) be the Lie algebras of G, Gγ and G(x), respectively. For x ^ V and A ^

9, put

(2.2) xdp(A) = γ t ixp(exp(tA))} | ί = 0 e V

(2.3) da(x, A) = -^ {a(x, exp(ίA))} U o e C.

Our assumption implies

(2.4) da(x, Q(X)) = 0 feεFS).

The next lemma follows from a straightforward calculation.

LEMMA 2.2. For x & V, g ^ G and A ^ Q, we have

(2.5) xdp(Aάig)A) = xp(g)dp(A)p(g~ι) - 0-p(g~ι),

(2.6) da(x, Aά(g)A) = a(xp(g)dp(A), g~ι) + da(xp(g), A) - α(0, g~'),

where Ad stands for the adjoint representation of G on g.

A rational mapping φ of a G-stable Zariski open subset V of V into V is

said to be G-equivariant if φ(xp(g)) = φ(x)p*{g) (x ^ V\ g ^ G). We denote

by g the dual of g.

PROPOSITION 2.3. For ω ^ g , the following two assertions are equivalent.

(i) 77ι<?r£ exists a unique G-equivariant rational mapping φω : V — S~* V satisfying

(2.7) <xdp(A), Φω(x)> + da(x, A) = ω(A) (x e V ~ S, A e g).

(ii) ω vanishes on gL.

(i) ==> <Ii): Take an x e F ~ S. Since gte) = U e g | i φ G 4 ) = 0},

(2.7) and (2.4) imply that ω(gCr)) = 0. It remains to prove that ω([g, g]) = 0,

since Qι is generated by Q(X) and [g, g]. Chaging x (resp. A) into xp(g~ ) (resp.

Aά(g)A) in (2.7) and applying Lemma 2.2, we have

ω(Aά(g)A) = <xdp(A)ρ(g~ι) ~ 0-pig'1), φω(x)p*(g~ι)>
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9 6 ATSUSHI MURASE AND TAKASHI SUGANO

+ a(xdp(A), g'1) + da(x, A) - α(0, g~ι).

It follows from (1.3), (1.4) and (1.5) that

<xdp(A)p(g-1) - Q pig-1), 0 ω ωp*(^" 1 )>

= <xdp(A), Φω(x)> + a(xdp(A)p(g~1)J g) - aiO-pig"1), g).

Since a(xdp(A), g'1) + a(xdp(A)p(g~1)f g) - α(0, g'1) - aiO-pig'1), g) = 0

by the cocycle condition (1.1), we obtain ω(Aά(g)A) = ω(A). This implies that

ω([g, g]) = 0.

(ii)=> (i): Let x e V — S. Since ω(A) - da(x, A) = .0 for any A G g(i) and

since A —• xdp(A) induces a linear isomorphism of g/gθr) onto V, there uniquely

exists φω{x) e V* with (xdp(A), Φω(x)} = ωG4) — d a t e , A) for A e g. Then

x—^ 0ω(x) defines a regular rational mapping of V — S to 1/ . We now prove the

G-equivariance of φω. Since ω(Aά(g)A) = ω(A) (A e g, ^ e G), we have

<xp(g)dp(A), Φω(xp(g))> + da(xp(g), A)

=

Applying Lemma 2.2, we obtain

= <xρ(g)dp(A)ρ(g *) - O ρ(g *), φω(x)> + a(xp(g)dρ(A), g ι) ~ α(0, g ι)

= (xp(g)dρ(A)ρ{g~1)f φω(x)} + a(xp(g)dp(A), g~λ) — a*(φω(x)9 g).

(Note that (Q- pig'1), φω(x)) + α(0, g'1) = a*(φω(x), g).) In view of the rela-

tion (1.2), we have (xp(g)dp(A), φω(xp(g))y = (xp(g)dp(A), φω(x)p*(g)) for

A ^ Q, which proves the assertion. q.e.d.

A PAD D is said to be quasi-regular if D satisfies the conditions in Lemma

2.1 and if there exists ω ^ Xλ = {ω Ξ g \ ω vanishes on gx} such that φω is

dominant (that is, the image of φω is Zariski dense in V ). In this case ω is said to

be non-degenerate. Let Xι,...9χn be the iί-rational characters of G defined by

Pfixpig)) = Xiig)Pi(x) as in §1. Since their infinitesimal characters dχv.. .,dχw

vanish on Qlf Xo — Cdχλ + * # * + Cdχn is a subspace of Xλ . A quasi-regular

PAD defined over K is said to be K-regular if there exists a non-degenerate ele-

ment ω ^ Xo .

PROPOSITION 2.4. If Ό is a quasi-regular (resp. K-regular) PAD, then its dual

D is also a quasi-regular (resp. K-regular) PAD. Furthermore if co is a non-

degenerate element, then φω gives a one-to-one biregular rational mapping of V — S
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onto V — S (S is the singular set of D ) and G (φω(x)) = {g €= G \

Φω(χ)p (β) = Φωte)) coincides with G(x) for any x e V — S.

