A. Murase and T. Sugano
Nagoya Math. J.
Vol. 132 (1993), 91-114

ZETA FUNCTIONS OF
PREHOMOGENEOUS AFFINE SPACES

ATSUSHI MURASE ano TAKASHI SUGANO

§0. Introduction

Let 0 be an algebraic homomorphism of a linear algebraic group G into the
affine transformation group Aff(V) of a finite dimensional vector space V. We say
that a triplet (G, V, o) is a prehomogeneous affine space, if there exists a proper
algebraic subset S of V such that V— S is a single o(G)-orbit. In particular,
(G, V, p) is a usual prehomogeneous vector space (PV, briefly) in the case where
0(G) < GL(V) (cf. [5], [7]). In the preceding paper [2], we defined zeta functions
associated with certain prehomogeneous affine spaces and proved their analytic
continuation and functional equations.

In the case of the PV’s, M. Sato and Shintani [8] and F. Sato [3] established
the theory of zeta functions associated with regular PV’s (for the definition of a
regular PV, see [5, Ch. 1, §1] or [7, 84, Definition 7]). Thus it is desirable to ex-
pand a similar theory for general prehomogeneous affine spaces. However there
seems to be no appropriate definition of the dual of a prehomogeneous affine space
and this causes a serious difficulty in studying zeta functions in the framework of
prehomogeneous affine spaces.

In the present paper, we introduce the notion of an affine datum D = (G, V,
0, @ and its dual D*, where p: G— Aff(V) is an algebraic homomorphism and
a:V X G— @G, is an affine 1-cocycle with respect to 0. We say that D is a pre-
homogeneous affine datum (briefly, PAD) if (G, V, o) is prehomogeneous. As in
the case of the PV’s, the dual of a PAD is not necessarily prehomogeneous and we
are led to introduce the notion of a refular PAD (for definition, see §2). In fact, we
show that the dual of a regular PAD is also prehomogeneous and regular (Proposi-
tion 2.4). The object of the paper is to define zeta functions associated
with regular PAD’s and prove their analytic continuation and functional equations
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under certain mild assumptions.

We now explain a brief account of each section. In the first section, we state
several elementary properties of a PAD without proofs since they are to be shown
by the standard arguments in the theory of PV’s. In §2, regular PAD’s are defined
and their fundamental properties are proved. The next two sections are devoted to
the study of a-functions and b-functions of a regular PAD. The proofs are done
by the arguments used in [5] with a slight modification (see also [6]). In §5, we
consider (modified) complex powers of relative invariants of a regular PAD and
study their Fourier transforms. In 86, we introduce zeta functions associated with
a regular PAD and prove their functional equations by using the Poisson summa-
tion formula together with the results of §5. In the last §7, we explain several ex-
ample of PAD’s, one of which is closely related to the classical Hurwitz-Lerch
zeta functions.

The authors would like to express their gratitude to Prof. F. Sato and Dr. H.
Ochiai for their valuable suggestions, by which the authors are able to improve
Proposition 5.1. They are also grateful to the referee for helpful advices.

Notation. As usual, we denote by Z, Q, R and C the ring of rational inte-
gers, the rational number field, the real number field and the complex number
field, respectively. We put e[x] = exp(2rix) for x € C. For a finite dimensional
vector space V over R, S(V) stands for the space of rapidly decreasing smooth
functions on V. Denote by V™ the dual of V. The contragredient A~ € GL(V™) of
A € GL(V) is defined to be <Az, A"z™ =<z, 2™ @€V, z* € V¥, where
<, is the natural pairing of V and V*

§1. Prehomogeneous affine datum

Let G be a connected linear algebraic group and V a finite dimensional vector
space with a right G-action p, all defined over C. Assume that p is an affine ac-
tion (that is to say, o defines an algebraic homomorphism of G into the group
Aff(V) of affine transformations of V). A regular rational function @ on V X G is
called an affine 1-cocycle with respect to p if « satisfies the cocycle condition

(1.1) alx, gg) = alzo(g), g) + alzx, g (x€eV,g,8 €06

and if the mapping z— a(x, g) — a(0, @) is linear on V for every g € G. We
call a quartet D = (G, V, o, @) an affine datum if  is an affine cocycle with re-
spect to p.

Denote by {z, ™ the natural pairing of V and its dual V* The dual D* of
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an affine datum D = (G, V, p, @) is defined to be an affine datum (G, V¥, p*,
a™) which satisfies

(1.2) (o), 2% + alz, g = <&, %0 @™ +a* ¥, g™

for any x € V, ¥ e V¥ and g € G. It is easy to see that the dual D* always
exists and is uniquely determined by the condition (1.2). To describe D* in an ex-
plicit manner, we define a(g) € GL(V), b(g) € Vand ¢*(g) € V™ to be

(1.3) zp(g) = alg) (@) + b(g)

(1.4) alz, @ = <z, ¥ (@) + a0, g.
Then p* and a™ are given by

(1.5) %0 (@) = al@ 2" + (g™
(1.6) a*@¥, @ = blg™, 2™ + a0, g™

for ¥ € V* and g € G. Note that the dual of D*is D.

An affine datum D = (G, V, p, @) is called a prehomogeneous affine datum
(briefly a PAD) if there exists a proper algebraic subset S of V such that V— S
is a single G-orbit under o. We call S the singular set of D. Note that the dual of
a PAD is not necessarily prehomogeneous.

Let D= (G, V, p, @ be a PAD. Let X(G) be the group of rational charac-
ters of G. A non-zero rational function P on V is called a relative invariant of D
corresponding to x € X(G) if P(zo(g) = x@P@(x €V, g€ (). As in the
case of PV's, a relative invariant is uniquely determined by the corresponding
character up to a constant multiple and any prime divisor of a relative invariant
is also a relative invariant. Note that relative invariants are not necessarily
homogeneous in our case (compare with [7]; see §7 for examples of non-
homogeneous relative invariants).