Proof Let ω ^ Xλ (resp. ω £ I o ) be a non-degenerate element. Then φω(V

— S) is a Zariski dense G-orbit under the action p . Hence the affine datum

D = (G, V , p , α ) is prehomogeneous and φω(V — S) = V — S where 5

is the singular set of D . For x ^ V — S, put x = 0ωGr) and G (x ) = {g ^ G

I # V ( £ ) = ^ * ) . Then we have GCr) c G*Cr*) and dim G*(ΛT*) = dim G -

dim V = dim G(x). This implies that qλ coincides with the Lie algebra of Gι, the

group generated by G (x ) and the commutator subgroup [G, G]. By Proposition

2.3, there exists a rational mapping 0 ω : V — S —• 1/satisfying </>ω(x p (^)) =

ψω(g*)p(g) and < 0 ω U * ) , x*dp*U0> + dα*(x*, A) = - ω(A) (x* e V* -

S , g ^ G, A ^ Q). Therefore we have

<x, x*dp*(A)> = <-xdp(A), Φjx)> ~ daix, A) - dα*te*, A)

= - ω04) - dα*(x*, A) = <0 ω (x*), x * φ * W ) >

for any A G g . This implies φω(φωte)) = x for x ^ V — S. A similar argument

shows that φω ° φω is the identity mapping on V — S . Thus φω is a one-to-one

biregular mapping of V — S onto V ~ S and φω is its inverse. The remaining

part of the proposition follows from this fact. q.e.d.

COROLLARY 2.5. Let D = (G, V, p, a) be a quasi-regular PAD defined over K

and D — (G, V , p , a ) its dual. Then

( i ) Gx = Gf.
(ii) The number n of K-irreducible components of S of codimension one is equal to

that of S.

(in) XP(G)K = XPΛG)K.

Proof These are easily deduced from Proposition 2.4 if we observe n —

rankXp*(G)* and XP*(G)K = X(G/Gf)κ. q.e.d.

Fix a basis of V and let (xv... ,xN) be the coordinate o f i ^ V (N = dim V).

From now on, coordinates of elements of V are taken to be with respect to the

dual basis of the above one. For a smooth function / on V, we define g r a d / : V—*

= ( ^ — - —y * to be grad/Cr) = ( ^ — , . . ., -*—). It is easy to see that this definition does

not depend upon the choice of a basis of V. If/ does not vanish on V — S, we put

gradlog/Cr) =f(x)~ι grad/Cr) (x e V- S). For s = (slf...,sn) e Cn, put
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(2.8) ωs= Σ (-^7

LEMMA 2.6. We have

2πi
(2.9) φω(x) = - ~ Σ 5ΓgradlogP,ω -

Proof. Differentiating the equalities a(x, exp(tA)) = β(xp(exp(tA))) —

β(x) and P^xpiexpitA))) = χ,(exp(fA)) P,Cr) Or e V - S, A e g) at ί = 0,

we obtain da(x, A) = (xdp(A), gradβCr)) and dχ^A) = (xdp(A), gradlog

Pjix)). These prove the assertion of the lemma. q.e.d.

For x ^ V — S, we define the differential mapping dφω(x) : F ^ V of 0 ω to

be dφω(x){y) = -r, (φω(x + ty)) \t=0 for y e 7. A straightforward calculation

shows dφω(xp(g))(a(g)y) = a(g)~dφjx)(y) (x (Ξ V- S, y ^ V, g <Ξ G), which

implies that det (dφω(xp(g))) = Xoig)'1 det (dφω(x)) (x^V~Sfg^G) with

(2.10) χo(^) = (det^(^))2.

Thus we have proved

LEMMA 2.7. // D = (G, V, p, a) is defined over K and quasi-regular, then

LEMMA 2.8. Lei D be a PAD and ω e X*. Then

where φω(x) = (φω(x)i)i<Li£N e V*.

Proof. For .z = (x1(...,%) e V J e g and 1 < i < N, we put

= Σ xiaH(A)+bi{A),da{x,A)= Σ α.O^x, + da(0, A)

(cijiiA), biiA), at(A) e C). Then it is easy to see that (x*dp*(A))i =

— ΣI^J^NXJ a{j{A) — at{A) for x — {xx ,. . . , % ) ̂  V . It follows from (2.7)

that
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Σ {xflH (A) + bt(A)) φω (x){ + Σ xflii(A) + α(0, A) - ω(A).
l<i,j<N l<i<N

Differentiating the above formula in xk, we obtain

(2.11) Σ aki(A)Φωb)i + Σ ixfl^A) + hUO) ^ % ~ ^ + **(A) = 0.
k

On the other hand, the G-equivariance of φω implies

(2.12) φω(xp(exp(tA)))k = (φJx)p*(exp(tA)))k.

Differentiating (2.12) at t = 0, we get

(2.13) Σ ^ % ^

= - Σ + α / ω , A
l<i<N

Comparing (2.11) and (2.13), we prove the lemma. q.e.d.

§3. The a-ίunctions

Let D = (G, V, p, a) be a X-regular PAD and D* = (G, V*, p*, a*) its

dual. Let Slf . . . ,Sn (resp. Sλ , . . . ,Sn) be the if-irreducible components of the

singular set S (resp. 5 ) of D (resp. D ) of codimension one and Plf. . . ,Pn (resp.

P1 , . . . ,Pn) be their defining equations in K[V\ (resp. K[V ]) . Let χ^ (resp. χ, )

be the corresponding character to the relative invariant P, (resp. P, ) of D (resp.

D ). By Lemma 1.4 and Corollary 2.5, we see that the group generated by

Xι (1 < z < n) coincides with the one generated by χ{ (1 < i < n). This implies

(3.1) χt= Π χ*u" (l<i<n)

with U = (wί7) G GL W (Z) . Take iί-rational functions 8̂ and j8 on V— S and

*V* - 5* so that a(x, g) = β(xp(g)) - β(x) (x e F - S, ^ e G) and that

Λ * , ^) = β*(x*p*{g)) - β*(x*) (x* e F* - S*, ^ e G), respectively.

For s = (slf. . . ,sn) e Cw, we define rational mapping φs: V — S—+ V and

*0 5 : V* - S * ^ Vas follows:

(3.2) 05(x) = φω(x) = - 2^7 Σ vgradlogP,ω ~

(3.2) 0s(x*) = 0ωste*) = 2^7 Σ s; gradlogP*Cr*) -
1 < i < n
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where s' = (s[,.. ,,s'n) = sU (cf. proof of Proposition 2.4 and (2.8)). The following

two lemmas are easily verified.

LEMMA 3.1. We have

φs(xp(g)) = φs(x)p*(g), φs(x*p*(g)) = ψs(x*)p(g)
O r e V- S,**€Ξ y * - S*, g^ G).

LEMMA 3.2. The set Ω = {s ^ C \ φs is dominant} is Zariski dense in C . If

s ^ Ω then φs is dominant and we have φs°φs

 = idv,*_s*, φs°φs

 = idv_s.

For simplicity, we write Xκ for XP(G)K = XP*{G)K. For χ ^ Xκ, we define

d(χ) = W(χ)χ d(χ)n),d*{χ) = W*(χ) 1,. . .,rf*(χ) n) e Z" to be

(3.4) χ = Π χ j ω = Π χ ^ ω .

*(By (3,1), we have d*(χ) = d{χ) U. Put Px = U^^nP.w' and P * χ =

Πi<, <w (-P, ) ', which are relative invariants of D and D respectively, both

corresponding to χ.

For s ^ Ω, the function j?-> P*x(φs(x)) -Px \x) on 1/- S is p(G)-invariant

and hence constant on V — S. We denote its value by ax(s) and call this rational

function on Cn the a-function of D corresponding to χ. The next lemma is deduced

from the definition of ax(s).

LEMMA 3.3. We have axx,(s) = ax(s)'ax\s) for χ, χ' e A^.

LEMMA 3.4. // either P * χ or px is a polynomial, then ax(s) is a polynomial of

5 E C "

Proof This immediately follows from the equality ax(s) = P*x(φs(x))

Px'\x) = P*(x*)-Px'\φs(x*)) ίorx^V-S and x* e F* - S* q.e.d.

For s ^ Ω, let us consider the function on V ~ S given by

(3.5) χ->(x, φs(x)> + β(x) +β*(φs(x)).

This function is invariant under p(G) and hence constant on V — S. If we write

F(s) for its value, then s —• F(s) defines a rational function on C . In the remain-

ing part of the paper, we always assume the following condition:
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(3.6) F(s) is a non-constant polynomial of s.

Remark Since F(s) = <x*, </>5(x*)> + β(φs(x*)) + j8*Cr*) for any x * e

V — S , the assumption is satisfied if either a or a is zero.

PROPOSITION 3.5. Under the assumption (3.6), there exist distinct linear forms

elt. . . ,em on C , natural numbers Mv. . . ,Mm and c ^ HomCX ,̂ C ) satisfying the

following conditions:

( i ) ax(s) = c(χ) Π («,(*))-" ' β ' " ( χ l )

(ii) All the coefficients of βj are non-negative integers and βj(Zn) = Z (1 < j < rn).

Proof Let gι(s), . . . ,gm(s) be the distinct prime divisors of #Xl(s) , . . . ,

axjκs)~ . By Lemma 3.3, there uniquely exist είf. . . ,εm ^ Hom(J!ίx, Z) such that

αχ(s) = Cχ Π 1 :^ ; ̂ mg" ; (5)ε> χ for χ e XRy where Cχ is a constant depending only on

χ. Define linear forms e[,. . . ,e'm on Cn by ^'(s) = Π 1 < f ^ M 5 ί * ε^χ,) (s — (sv. . .,

sn) e Cw). Since e'jicKχ)) = ε y(χ), we have ^; (ZW) c Z and hence we can find

linear forms ^ , . . . ,em and natural numbers Mlt . . . ,Mm such that ^ = — Mfij

and ey(Z") = Z. Since ε y(χ ; ) < 0 (1 < i < n, 1 < < m), we see that all the

coefficients of e; are non-negative integers. Thus we have

(3.7) P*x(φs(x)) Px'\x) = c'x Π φr"1"1"*" (Or, s) e (V- S) x β).

Recall that grad logP^te) = 2πi(φdix)(x) + grad^Cx)) and grad logP**Cr*)

= 2πi(φdω(x*) + gradj8*(j;*)). Taking the logarithmic derivatives of the both

sides of (3.7), we obtain

ψd{χ)(y) dy + grad/3*(z/) dy + φd{χ)(x) dx + gradβCr) dx

1 V ()

for χ Ξ! A^ and hence

*z/) dy + 05,(x) dr + gradβ(x)

for any s, s' ^ Cw, where we put 2/ = φs(x). Putting s' = s in the above formula,

we get
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(3.8)

By (3.8) and the assumption (3.6), gj(s) divides e^s) and hence gj(s) is a constant

multiple of βjis). Thus the proof of the proposition is completed. q.e.d.