For any subfield K of C, an affine datum D = (G, V, p, @) is said to be de-
fined over K if G and V admit K-structures such that p and « are defined over K.
It is obvious that the dual D* of D is defined over K if so is D. In the remaining
part of this section, we assume that D = (G, V, o, @) is a PAD defined over a
fixed subfield K of C. Denote by G, the normal closed subgroup of G generated by
the commutator subgroup [G, Gl of G and the stabilizer G(x) = {g € G|
zo(g) = x} for a generic point £ € V — S. The group G, does not depend on the
choice of z. Put X,(G) = {x € X(G) | x is trivial on G;}. It is shown that
X,(G) coincides with the group of rational characters of G corresponding to rela-
tive invariants of D (cf. [7, §4 Prop. 19]). Denote by X,(G)y the subgroup of
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X,(G) consisting of rational characters in X,(G) defined over K. The next two
lemmas are proved in the same manner as Lemma 1.1 and Lemma 1.2 of [3].

LEMMA 1.1. Let S be the singular set of D and S’ the union of the irreducible
components of S of codimension one. Then both of S and S’ are defined over K.

LEMMA 1.2. (i) There exists a finite Galois extension L of K such that every rela-
tive tnvariant of D is expressed as a product of a complex number and a rational func-
tion with coefficients in L.

(i) Let P(x) be a relative invariant of D corresponding to x € X,(G). Then P(x) is
expressed as a product of a complex number and a rational function with coefficients in

K if and only if x € X,(G).

Let S,...,S, be the K-irreducible components of S of codimension one and
P,,...,P, be K-irreducible polynomials that define S,,...,S, respectively. The
following results are proved in quite a similar manner as in the case of the PV’s
(see [3, §1]).

Lemma 1.3.  The polynomials P,, . ..,P, are algebraically independent relative in-
variants corresponding to Xy, . . ., Xn € X,(G) g respectively. Furthermore any relative
imvariant P(x) with coefficients in K is of the form P(x) = ¢+ P (x)™ - - P, ()™
(ceEK,m,....m,€Z).

LEMma 1.4. The group X,(G)g is a free Z-module of rank n generated by
XI! LU ’Xn*

§2. K-regular PAD

In this section we let D be a PAD defined over a fixed subfield K of C. The
next lemma is easily verified.

LEMMA 2.1.  The following conditions ave equivalent:
(1) alx, G(x)) = 0 for somex, € V— S.
(ii) alx, G@) =0 forampx € V— S.
(111) There exists a regular rational function 8 on V — S that is defined over K and
satisfies

(2.1) alz, g =Bxo(g) — @ @eEV—-S,g€06).
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(Recall that G(x) is the stabilizer subgroup of x in G.)

From now on, we always assume that D satisfies the above equivalent condi-
tions and fix a function f8 satisfying (2.1) once and for all. Let g, g, and g(x) (x €
V — S) be the Lie algebras of G, G, and G(x), respectively. For t € Vand A €

g, put
(2.2) xdo(4) = gf {zo(exp(tAN} |,.o €V
(2.3) dalx, A) = % {alz, exptA))} |,_, € C.

Our assumption implies
(2.4) da(z, gx)) =0 (@x&€V-29).

The next lemma follows from a straightforward calculation.

Lemma 2.2. Forx €V, g€ G and A € g, we have
(2.5) 2dp(Ad(@)A) = 2p(@dpWp(g™) — 0-p(g™,
(2.6) da(z, Ad(@A) = alzo(@)dp(A), g7) + dalze(g), A) — al0, g7,
where Ad stands for the adjoint representation of G on g.

A rational mapping ¢ of a G-stable Zariski open subset V’ of V into v*is

said to be G-equivariant if ¢(xo(g)) = ¢ (g) (x € V', g € G). We denote
by g* the dual of g

ProposiTION 2.3. Forw € g*, the following two assertions ave equivalent.
(i) There exists a unique G-equivariant rational mapping ¢, : V— S— v* satisfying
(2.7) {zdp(A), ¢,@)> + dalx, A) = w(Ad) @EV—-S,AEy).
(ii) w vanishes on g;.

Proof. ()= (ii): Take an x € V— S. Since g(x) = {4 € g|zdp(4) = 0},
(2.7) and (2.4) imply that w(g(x)) = 0. It remains to prove that w([g, gl) = 0,

since g, is gerierated by g(x) and [g, g]. Chaging x (resp. A) into zo(g™") (resp.
Ad(g)A) in (2.7) and applying Lemma 2.2, we have

w(Ad(@A) = (zdp@o(g™") — 0-p(g™, ¢,@p*(g™)>
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+ a(xdo(A), g7) + dalz, A) — a0, g7).
It follows from (1.3), (1.4) and (1.5) that

(zdpWpe™ — 0-pg™, ¢,@p" (g™
= Czdp(A), ¢, + alzdpWp(g™, & — a0 p(g™, 2.

Since a(xdp(A), g7 + alzdp(D o™, g — a0, g™ — a0 (g™, 2) =0
by the cocycle condition (1.1), we obtain w(Ad(g)A) = w(A). This implies that
w(lg, g]) = 0.

(i))= (i): Let z € V — S. Since w(A) — da(x, A) = 0 for any A € g(x) and
since A — xdp(A) induces a linear isomorphism of g/g(x) onto V, there uniquely
exists ¢, (x) € V¥ with <zdp(4), ¢,(x)> = w(A) — da(zx, A) for A € g. Then
r— ¢,(x) defines a regular rational mapping of V' — S to V* We now prove the
G-equivariance of ¢,. Since w(Ad(g)A) = w(4) (A € g, g € G), we have

{zp(g)dpQ), ¢,(xo(2))> + dalzxp(g), A)
= {zdp(Ad(9)A), ¢,()> + dalzx, Ad(g)A).

Applying Lemma 2.2, we obtain

{zo(@dp(A), ¢,(x0(g))>
= ro(@)doWpg™ — 0-pg™, ¢,@)> + alzo(g)do(A), g™ — a0, g7
= Lzp(@)dpWpg™, ¢,@)> + alzp(@doA), g — a* (¢, (@), 2.

(Note that <0-p(g™, ¢,@> + a0, g™) = a™(¢,(x), g).) In view of the rela-
tion (1.2), we have <zp(g)dp(A), ¢,(x0(@)> = <xp(g)dp(A), ¢,(x)0" (@ for

A € g, which proves the assertion. q.e.d.

A PAD D is said to be quasi-regular if D satisfies the conditions in Lemma
2.1 and if there exists w € Xl* ={we g* | @ vanishes on g,} such that P, is
dominant (that is, the image of ¢, is Zariski dense in V*). In this case w is said to
be non-degenerate. Let X,,...,x, be the K-rational characters of G defined by
P,(z0(2)) = x;(&) P;(x) as in §1. Since their infinitesimal characters dx,,...,dx,
vanish on g, X, = Cdy, + - - - + Cdy, is a subspace of X A quasi-regular
PAD defined over K is said to be K-regular if there exists a non-degenerate ele-

ment @ € Xo*.
Proposition 2.4. If D is a quasi-regular (vesp. K-regular) PAD, then its dual

D" is also a quasi-regular (resp. K-vegulay) PAD. Furthermore if w is a non-
degenerate element, then ¢, gives a one-to-ome biregular vational mapping of V— S
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onto V*—S* (S* is the singular set of D¥) and G (¢, (@) = {g € G|
G, (207 (@) = ¢, (@)} coincides with G(x) for anyx € V — S.

Proof. Let w € Xf‘< (resp. w € Xo*) be a non-degenerate element. Then ¢,(V
— S) is a Zariski dense G-orbit under the action p*. Hence the affine datum
D" = (G, V¥ o*, a®) is prehomogeneous and ¢, (V=29 = V* — S* where S*
is the singular set of D*. For z € V— S, put 2* = ¢,(2) and G*(z*) = {g € G
| 2%0"(@) = z*}. Then we have G C G*(z™) and dim G*(z™) = dim G —
dim V = dim G(z). This implies that g, coincides with the Lie algebra of G, the
group generated by G*(x*) and the commutator subgroup [G, Gl. By Proposition
2.3, there exists a rational mapping ¢, : V* — §* > V satisfying ¢, (2% 0" (@) =
¢, @Nop@ and (¢, &™), 2%do Q)Y +da* (¥, A) = —w@) FeV* -
S* £ € G, A€ g). Therefore we have

(x, 2%dp*(A)) = {~xdp(A), ¢,(@)> — da(z, A) — da™ (¥, A)
= — w(d) — da* (2", 4) = (¢, (™), 2% dp™ (4>

for any A € g. This implies ¢,(@,(x)) =z for x € V— S. A similar argument
shows that ¢,° ¢, is the identity mapping on V* — S* Thus ¢, is a one-to-one
biregular mapping of V — S onto V* — S* and ¢, is its inverse. The remaining
part of the proposition follows from this fact. q.e.d.

CoroLLARY 2.5. Let D = (G, V, p, @) be a quasi-regular PAD defined over K
and D* = (G, V7, ,0*, ™) its dual. Then

(i) G, =G,
(11) The number n* of K-irveducible components of S * of codimension one is equal to
that of S.

(i) X, (0 = Xx(G)y.

Proof. These are easily deduced from Proposition 2.4 if we observe n* =
rank X «(G), and X,+(G), = X(G/G]) qed.

Fix a basis of V and let (z,...,xy) be the coordinate of x € V(N = dim V).
From now on, coordinates of elements of V* are taken to be with respect to the
dual basis of the above one. For a smooth function f on V, we define grad f : V—

of of

V* to be grad f(z) = ("a— AU T) It is easy to see that this definition does
Ty Ty

not depend upon the choice of a basis of V. If f does not vanish on V — S, we put
gradlog f(x) = f(x) ' grad f(x) (x€ V—S).Fors = (s,,...,s,) € C" put
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s %
(2.8) w,= 2 (—5=)dy, € X, .
§ ISiSn( 27”) ’

LEMMA 2.6. We have

(2.9) $o (1) = — ~2—17.E > s;-gradlog P,(x) — grad B(z).
1<i<n

Proof. Differentiating the equalities a(x, exp(tA)) = B(zp(exp(tA))) —
B(x) and P;(xp(exp(tA))) = x,(exp(tA))-P(x) @€ V—S,A€g) at t=0,
we obtain da(z, A) = {zxdp(A4), grad B(x)> and dyx,;(A) = <{xdp(A), grad log
P;(x)>. These prove the assertion of the lemma. q.ed.

For x € V — S, we define the differential mapping d¢, () : V— V™ of ¢, to

d
be d¢,(x)(y) = at (¢, (x + ty) |,.o for y € V. A straightforward calculation

shows d@,(xo(2)) (a(@y) = alg) do,(»)(y) €V —S,yEV, g € G), which
implies that det (d¢, (z0(2))) = x,(2) ™" det (d¢,(®) (x€ V—S, g € G with

(2.10) Xo(@) = (det a(@)’.

Thus we have proved

Lemma 2.7. If D= (G, V, p, @) is defined over K and quasi-regular, then
Xo € Xp(G)K
Lemma 2.8. Let D be a PAD and @ € X,*. Then
a¢w(x);' — a¢w(‘r)i

oz, oz,

1<4j<N)

where ¢w(l') = (¢w(x),~)ls,§~ € V*

Proof. Forx = (x,...,xy) €EV,AE€ gand 1 < i< N, we put

(x-do(4)), = 2 za,,(4) + b)), da(z, A) = 2 «a;A)z; + da(0, A)

1<j<N 1<i<N

(a,;(A), b,(4), a,(A) € C). Then it is easy to see that (z*dp*(4)),=
— Ziien a;(A) — a,A) for ¥ = (&, ... ,xzy) € V¥ It follows from (2.7)
that
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2 (xa;(Q) + A, (), + 2 x,(4) + a0, A) = w(4).

1<i,j<N 1<i<N

Differentiating the above formula in x,, we obtain

(2.11) 2 aq,Do, (0, + 2 (a4 + b)) a¢‘“(x) +a,(4) =0.
1<i<N 1<ij<N

On the other hand, the G-equivariance of ¢, implies

(2.12) ., (o (exp (D)), = (4, (x) 0™ (exp(tA))),.

Differentiating (2.12) at £ = 0, we get

09, (x)
213) = P a, ) + b
1<ij<N
= - Z +ak1(A)¢w(x)i_ak(A) (1 SkSN)
1<i<N
Comparing (2.11) and (2.13), we prove the lemma. g.ed.