COROLLARY 3.6. Under the assumption (3.6), we have F(s) = — -̂ —-

Σι<i<n δjSt + c with non-negative integers δly. . . ,δn and c €= C. In fact, we have d{

= Σι^j<mMjeji (1 < i < /?) tΛm? eί7 e Z is defined to be e^s) = Σι<i<n eHs{

{note that eH > 0).

Proof In the proof of Proposition 3.5, we have obtained the formula

dF(s) = Σi^j^mMjdβjis). Our assertion follows from this. q.e.d.

Note that the constant term of F(s) depends upon the choice of β and β ,

though the linear term of F(s) depends only upon D. We say that (β, β ) is a nor-

malized pair for (D, D ) if the constant term of F(s) is zero. The following is an

immediate consequence of Proposition 3.5 and Corollary 3.6.

COROLLARY 3.7. // either Px or P x is a polynomial, then ax(s) is a

homogeneous polynomial of s ^ Cn of degree — Σ1<i<n δj dίχ),-.

Remark. If D = (G, V, p, a) is a X-regular PV, that is, if lm(p) c

GL(V) and a = 0, the assumption (3.6) is always satisfied and the integer δ{ is

equal to the degree of P{.

§4. The ft-functions

We keep the notation and the assumptions of §3 and furthermore assume that

K is a subfield of R. For an integer i (1 < i < N), let D{ be the differential

operator of the first order on Vκ given by

1 df dβ

- — τ i - ω - a £ ω /ω (χ^vR,f^c (vR)).
Since the D/$ mutually commute, the differential operator

(4.1) Rx = P*xWlf...,DN)

on VR is well-defined for χ e X* — {χ G Xκ \ P * χ is a polynomial}. We write
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Rχ — P*χf-ήΓ-p grad — gradβj symbolically.

LEMMA 4.1. We have

= P*χCz*) e[<.r,.r*>

Proof. This follows from J3,.(e[<.r, x*> + βCr)]) = x*-e[<xt x*> + /3Cr)].

q.e.d.

Let R~ be the adjoint operator of Rχ given by Rχ = P ( — τ>—Γ grad —

gradβ). For 5 - (sv...,sn) e Cw, we put P 5 - P*1- -Ps

n

n.

LEMMA 4.2. For χ ^ Xχt there exists a polynomial bx(s) of s ^ (f such that

Proof For a function ψ on VR, we write φe(x) — φ(xp(g)). Since

(Rxφ)(xp(g)) = χ(g)-R;(φ8)(x) (x e F R , ^ e GR), we have RxP
s(xp(g)) =

χ(g)χ (g)' P (g). Here χ stands for χ^ χ/. The lemma easily follows from

this formula. q.e.d.

LEMMA 4.3. For χ, χr ^ Z ^ , u

(4.3) δχχ,(s) = ,

'. This is deduced from the formula Rxχr — RX,°RX . q.e.d.

We can define a rational function bx(s) oί s ^ Cn for any χ & Xκ preserving

the relation (4.3). We call bx(s) the b-function of D corresponding to χ €= -X .̂ The

next results are proved in a similar manner as in [5, Ch. I, §2].

LEMMA 4.4. If X ^ Xκ> the highest homogeneous part of bx(s) is equal to

ax(s) andάegbx(s) = — Σ ^ ^ n δ

PROPOSITION 4.5. The notation and the assumption being the same as in Proposi-

tion 3.5, we have

https://doi.org/10.1017/S0027763000004657 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004657


1 0 4 ATSUSHI MURASE AND TAKASHI SUGANO

where γ(s) = Π ^ ^ Π A e Z Γ ( ^ ( s ) + k- C, )n* with C, e C and nk e Z. tfer^ α«

5wί α finite number of nk are equal to zero.

§5. Fourier transforms of modified complex powers of relative invariants

In the rest of the paper, we let D = (G, V, p, a) be a Q-regular PAD and

D = (G, V , p , a ) its dual. We further assume that the singular set 5 of D

is a hypersurface of V. Then the singular set S of D is also a hypersurface of

V . Thus S (resp. S ) is the disjoint union of the Q-irreducible components Sv. . .,

Sn (resp. Sx ,. .. ,Sn). Each S, (resp. S{ ) is defined by a single equation P{(x) = 0

(resp. P, (x ) = 0) with a Q-irreducible polynomial P, ^ Q[F](resp. P{ ^

Q[V ]). Denote by χlt. . . ,χM (resp. χ x , . . . ,χ n ) be the corresponding characters

to relative invariants Plf. . . ,Pn (resp. P x ,. . . ,PW). For 5 = (s^ . . . ,sn) ^ C , we

put

(5.1) I P(x) Γ = iΛOr) Γ I Pw(x) Γw (x e KR - SR)

(5.2) I P*Cr*) Is = \P*(x*) Γ1- I P*(x*) |Sw (x* e y^ - S*).