§3. The a-functions

Let D= (G, V, p, @) be a K-regular PAD and D* = (G, V¥, p*, a®) its
dual. Let S,,...,S, (resp. Sl*, .. .,S:) be the K-irreducible components of the
singular set S (resp. S*) of D (resp. D*) of codimension one and P,,...,P, (resp.
Pl*, ..., PJ) be their defining equations in K[V) (resp. K[V*]). Let x, (resp. x?‘)
be the corresponding character to the relative invariant P; (resp. P,-*) of D (resp.
D*). By Lemma 1.4 and Corollary 2.5, we see that the group generated by
x; (1 £ ¢ < n) coincides with the one generated by x5 (1 < i< m. This implies
(3.1) x,= I 3™ Q<i<w

1<i<n
with U= (u;;) € GL,(Z). Take K-rational functions S8 and B* on V=S and
V*—S* so that alz, g =Bxo(@) —B@ (x€V—3S5,g€G6) and that
o x¥, 9 =B (@) — BF ™) @ € V¥ — S¥, g€ ), respectively.

For s = (s,,...,s,) € C", we define rational mapping ¢,: V— S— V* and
¢,V — 8% = Vas follows:

(3.2) ¢, () = ¢, () = 2. s,-gradlog P,(z) — grad B(x)

1<i<n

(3.2) ¢, (z®) = gbws(x*) = Q}E > sj-gradlog P} (z™) — grad 87 (™)

1<i<n

T 2mi
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where 8" = (s{,...,s;) = sU (cf. proof of Proposition 2.4 and (2.8)). The following
two lemmas are easily verified.

LEmMa 3.1. We have

¢, (x0(9)) = ¢, (@) 0" (9), h,(x"0" () = ¢, (™) p(g)
(xeV-S,z eV —S* ge0).

LEmMa 3.2. The set 2 = {s € C"| ¢, is dominant} is Zariski dense in C". If
s € 2 then ¢, is dominant and we have o P = idyx_gx, Yo = idy_s.

For simplicity, we write Xy for X,(G)x = X,x(G)x. For x € Xy, we define
d(x) = @Q),,...,dQ),), d* ) = @*x),,...,d"(0),) € Z" to be

(3.4) x= I Xq(x),-z I X?kd*(x)i‘

i i
1<i<n 1<i<n

By (3,1), we have d"(x) =d()U Put P*=1I,_,, P! and P™ =
|| (P,-*)d*(x)‘, which are relative invariants of D and D* respectively, both
corresponding to x.

For s € £, the function z— P** (¢ (1)) P (@) on V— Sis 0(G) -invariant
and hence constant on V — S. We denote its value by a,(s) and call this rational
function on C” the a-function of D corresponding to x. The next lemma is deduced
from the definition of @, (s).

LEMMA 3.3, We have a,,,(s) = a,(s)-a,(s) for x, x' € Xx.

LEMMA 3.4. If either P™ or p"_l is a polynomial, then a,(s) is a polynomial of
seC".

_Proof. This immediately follows from the equality a,(s) = P™(¢p,(2))-
P* (x) = Pf(x™)-P" (¢,z™) forz € V— Sandz* € V* — 5* qed.
For s € £, let us consider the function on V — S given by
(3.5) z— <z, ¢ (@) + B@) + B (4,(2)).

This function is invariant under o(G) and hence constant on V — S. If we write
F(s) for its value, then s — F(s) defines a rational function on C”. In the remain-
ing part of the paper, we always assume the following condition:
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(3.6) F(s) is a non-constant polynomial of s.

Remark. Since F(s) = <z, gbs(x*)) + ,B(QDS(x*)) + B*(x™ for any z* €
v — S*, the assumption is satisfied if either a or a™ is zero.

ProposiTiON 3.5. Under the assumption (3.6), there exist distinct linear forms
e ... e, on C", natural numbers M,, . .., M, and ¢ € Hom(Xy, C*) satisfying the
following conditions:

(1) ax(s) = c(X) I (ej(s))—M,-e,-u(x))
1<j<m

(i) All the coefficients of e; are non-negative integers and ¢;,(Z") = Z (1 < j < m).

Proof. Let g,(s), . . .,g,(s) be the distinct prime divisors of axl(s)—l,...,
axn(s)_l. By Lemma 3.3, there uniquely exist ¢, .. .,&, € Hom(X}, Z) such that
a,(s) =c; I <<, 8 ()% for x € Xy, where ¢, is a constant depending only on
x. Define linear forms e, . ..,e, on C" by ¢;(s) =Il,o;,,s;" &) (s= (s,,. ..,
s,) € C"). Since ¢(d(x)) = ¢;(x), we have ¢;(Z") € Z and hence we can find
linear forms e, .. .,e, and natural numbers M,,...,M,, such that ¢; = — Me;
and ¢;(Z") = Z. Since &;(x;) <01 <i<n,1<j<m), we see that all the
coefficients of ¢; are non-negative integers. Thus we have

(3.7) P*x(¢s(x))'Px—l(x) =¢c I gj(s)_M’e’(d(x)) ((x,s) € (V=029 x 0.

x
1<j<m

Recall that grad log P @)= 27i(Pa (x) + grad B(x)) and grad log P*(z™)
= 27i( (™) + grad B (2™)). Taking the logarithmic derivatives of the both
sides of (3.7), we obtain

d)d(z) (y) dy + grad‘B*(y) d!/ + ¢d(x)(x) dx + grad B(x) dx

_ 1 dg,(s)
=—5= 2 M,-e,-(d(x)) g,«(S)

2mi 1<j<m

for x € Xk and hence
¢, () dy + grad B* (@) dy + ¢, () dx + grad B(z) dx

dg,(s)
g;(s)

1 ,
=50 2 Mels)

1<j<m

for any s, s" € C", where we put y = ¢,(z). Putting s’ = s in the above formula,
we get
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1 dg;(s)
(3.8) dF(s) = — 5—= 2 Me,(s) 5.

2mi 1<i<m o 8(s)
By (3.8) and the assumption (3.6), g;(s) divides ¢;(s) and hence g;(s) is a constant
multiple of ¢;(s). Thus the proof of the proposition is completed. q.e.d.

. 1

COROLLARY 3.6. Under the assumption (3.6), we have F(s) = — o0
2i<i<n 0;8; T ¢ with non-negative integers 0,,. . .,0, and ¢ € C. In fact, we have 0,

=2i<jemMe; U < i < n) where e; € Z is defined to be ¢,(s) = 2., ¢S,
(note that e;; = 0).