Let Vv . . .,Vv (resp. ^ , . . . ,Vυ ) be the connected components of VR — S R

(resp. Vκ — SR). We here note that the the number of the connected components

of VR — SR coincides with that of VR — SR. Fix a normalized pair (/},/}) for

(D, D ) defined over Q. For s e Qn and ί = 1 , . . . ,v, we set

(5.3) Φ,(/, 5) =

(5.4) Φ*(x*) = J ^ I P*te*) | s e [ -

Here dj: is a fixed Lebesgue measure on VR and dx denotes its dual measure on

VR. The integrals Φ*(/, s) and Φ, (/ , s) are absolutely convergent and define

holomorphic functions in the region {s ^ Cn | Re sλ > 0,. . . ,Re sn > 0}. Observe

that, for a sufficiently large integer r, (Pι- Pn)
rβ (resp. (Pi PnYβ ) is a

polynomial function on V (resp. V ). Then it is straightforward to show that

u(x) = e[/}(x)] (resp. u (x ) — e[β (x )]) satisfies the assumptions of Theorem

A.3 in the appendix of [1]. Applying this theorem to our situation, we get the fol-

lowing result:

PROPOSITION 5.1. Assume that the condition (3.6) is satisfied.

(i) The integrals Φj(ff s) and Φ{ (/, s) are continued to meromorphic functions of s
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in C .

(ii) There exist gamma factors ΓΌ(s) and ΓΌ*(s) independent of f and f of the

form

ΓΌ(s) — Π Γ(ansι + + ainsn + bx) (aijy b{ ^ C),
\<i<m

Γ D , ( s ) = Π Γ(a*Sl + ••• + a*nsn + b*) (a*, b* e C ) ,
l<i<m

such that ΓΌ(s)~ Φ{(f\ s) and ΓΏ*(s)~ Φ{ (/ , 5) are entire functions.

(ii) The mappings /—• Φi(f, s) and f —> Φ{ (/ , s) define tempered distributions

depending meromorphically on s ^ C . If To is a bounded domain in R such that

Φj(f, s) and Φ{ (/ , s) are holomorphic in the tube domain T — To + ίR , then the

orders of these tempered distributions are bounded for s ^ T.

Let F :s3(Vn)-^s3(Vκ) and F * : *S(V£) — Λ(VR) be the Fourier trans-

forms given by

(5.5) Ff(x*) = f fix) e [ - <x, **>] dx (/e JS(VR), X* e v£)

(5.6) F*f*(x) = fj*(x*) e[<x, x*>] dx* (/* e Λ(V*), x e VR).

Recall that χo(g) = (det tf(g )) 2 e X P (G) Q (see Lemma 2.7). Put

(5.7) Λ = \ d(χ0) e (^ z) " f Λ* = | rf^χ"1)

Then we have >ί = — λU (cf. (3.1)). Let 7(5) and c(χ) be as in Proposition 4.5.

We set

(5.8) c(s) = c(χ1)
Sι- c(χn)

Sn

(5.9) Φ ( / , s) ='(Φ1(f, s),...,Φv(f,s))

(5.10) Φ*(/*, s) = ' ( Φ f ( / * , 5 ) , . . . , Φ * ( / * , s))

ίor s = (s1; . . . ,sΛ) e C * , / e -^(VR) and / * e ^(V^). By modifying the argu-

ment in [3, §5] in a suitable manner, we can prove

THEOREM 5.2. The following functional equation holds:

Φ(F*f*,s) =c(-s)T(s)A(s)Φ*(f*, (s + λ)U),
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where A(s) = G4ί; (s)) is a v X v matrix whose entries are polynomials in e x p ( ±

msj,. . . , e x p ( ± πisn).

§6. Zeta functions attached to a Q-regular PAD

We keep the notation and the assumptions in the previous section. In this sec-

tion, we further assume that

(6.1) x e VQ - SQ^X(G(x)°)Q = {1},

where G(x) is the identity component of G(x). This assumption implies

X(G(x*)°) = {1} for x * e v £ - S*.

We take a basis of V and a matrix expression of G so that they are compati-

ble with the Q-structure of D. Let Γ — Gz Π G R be a discrete subgroup of GR. A

lattice L in VQ is said to be Γ-admissible with respect to (p, a) if L- p(Γ) c: Z,

and if α(L, Γ) c: Z. The following lemma is easily verified.

LEMMA 6.1. Let L be a lattice of VQ and L* — ί r * e V^ | <χ, χ*> e Z /or

αwy x ^ L) be its dual. Then L is Γ-admissible with respect to {p, a) if and only if

L is Γ-admissible with respect to (p , a ).

Define GR-invariant measures ω and ω on VR — S R and Vκ — S R by

ω(x) = I P(x) |~ dxy ω (x ) = | P Or ) Γ dx (for the definition of λ and yί ,

see (5.7)). We put

G(xΫ = GW Π GR, Γ(X) = G(x)+ Π Γ (χ^VQ- SQ)

G*(x*)+ = G*te*) Π GR, Γ*(X*) = G*te*)+ Π Γ te* e V^ - S*).

Under the assumption (6.1), vol(ΓCr) \ G(.r)+) and vol(Γ*(x*) \ G*(x*)+) are fi-

nite. From now on we fix a right invariant Haar measure dg on GR. For x e F Q

— S Q (resp. x G VQ — SQ), we normalize the Haar measure dmx (resp. drnx*)

on G(x)+ (resp. G (x Ϋ) by

I φ(g)dg= I ω(xp(g)) I φ(hg) dmx{h)

ω*(x*p*(g)) f φ(hg)dmx*(h) (φ^C^G^)).
)+\G^ JG*(X*) +

We define the density μ(x) (resp. μ (x )) at x ^ KQ — SQ(resp. x

SQ) to be
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(6.2) μix) = f dmx(h), μ*ix*) = f dmx*(h).
JΓix)\Gix) + JΓ*ix*)\G*iX*) +

Let L be a /^-admissible lattice of VR with respect to (p, a) and L its dual.