Proof. In the proof of Proposition 3.5, we have obtained the formula
dF(s) = 22 <<, M;de,(s). Our assertion follows from this. qed.

Note that the constant term of F(s) depends upon the choice of 8 and B,
though the linear term of F(s) depends only upon D. We say that (8, B87) is a nor-
malized pair for (D, D™) if the constant term of F(s) is zero. The following is an
immediate consequence of Proposition 3.5 and Corollary 3.6.

CoroLLARY 3.7. If either P o P* s a polynomial, then a,(s) is a
homogeneous polynomial of s € C” of degree — 2, <<, 0,d(0),.

Remark. 1f D= (G, V, p, @ is a K-regular PV, that is, if Im(p) C
GL(V) and a = 0, the assumption (3.6) is always satisfied and the integer 0, is
equal to the degree of P,.

§4. The b-functions

We keep the notation and the assumptions of §3 and furthermore assume that
K is a subfield of R. For an integer ¢ (1 < i< N), let D, be the differential
operator of the first order on Vg given by

1 0 0 "
DI@) = g ae @) — 9o @ @) @€ Vi, f€ C(Vy).

Since the D,’s mutually commute, the differential operator
(4.1) R, = P™(D,,...,Dy)

on Vg is well-defined for x € Xy = {x € X, | P* is a polynomial}. We write
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1
R, = P*x(z—m- grad — grad ,B) symbolically.

LemmAa 4.1, We have

R (e[{x, 2™ + BW@)]) = P* (™) -el{z, 2™ + B@)].

Proof. This follows from D,(e[<z, 2™ + @] = 2, el{z, 2™ + p@)].
g.e.d.

- - 1
Let R, be the adjoint operator of R, given by R, = P*x<— ?ﬁgrad —

grad ). For s = (s,,...,5,) € €, we put P° = P{i--Py"

LEmMA 4.2. Fory € X,:, there exists a polynomial b, (s) of s € C" such that

(4.2) R (P°) = b,(s)- P,

Proof. For a function ¢ on Vg, we write ¢°(x) = ¢(zp(g)). Since
(R, 9) (xp(@) = x(9) R, (¢) (x) (x € Vi, g € Gy), we have R, P*(zp(g)) =
x(@x' (2 P°(g). Here %' stands for x)'* * - x,". The lemma easily follows from
this formula. g.e.d.

Lemma 4.3, Forx, x' € X, we have
(4.3) by (8) = b,(s) b, (s + d(x)).

Proof. This is deduced from the formula R,,, = R R, . g.ed.

We can define a rational function b,(s) of s € C” for any x € X, preserving
the relation (4.3). We call b,(s) the b-function of D corresponding to x € Xy. The
next results are proved in a similar manner as in [5, Ch. I, §2].

LemMma 4.4. If x € Xy, the highest homogeneous part of b,(s) is equal to
a,(s) and deg b, (s) = — 2, -, 0,d(x),.

PropoSITION 4.5.  The notation and the assumption being the same as in Proposi-
tion 3.5, we have

7(s)

b (s) = c(x) G+ d))
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where 7(s) = I, ;. ey I'e;(s) + k — C)™ with C; € C and n, € Z. Here all
but a finite number of n, are equal to zero.

§5. Fourier transforms of modified complex powers of relative invariants

In the rest of the paper, we let D = (G, V, p, @) be a Q-regular PAD and
D* = (G, V*, p*, a™) its dual. We further assume that the singular set S of D
is a hypersurface of V. Then the singular set S™ of D* is also a hypersurface of
V* Thus S (resp. S*) is the disjoint union of the Q-irreducible components S, ...,
S, (resp. S;',...,S)). Each S, (resp. S;°) is defined by a single equation P,(x) = 0
(resp. P(z™) = 0) with a Q-irreducible polynomial P, € Q[Vl(resp. P, €
QIV™1). Denote by Xy, . - ., X, (resp. %1, ..., x2) be the corresponding characters

to relative invariants Py, ...,P, (resp. Pl*,. . .,P:). For s = (s;,...,s,) € C", we
put
(5.1) |P@ P =[P,@ " |P,@]|" (€ Vgz— Sg)

5.2) | P*EH P =Pf@®) - | PFEH T @ e vy - Sp.

Let V,...,V, (resp. V,*,...,V.*) be the connected components of Ve — Sg
(resp. V;: - S;:). We here note that the the number of the connected components
of Vg — Sg coincides with that of V;: — S;:. Fix a normalized pair (5, ,B*) for
(D, D*) defined over Q. For s € C*and i = 1,...,v, we set

63 0 9= [ |P@FB@If@dr  (f€SV)
(5.4) OF™) = fv | P*(z® Pel— B* @M1 *G@® de*  (f* € ).

Here dz is a fixed Lebesgue measure on Vg and dz™ denotes its dual measure on
V;. The integrals @,(f, s) and @, (f ¥, s) are absolutely convergent and define
holomorphic functions in the region {s € C"|Res, > 0,...,Res, > 0}. Observe
that, for a sufficiently large integer 7, (P, -+ P,)" B (resp. (P} -PF)" 8% is a
polynomial function on V (resp. V*). Then it is straightforward to show that
u(z) = e[B(@)] (resp. u™(z™) = e[B*(x™)]) satisfies the assumptions of Theorem
A.3 in the appendix of [1]. Applying this theorem to our situation, we get the fol-
lowing result:

PRrROPOSITION 5.1.  Assume that the condition (3.6) is satisfied.
(i) The integrals ,(f, s) and @, (f, s) are continued to meromorphic functions of s

https://doi.org/10.1017/50027763000004657 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004657

ZETA FUNCTIONS OF PREHOMOGENEOUS AFFINE SPACES 105

in C".
(i1) There exist gamma factors I't(s) and I'pyx(s) independent of f and f * of the
form
I'p(s) = T Iays,+ - + a,s, T b) (a;, b; € C),
1<i<m
Fpo(s) = T Tafs, + -+ + ajs, + b)) (a}, b € C),
1<i<m

such that Iy ()" @,(f, 5) and 'y (5) '@ (f ¥, s) are entire functions.