Put L = L Π (VR~ SR), L*' = L* Π (VR - S*), L{ = LΓ\ Vt and L* = L* Π

V* (1 < i < v). Then Γ = U ^ ^ L , and L*' = U ^ ^ V L * (disjoint union). We

now define the zeta functions ^(s, L) and ξ{ (s, L ) by the following Dirichlet

series:

(6.3) ξ,(s,L)= Σ μ(x)e[-β(x)]\P(x)Γ

(6.4) ξ*(s, L*) = Σ μ*(x*) e[β*(x*)] \ P*(x*) \'s.
xeLf/ρ*(Γ)

Henceforth we always assume

(6.5) The Dirichlet series ξγ(s, L),. . . ,ξv(s, L) (resp. ξ*(s, L*),... ,ξ*(s, L*)) are

absolutely convergent for R e ί s ^ > alt . . . , Re(s n) > an {resp. Re (5^ > ax, . . . ,

Re(sw) > an), where aif a{ (1 < i < n) are certain positive real numbers.

Set B = {5 €= CM| Re 5, > Maxtor λ{) (1 < i < n)} and 5 * = {s e C \

Re Si > Max(flf, ^*) (1 < ί < w)}. F o r / e J ( y β ) a n d / * e ^(V^) f we set

(6.6) Z ( 5 , f , L ) = [ I χ ( * ) I5"'72 Σ r ( ί ) / t e ) dg
JΓ\G^ xeU

(6.7) Z (s,f , L ) = I \χ (g)\ Σ r (g)f (x ) dg,

where the representations r and r of GR on J ^ ( F R ) and s3(VR) are given by

(6.8) r(g)fix) = fixpig)) eίaix, g

(6.9) r*(^)/*te*) =f*(χ*p*(g)) e [ - α*(

tee 7R> ^ * e V^./eJί l^),/* e J (F R )) . It is easy to see that

(6.10) F r φ - r*(g)'F9 rig) F* = F* r*(^) (# e GR).

The following lemma is easily verified.

LEMMA 6.2. 77i£ integrals Z(s, f, L) and Z (s, / , L ) are absolutely conver-

gent for s ^ B and s ^ B , respectively. Furthermore we have
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Z(s,f,L) = Σ ξi(s,L)Φi(f,s-λ),
l<i<v

Z*(s,/*,!*) = Σ ξ*(s,L*)Φ*(f*,s-λ*).

Let Ω (resp. Ω*) be the convex hull of (B*U~ι + λ) U B (resp. (B - λ)U

U B ) in C". Then (Ω — λ)U = Ω . Applying the Poisson summation formula

and using (6.10), we obtain the following:

THEOREM 6.3. Assume that f ^ ^(Vκ) and its Fourier transform F f van-

ish on S R and S R , respectively. Then Z{s, F f , L) and Z (s, f , L ) are con-

tinued to Ω and Ω respectively as meromorphic functions of s. Furthermore the follow-

ing functional equation holds:

Z*((s - λ)U,f*, L*) = VOKFR/LVZCS, F*f*, L) (s e Ω).

For simplicity, we write bo(s) and b0 (s) for bχ*...χ*(s) and b%ι...Xn(s), where

bx*(s) (resp. bx (s)) is the ft-function of D (resp. D ). We can now state our

main result, which follows from Theorem 5.2 and Theorem 6.3 in use of the stan-

dard argument in the theory of zeta functions of PV's (for example, see [8] and [3]).

THEOREM 6.4. Assume that the conditions (3.6), (6.1) and (6.5) are satisfied.

(i) The Dirichlet series ξ^s, L ) , . . ,,ξv(s,L) (resp. ξ*(s, Z,*),...,ξ*(s,L*)) are con-

tinued to meromorphic functions of s on Ω (resp. Ω ). Furthermore bo(s — λ)

ξ,(s, L) (resp. b*(s — λ*) -ξ?(s, L*)) is holomorphic on Ω (resp. Ω*) fori=l,...,v.

(ii) The following functional equations hold for i — 1 , . . . ,ι>:

F R / I * ) -ξ*as - λ) U, L*) = c(λ - s)γ(s - λ) Σ Ait(s - λ) ξ}(s, L),

where s ^ Ω and Aj{(s) is a polynomial in e x p ( ± πis ) , . . . ,exp(± πisn) given in

Theorem 5.2.

§7. Examples

1. Let D = (G, V, p, a) be an affine datum over Q. For a e VQ and 6* G

VQ, define an algebraic homomorphism pab* : G~*Aff(V) and an affine 1-cocycle

aa,b*'.Vx G->Gaby

(7.1) xpa,b*(g) = (x + a)pig) - a,

(7.2) aatb*(x, g) = a(x + a, g) + <Cr *
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Then Dβ>6* = (G, V, βa,b*, θίab*) is also an affine datum, which we call the shift

of D by {a, b ). If D is a PAD with singular set S, then Ώab* is also pre-

homogeneous and its singular set is Sa = {x e V\ x + a e S). The dual of Dβ>Λ*

is the shift D 6* f l of the dual D of D by (b , a). It is easily verified that Όab* is

regular if and only if so is D.