(ii) The mappings f— @,(f, s) and f * Q5,-* (f*, s) define tempered distributions
depending mevomorphically on s € C". If 1y is a bounded domain in R” such that
O,(f, s) and ] (f*, s) are holomorphic in the tube domain ¥’ = Y, + iR", then the
orders of these tempered distvibutions arve bounded for s € 1.

Let F:B8(Vg) —S(Vg) and F*: $(Vg) = S(Vg) be the Fourier trans-
forms given by

65  BGH=[ f@el- G, Dld  (FESW, 27 € VD
(6.6) Ff*@ = [ f*@elix, z91dz*  (f* € 30D, z€ V.
vE

Recall that x,(g) = (det a(g))” € X,(G)g (see Lemma 2.7). Put

(5.7) A=1dly) € (% z),2* = AT (—;— z),

Then we have A* = — AU (cf. (3.1)). Let 7(s) and ¢(x) be as in Proposition 4.5.
We set

(5.8) c(s) = clx)™ ely)™

(5.9) O(f, s) ="(@,(f, 9),...,0,(f, 5)

(5.10) O*(f*, ) =@ (f%, 9),...,0,(f", )

for s= (s;,...,s,) € C", f€ S(Vg) and f*e d(V;). By modifying the argu-
ment in [3, §5] in a suitable manner, we can prove

THEOREM 5.2.  The following functional equation holds:

OF*f*, 5) = c(— )7(DAS D™ (f*, s+ D),
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where A(s) = (A;;(s)) is @ v X v matrix whose entries are polynomials in exp(E
Tisy),. . .,exp(L wis,).

§6. Zeta functions attached to a Q-regular PAD

We keep the notation and the assumptions in the previous section. In this sec-
tion, we further assume that

6.1) TE Vq— Sq=X(G@)"q = {1},
where G(2)° is the identity component of G(x). This assumption implies
X(G@M) = (1} for ¥ € Vg — g,

We take a basis of V and a matrix expression of G so that they are compati-
ble with the Q-structure of D. Let I'= G, N Gg be a discrete subgroup of Gg. A

lattice L in Vg is said to be I'-admissible with respect to (o, @) if L-o(I'") C L
and if (L, I') € Z. The following lemma is easily verified.

LEmMMA 6.1. Let L be a lattice of VQ and L* = {z™ € V;l {z, ez for
any £ € L} be its dual. Then L is I'-admissible with respect to (o, ) if and only if
L* is I'-admissible with respect to (,0*, a®).

Define Gp-invariant measures @ and @* on Vg — Sk and Vi — Sp by
- 2%
w@ =|P@) |Pdz, 0™ @™ = | P*(@™) | dx™ (for the definition of A and A™
see (5.7)). We put
C@W'=6@) NGy, I'®) =6 Nr (z€Vy— Sy

GC*aMH =G6*@M N GL '@ =6¢"e"" nr *e V; - S;).
Under the assumption (6.1), vol(I'(x) \ G(@) ") and vol"*(z™ \ G* (™) are fi-
nite. From now on we fix a right invariant Haar measure dg on Gg. For z € Va

— Sq (resp. e V(: — ;), we normalize the Haar measure dm, (resp. dm,)
on G@" (resp. G* (&™) by

fc,; 0@ dg= [ s 90 L ot dm,»

_ ®, K ok w0~
N ‘[G'*(z*)*\cft @ (x p (g)) L*(I*H (p(hg) dm‘r*(h) ((p € Cc (GR))'

We define the density u(x) (resp. ¢*(z™) at z € Vq — Sq(resp. z*e V; -
S;;) to be
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— ko Ky
6.2) u(x) B —[;(z)\c(z)* dmx(h)’ # () = fr*(z*)\c*(z*>* dml*(h)'

Let L be a I'-admissible lattice of Vg with respect to (o, @) and L* its dual.
Put '=LN (Vo= Sp), LY =L"N (Vg —Sp), L;=L N V,and LY = L* N
V¥Q<i<y.ThenL = U,_,.,L,and L™ = U,_,_, LT (disjoint union). We
now define the zeta functions &;(s, L) and 5,-*(8, L*) by the following Dirichlet

series:
(6.3) EG6, L= X u@el-p@]| P
zeLy/ oI
(6.4) G, LH= T @M el*@HI P
xeL¥/p* ()

Henceforth we always assume

(6.5) The Dirichlet series & (s, L),. ..,&,(s, L) (resp. £ (s, LY, .. .,Ej(s, L") are
absolutely convergent for Re(s,)) > a, .. ., Re(s,) > a, (resp. Re(s) > a;, . .
Re(s,) > a)), where a,, a; (1 < i < n) are certain positive real numbers.

.

Set B={s€C"|Res,>Max(a, 4,) 1 <i<#)}and B*={se(C"]
Re s, > Max(a], 2}) (1 < i< ). For f€ S(V) and f* € S(Vy), we set

(6.6) 26,10 = [ 12@ 17" T r@ @ dg

60 265 09= [ 1@ S @fE dg,
T\Gk a*el¥

where the representations 7 and #* of G, on S(Vg) and S(Vy) are given by

©8) Q1@ = fGo@) elatz, 91(LHE)"

* ok /2
(6.9) r @ @™ = F %" () e[— a* (¥, g)]<d(x_p*£g2>

(x € Vg, 2" € Vg, fE BV, [ € S(V)). 1t is easy to see that
(6.10) Fr(g =r"@F,ri@ F*=F"»*@ (g€ Gp.

The following iemma is easily verified.

LeMMa 6.2.  The integrals Z(s, f, L) and Z*(s, f*, L*) are absolutely conver-
gent fors € Band s € B *, respectively. Furthermore we have
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Z(S9f, L) = Z S,’(S, L)d)i(f’s'_/z)’

1<i<yp

Z¥s, f5 LN = X &fG, LY, s — 2%,

1<i<y

Let Q (resp. 27 be the convex hull of (B*U™ + 1) U B (resp. B— DU
U B* in C". Then (2 — )U = Q% Applying the Poisson summation formula
and using (6.10), we obtain the following:

THEOREM 6.3. Assume that f e J(V;:) and its Fourier transform F *f * van-
ish on S;: and Sg, respectively. Then Z(s, F*f* L) and Z*(Gs, f*, L") are con-
tinued to 2 and 2 respectively as mevomorphic functions of S. Furthermore the follow-
mg functional equation holds:

Z¥(s= DU, f* L") =vol(Va /LM ' Z(s, F*f*, L) (s€ 0.

For simplicity, we write by(s) and by (s) for by...,x(s) and by..., (s), where
b,+(s) (resp. by (s)) is the b-function of D (resp. D). We can now state our
main result, which follows from Theorem 5.2 and Theorem 6.3 in use of the stan-
dard argument in the theory of zeta functions of PV’s (for example, see [&] and [3]).

THEOREM 6.4. Assume that the conditions (3.6), (6.1) and (6.5) are satisfied.
(i) The Dirichlet series & (s, L),...,§,(s,L) (resp. S;k s, LY,... ,Ej (s,L™)) are con-
tinued to meromorphic functions of s on 2 (resp. R%). Furthermore by(s — A)-
E,(s, L) (resp. by (s — A™) & (s, L) is holomorphic on 2 (resp. %) fri=1,...,v.

(ii) The following functional equations hold fori =1,...,v:

vol(Vg /LY £ ((s = DU, LYY =cQ—)7s— D) = A,(s— D&, D),
1<j<v

where s € Q and A;;(s) is a polynomial in exp(x mis,), . . .,exp(E nis,) given in

Theorem 5.2.

§7. Examples

1. Let D= (G, V, p, @) be an affine datum over Q. For a € Vq and p* e
V(;k, define an algebraic homomorphism p,,+ : G— Aff(V) and an affine 1-cocycle
a2 VX G— G, by

(7.1) 20,48 = (x + @p) — q,
(7.2) a,x, 8 =alz+ta, g +{zx+alolg) —1), b*).
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Then Dy« = (G, V, 0,4% Q%) is also an affine datum, which we call the shift
of D by (a, b™). If D is a PAD with singular set S, then D, ,x is also pre-
homogeneous and its singular set is S, = {x € V|z + a € S}. The dual of D,
is the shift Djx, of the dual D* of D by (b, @). It is easily verified that D, j« is
regular if and only if so is D.

Let D be a Q-regular PAD satisfying the conditions (3.6) and (6.1). Then its
shift D, ,+ is also Q-regular and satisfies (3.6) and (6.1). Let (8, 8%) be a normal-
ized pair for (D, D™ defined over Q (for definition, see §3). Put

(7.3) Bor@ =BG+ @) +(z+ ya, b*)  @eW,
T4)  Be =BG+ + (a, 2" + % ) e v,

Then (B, B:;,,) is a normalized pair for (D, D;k*‘,,) defined over Q. We can
easily verify that the a-function, the b-function and the data appearing in
Theorem 5.2 (4, U, ¢(s), 7(s) and A(s)) do not change for the shifting of PAD.
Thus zeta functions attached to D, ,+ have the same functional equations as those
attached to D.

2. We now consider the simplest PADD = (G, V, p, a) with Gq= Q"
Vo=Q o) =xtand alr, ) =0(x€Q, tE Q). The singular set is S =
{0} and Vg —Sg =V, UV, where V,={zx€R|z>0}and V,={x € R|
z < 0}. We identify V and V™ via the inner product <z, > = zy. In this case,
the data appearing in Theorem 5.2 are given by

A=1,U=(-1),c9 = @0'e|— 3] 79 = s + 1),

1 ( 1 —e[— s/2] )

AS) = 5\ el= s/2] 1

Let D, be the shift of D by @ and b (@, b € Q). Since '= G,= {1}, L=Zisa
I'-admissible lattice of D, and associated zeta functions are given as follows:

&6, D = e[~ 2]t 5,0, — 0, 86, D = e[~ D]t 5, a0, — b,
£X G, L)~e[ ]C+(s b, a), & (s, L)ze[ ]C (s, b, a),

Here {, (s, @, b) are the usual Hurwitz-Lerch zeta functions given by
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C.(s,a,b) = 2 elbn] |n+ a|™.
neZ,x(n+a)>0
Then Theorem 6.4 implies the well-known functional equations of Hurwitz-Lerch
zeta functions:

C,A—s,b,@,.1Q—s,b,a)

els/4] el— s/4] >

=e[—abl Cn)’I'(s) (L, (s, a, = b), {_(s, a, — b)) X (e[— s/4]  els/d]

Remark. - Zeta functions associated with a shift of a regular PV are consi-
dered as a generalization of the Hurwitz-Lerch zeta functions. Such zeta functions
have been studied by F. Sato from the point of view different from ours (see [4,
§4]). In fact, he has shown their functional equations by using his theory of zeta
distributions.

3. Let n and m be positive integers and put ¥V = Sym, (= the space of

1
symmetric matrices of degree #) and W=M,,,. Let G={§, g = ( 6" f)
1, 0 i
( Om g> e W,ge GL,) and V=V X W. We define an algebraic homomorphism

o of G into GL(V) by
[z, u] o((, @) =[g7'x'g™", (u— Ex)'g "]

for [z, u] € Vand (§, 2 € G. The triplet (G, V, 0) is a non-regular PV with sing-
ular set S = {[x, u] € V| P(zx, u) := det(x) = 0}. Fix a positive definite semi-
integral symmetric matrix S of degree m and define an affine 1-cocycle a by
a(x, ul, (&, g) = tr(x'ESE — 2'ESu). Then it is easily verified that D =
(G, V, p, @) is a regular PAD. In this case, a function 8 on V — S satisfying (2.1) is
given by B([z, #]) = tr(z™"-‘uSu). Note that D is not a shift of any PV. Identifying
V* with V via the inner product <[z, ul, [y, v]> = tr(zy + 2'uSv) ([z, ul,
[y, v] € V), we see that the dual of D is given by D* = (G, V, p*, &™) where

[z, ul 0" (&, @) = ['glx + 'ESE + 'uSE + '€Sw)g, (u + ) gl, a* = 0.

The singular set 8* of D* is {[z, u] € V| P*(z, u) := det(x — ‘uSu) = 0}. Note
that the relative invariant P*(x, u) of D* is not homogeneous. The associated zeta
functions with D and D™ are the same ones as studied in [2] (for the precise form of
their functional equations, see [2 Theorem 2.4]). Note that certain special values of
the above zeta functions appear in the dimension formula for the space of Jacobi
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forms of degree # (see [2, Theorem 4.3]).