Let D be a Q-regular PAD satisfying the conditions (3.6) and (6.1). Then its

shift Dβ ι 6* is also Q-regular and satisfies (3.6) and (6.1). Let (β, β ) be a normal-

ized pair for (D, D ) defined over Q (for definition, see §3). Put

(7.4) (a,x* + \

Then (βaιb*, βb*>a) is a normalized pair for (Dab*, Όb*t0) defined over Q. We can

easily verify that the α-function, the 6-function and the data appearing in

Theorem 5.2 U, £/, c(s), ^(s) and A(s)) do not change for the shifting of PAD.

Thus zeta functions attached to Όatb* have the same functional equations as those

attached to D.

2. We now consider the simplest PAD D = (G, V, p, a) with G Q = Q x ,

VQ = Q, xp(t) = xί and α(x, t) = 0 U e Q, t e Q x ) . The singular set is S =

{0} and F R - S R = V, U 72, where Vγ = {x e R | x > 0} and F2 = ίx e R |

x < 0}. We identify V and V via the inner product (x, y) = xy. In this case,

the data appearing in Theorem 5.2 are given by

U= (-1), c(s) = (2π) se[-|],rω =Γ(s + l),

- 1 / 1 -e[-s/2]\

^ίUe[-5/2] 1 i

Let Dβ ( > be the shift of D by β and H « , K Q ) . Since Γ = G χ = {1}, L = Z is a

F-admissible lattice of Όab and associated zeta functions are given as follows:

ξ^s, L) =e[--y-]ζ+(s, a, - b), ξ2is, L) = e[-•y-jζ_(s, a, - b),

ξΓCs, L*) = e[^]ζ + ( S ) 6, β ) , &*(,, I*) = e[^]ζ_(s, 6, β),

Here ζ ± (s, α, 6) are the usual Hurwitz-Lerch zeta functions given by
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ζ±(s, a, b) = Σ e[bn] \n + a
weZ,±(w+β)>0

Then Theorem 6.4 implies the well-known functional equations of Hurwitz-Lerch

zeta functions:

( ζ + ( l - s , b,a), ζ _ ( l - 5 , b,a))

r i/ i/o \ ~ s τ v \/r ( u\ r ( IΛ\ v / e[s/4] e[— 5/4] \

= e[-α«(2Jr) /Xs)<ζ+(s, α, - », ζ_(S> α, - *» x ^ _ s / 4 ] ^ ^ J.

Remark. Zeta functions associated with a shift of a regular PV are consi-

dered as a generalization of the Hurwitz-Lerch zeta functions. Such zeta functions

have been studied by F. Sato from the point of view different from ours (see [4,

§4]). In fact, he has shown their functional equations by using his theory of zetα

distributions.

3. Let n and m be positive integers and put V = Symw ( = the space of

symmetric matrices of degree n) and W— M w w . Let G = {ξ, g) = [ ™ - , ) •

ί ™ 1 \ξ G W, g ^ GLW} and V = V X W. We define an algebraic homomorphism
\ 0 g'

p of G into GL(V) by

[x, u] p((ξ, g)) = [g^x'g'1, ( u - ξxYg'1]

for [x, u] G Fand (ξ, g) e G. The triplet (G, V, p) is a non-regular PV with sing-

ular set S = {[x, u] ^ V | P ( r , u) .'= det(x) = 0}. Fix a positive definite semi-

integral symmetric matrix S of degree m and define an affine 1-cocycle a by

a([x, u], (ξ,g)) = trix'ξSξ-ϊξSu). Then it is easily verified that D =

(G, V, p, a) is a regular PAD. In this case, a function β on V — S satisfying (2.1) is

given by β([x, u\) = tr(x~ *uSu). Note that D is not a shift of any PV. Identifying

V with V via the inner product (\x, u], [y, v]) = tr(xy + 2*uSv)([x, u],

ίy, v] ^ V), we see that the dual of D is given by D = (G, V, p , a ) where

[x, u] p*aξ, g)) = ί'gix + 'ξSξ + ΉSξ + 'ξSiύg, (u + ξ)g], a* = 0.

The singular set S* of D* is i[x,u] e= V | P*(x, u) : = άet(x - fuSu) = 0}. Note

that the relative invariant P ( r , u) of D is not homogeneous. The associated zeta

functions with D and D are the same ones as studied in [2] (for the precise form of

their functional equations, see [2 Theorem 2.4]). Note that certain special values of

the above zeta functions appear in the dimension formula for the space of Jacobi
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forms of degree n (see [2, Theorem 4.3]).

4. Let K be an imaginary quadratic field oκ be the integer ring of K. We denote

by a the conjugate of a e K and put x* = *x for x e M r(K). Let r be the trace

of K to Q : τ(#) = a+ ά (a ^ K). For positive integers n and m, let F Q =

ί r e M n (i0 | * * = x), WQ = Mm>w(iD and V Q = VQ x ί F Q . The group G Q =

, *) = ( ^ * J ( Q- ° ) I ξ e FFQ> ί e GLw(iθ) acts on VQ by

*'1)[x, u] p«ξ, g)) = fc" V ~ \ (« - ξxig*'1) ([x, u] e VQ> (ξ, ^) e GQ).

We fix a positive definite Hermitian matrix H = (Aί; ) of degree m with Aίf = Z and

Al7 e δ / 1 , where δκ is the different of K over Q : δκ~
ι = {α G AΊ r(αo*) c Z}. For

M, υ e W^Q, i/[w] and i/(w, z;) stand for M //W and M i/^, respectively. For

[x, u] e V Q and (ξ, ̂ ) e GQ, put α([x, w], (ξ, ̂ )) = tr(x H[ξ\) - r(tr(ff(ξ, «))).

Then α is an affine 1-cocycle with respect to p. It is easily verified that D = (G, V, p,

a) is a PAD defined over Q with singular set S = {[r, w] e V\P([x, u]) : =

d e t x = 0}. Henceforth we identify the Q-dual V Q of V Q with V Q itself via the inner

product <, > of V Q defined by <[r,w], [y, v]> = tr(pctj) + τ(tr(H(u, v))). Then the

dual D* = (G, V, p*, α*) is given by k , «] p*((ξ, g)) = ϋ * ( r + i / U + ξ] -

/ / M ) ^ , (W + ξ)g], a = 0. We easily see that D is also PAD and its singular set is

S* = i[x,u] e V I P*([ r , w]) * = det(r — flt«]) = 0}. The corresponding character

χ^resp. χf) to P (resp. P*) is given by χx((ξ, g)) = Nκ/Q(detg)~ι (resp. χ*((£, ^))

= N J ί / Q(detg)). Thus G l t Q = {(?, g) e G Q | N ^ / Q ( d e t ^ ) = 1}. For simplicity we

write (ξ, Λ) for each element ( j of the Lie algebra gQ of G Q (ξ e Mmn(K), A e

). Then the differentials of p, a and χ x are given as follows:

be, u] dp({ξ, A)) = [-Ax- xA*, - ξx- uA*],

da([x, u] (f, A)) = - r(tr

Since dxx vanishes on the Lie algebra gx of G l t we can define a G-equivariant mapping

φs: V ~ S-> V - S* for 5 e C so that

for every [x, u] ^ V and (ξ, Λ) ^ 9Q (see Proposition 2.3). In fact, we have

φs([x,u]) = \ — -^--x'1 + H[ux~ι]f — ux~ι\ and hence φs is dominant if s Φ 0.

Thus D and D are Q-regular. We normalize β and β satisfying (2.1) by
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β(ίx, u\) = tr(x~ιH[u]), β* = 0. Then F(s) defined in §3 is equal to - ^ 5 and

hence the condition (3.6) is satisfied.

Let V{ be the set of n X n Hermitian matrices with i positive and n — i negative

eigenvalues (0 < i < n). Put V, = V{ x WR and V* = ike, u] ^Vκ\x~ H[u] e

V). Then we have V R - S R = U*=o V,- and VR - S R = U^ o V* (disjoint union). Let

dx = Π^=1 dxH Π ί < ; dRe(xυ) d]m(xi}) (x = (xϋ) e Vκ) and du = X^=ι Πy=

dlmiUi) be the usual Lebesgue measures on VR and Wn, respectively. For/

define

Φi(f, s)= f /(Cr, «]) I detxl'eltrQε^Hlu])] dxdu,

Φ?(f, s) = fjdx, «]) I det (x-HM) \sdxdu.

Both functions Φj(/, s) and Φ, (/, s) are continued to meromorphic functions on C

(Proposition 5.1). Let F be the Fourier transform of/

F*f(lε, u\) = f f([y, υ\)

The following functional equation is proved by a similar argument to that of [2, Proposi-

tion 1.4] and by using the results of [8, §4].

THEOREM 7.1. Fσrf^ J ( V R ) , n*? Λαw

7 ΣA^is) Φ*(/, - s - m - n),

c(s) = e [ - -y] (2τr)"s, r ω = Π Γ(s + m + i),
l<i<n

Aϋ(s) = (det2H)-"e[n2~A

2m} (2πYn{m+n)

Uij{s + m + n),

with «t f(s) = ( - 1)*-'«»-" f f-*-^ x " Σ Λ (> ) ( n ~\'') e x p ( O T S(2A: - / - ; ) )

forO < i, j < n.
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We normalize a right invariant measure dg on G R by d((ζ, g)) — | de tgΊ~ w ~

n^j^dRe^Jdlmig^UZ.UUdReiξJd^iξJ. Define the density μ(x) (resp.

μ*(pc*)) for χ G V Q - S Q (resp. x* e V Q - S*) as in §6 and set Γ = {(ξ, γ) e G Q |

ξ ^ Mw w(o i ί), 7 ^ GLn(oκ)}. Let L be a JΓ-admissible lattice of V Q with respect to

(p, a) and L* its dual. Put L( = L Π V, and L* = L* Π V* (0 < i < n) and define

zeta functions as follows:

ξi(s, L) = Σ μ([x,u]) e [ - tr( j f *#[!<])] | detx | " s ,

?Γ(s, L*) = Σ /([ίcF«]) I detfe - //[«])] Γ.

Then the condition (6.5) is satisfied. The following result is a consequence of Theorem

6.4 and Theorem 7.1.

THEOREM 7.2. L#ί ίfoe notation be the same as in Theorem 7.1. 77i£ Dirichlet series

ζi(s, L) αwd ξ*(s, L ) are continued to merσmσrphic functions on C with possible simple

poles at s — 1 , . . . ,n. Furthermore they satisfy the functional equations

vol(VR/L*)ξ*(m + n-s, L*)
n

= c(m + n~ s)γ(s — m — n) ΣΛ^ Cs — m — w)ξ (s, L) (1 < i < n).
;=0
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