4. Let K be an imaginary quadratic field o, be the integer ring of K. We denote
by a the conjugate of @ € K and put £* ='Z for x € M,(K). Let T be the trace
of K to Q:7(@) =a+ a(a& K). For positive integers # and m, let Vg =
{xe M |2* =2}, Wo=M,,(K) and Vo =Vq4 X Wq The group Gg =

[(g,g)=<16" f)(l(;" Z)VSE WQ,gEGL,,(K)] acts on Vg by

[z, u] 0((, g) = [g72g"", (u— &™) (lz,ul € Vg, (&, & € Gy).

We fix a positive definite Hermitian matrix H = (h;;) of degree m with h;; = Z and
hi; € 0x ', where 8 is the different of K over Q: 8 = {a € K| t(ao,) < Z}. For
u, v € W, Hlu] and H(u, v) stand for uw*Hu and u™Hy, respectively. For
[z,u] €Vqy and (£, 8 € Gq put allz,ul, &, g) = tr(z-HED) — z(tr(H(, u))).
Then « is an affine 1-cocycle with respect to p. It is easily verified that D = (G, V, p,
a)is a PAD defined over Q with singular set S = {[r, u] € V|P(x, ul]) :=
det x = 0}. Henceforth we identify the Q-dual VZ of VQ with Vg, itself via the inner
product <, > of V¢ defined by {lz,ul, ly, v]> = tr(xy) + z(tr(H(u, v))). Then the
dual D*=(G,V, 0" a"is gven by [z, ulp" (¢ 9)=[g"@+Hu+& —
Hlul)g, (u+ &gl, a® = 0. We easily see that D* is also PAD and its singular set is
S*={lz, ul € V| P*([z, u]) : = det(zx — Hlul) = 0}. The corresponding character
x,(resp. x2) to P (resp. P¥) is given by x,((€, g) = NK,Q(deth1 (resp. x: (€, @)
= Ngq(det @)). Thus Giq = {(§, © € Gg|Nyg(detg) =1}. For simplicity we
0 &
0 A
M, (K)). Then the differentials of p, @ and x, are given as follows:

write (€, A) for each element ( > of the Lie algebra gq of Gg (§ € M,,,(K), A€

[z, u] do((§, A) = [~ Az — zA”, — &x — uA™],
da(lz, u] (&, A) = — zltr HE, w), dx,((§, A)) = — (tr A).

Since dy, vanishes on the Lie algebra g, of G,, we can define a (-equivariant mapping
¢.:V—8—V —8"for s € C so that

{x, ul do((§, A)), ¢,([x, ul))> + da(lz, u, (§, A) = — E%sdxl((é, A)

for every [x,u] €V and (¢, 4) € 9q (see Proposition 2.3). In fact, we have

S

o (x, ul) = [— 2—7[1-1:"1 + Hlux™], — ux_l] and hence ¢, is dominant if s+ 0.

Thus D and D* are Q-regular. We normalize B and B* satisfying (2.1) by
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n
- S and

Bz, ul) = tr(x"'Hlul), B* = 0. Then F(s) defined in §3 is equal to — o

hence the condition (3.6) is satisfied.

Let V; be the set of # X n Hermitian matrices with ¢ positive and # — 7 negative
eigenvalues (0 <i<#). Put V,=V, X Wx and V:k = {lx, ul € Vg|lxz— Hlul €
V). Then we have Vg —Sg = U7V, and Vi — S;: = U7, V:k (disjoint union). Let
dr =T, dr; 11, dRe(z;) dim(z) (x= (z;) € Vg) and  du =1L 1T dRe(u,)
dlm(u,) be the usual Lebesgue measures on Vg and W, respectively. For f€ S(Vg),
define

0(f,9) = [ F(lz, ub) | det ] eltrte™ Hl)] dad,
DF(f,9) = j‘;*f([.r, u)) | det (@ — Hul) [° dxdu.

Both functions @,(f, s) and ®; (f, s) are continued to meromorphic functions on C
(Proposition 5.1). Let F™ be the Fourier transform of f € SVg):

F*(lz, ul) = L F(ly, o) el<lz, ul, ly, 911 dy dv

The following functional equation is proved by a similar argument to that of [2, Proposi-
tion 1.4] and by using the results of [8, §4].

THEOREM 7.1.  For f€ S(Vg), we have
O,(F*f, s) = c(— 9)7(s) ﬁlAﬁ(S) O (f,—s—m—mn),
where

c(s) = e[— %ﬁ] o)™, y(s) = M I's+m+i),

1<i<n

2 .
—2 —n(m+n
”_ﬂ] Cm """ u (s +m+n),

4,9 = (et 2H) " e[
with ui,-(S) =(=1 n-Dn=D)_ nn=D/2 Minz(;:'.j) (] > (Z’l__]) exp(ri s@k — i — §))

k=Max(0,i+j—n) k k

fr0<L 14,75 n
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We normalize a right invariant measure dg on Gg by d((€, g)) = | det gl
I,_;;-,dRe(g,)dIm(g,) I, II,_, dRe(§;) dIm(§;)). Define the density u(x) (resp.
25 @™) for x € Vg — 8q (resp. x'e A\ S;) as in §6 and set I'= {(§, 1) € G|
§EM,,, (09, v € GL,(09)}. Let L be a I'admissible lattice of Vi, with respect to
(o, @) and L* its dual. Put L, =L NV, and LT =L*N V] (0 <7< ) and define
zeta functions as follows:

EG, L= X ulxul) el—tr@ Hlu))] | detx|™,

lrleL/oIM

e, LY = X u"Uzu)|det(x— HluD] |

el /0¥

Then the condition (6.5) is satisfied. The following result is a consequence of Theorem
6.4 and Theorem 7.1.

THEOREM 7.2. Let the notation be the same as m Theorem 7.1. The Divichlet series
(s, L) and &' (s, L") are continued to mevomorphic functions on C with possible simple
poles at s = 1,. . .,n. Furthermore they satisfy the functional equations

Vol(VR/L*)éi*(m +n—s,L%

=cm+n—9rs—m—mn) i:Aj,-(s— m—n)§(s, L) A<i<n).
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