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Introduction. If one considers the theories of Hurewicz,
- Serre - or other fibrations in the categories of topological or
pointed topological spaces, one can see that many of the funda-
mental theorems can be formulated and proven in the general
case of categories for which certain functors and natural trans-
formations are given. And, since fibrations may be defined
either by a cylinder or a path space construction, we shall give
in an analogous way two different definitions of fibrations in the
general case. One we call a (Z, e)-fibration, where Z:L= &
is a functor, e:1 = Z a natural transformation; the other is
called a (P, s)-fibration, where P:L={ and s:P-41 . It will
be shown in section 1 that, if Z is adjointto P and e adjoint
to s, these definitions coincide. In §2 we will then prove the
fundamental structure theorems on induced fibrations, path lifting
property, liftings, cross sections, factoring through the fiber,
irreducibility and strong deformation retractions. To prove all
these theorems we need only the following: two functors Z ,
P:L— L with Z adjoint to P and three natural transformations
e, €&1—+ 2, r:Z—+1 suchthat re=1=r&. Our concepts of
fibration and homotopy are modelled upon these concepts in top-
ology in the same way as done by Kan [3].

We wish to make the remark here that we do not state our
theorems on fibrations relative to a full subcategory, which is
nevertheless necessary e.g. in case of Serre fibrations. But
the reader will see himself that the theorems hold as well in the
relative case when modified in the usual way. In addition, we shall
assume that our category has a null object ( like the category of
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pointed topological spaces). If this is not the case, one has to
put instead of null object a point object, i.e. an object for which
hom (X, pt) contains exactly one element for each object X,
and to modify the theorems again in an obvious way. We exclude
in our statements both cases since we want to state the theorems
and proofs in a short and suggestive wav.

Section 4. Preliminary remarks on categories. In the
following we will assume that our category /£ has a null object
and that products and cartesian squares always exist. We will
use the following notations: g« indicates that the morphism o is

monic, 2 that o is epic and 2 that o is an equivalence. The
-3

morphisms which factor through a null object are denoted by 0 .

A product of two objects Ci, CZ is denoted by Ci n C‘2 , the
associated projections by ,«.i:cin C2 - Ci (i=1,2) . Consider
now a diagram
Ci
(1.1} ‘i ¥
CZ T C

. U
I - C,
(1.2) o' l v ¢
C - C
2 v

is denoted by (¢',4¢') = I(¢p,¥) . By the universal properties as-
sociated with the notions of product and cartesian square it is
clear that they are determined up to canonical equivalences. If

¢1:C - C1 s 9yt C - C2 are any two morphisms, we will de-

note by {qp1 , ¢2} :C —~ C1 I C2 the uniquely determined mor-
i
phism commuting with the projections and, in case of ?y :C, =~ C1 ,

1
?, :C2 - C2 we define ¢, Mg, = {(pi Ty, 9o} .
Let us also recall the definition of adjoint functors and state
a fundamental theorem. Let S:&— ' and T:&£&> £ be functors.

Then S is called adjointto T and T coadjoint to S if there
exists a natural equivalence ¢ :homr (SC, C') > hom -C’(C' TC!) .
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Now the fundamental lemma:
PROPOSITION 1.3.  Let S1,SZ: L>L" and Ti,'r?_: L =L

be functors and assume that Si is adjoint to Ti by

6, +hom (5,C, ) hom (G, T.C'), (i=1,2). Then, if 15, 5,

is a natural transformation, there exists a unique natural trans-

formation 1::T2 - T1 such that the square

hom (S, C, C') %2 hom (C, T,C')

(1.4) s* ,l, lt*
bom (S, C, C) ‘*_’3 hom (C, T, C")

always commutes. And conversely, if t:T_ - T1 is a natural

2
transformation there exists a unique natural transformation
s:S1 - S2 rendering (1.4) commutative.

The proof is straightforward and can be found in [4]. We

will only notice here that given s:s‘1 - 52 , t is defined by
-1
1= ' 1) . 1 1 i . - s
tC ct)1 (¢2 1T2C ° STZC ): TZC Ticr and given t TZ '].’1

s is defined by sC = ¢'11 (t5,C 0 ¢, ;)i S,C~85,C. If the
2

diagram (1.4) commutes, we will call t coadjointto s and s
adjoint to t with respect to ¢1,¢:2 .

Section 2. Z- and P- Fibrations. We will now define -
analogously to the cylinder and path space constructions - two
types of fibrations which we will call Z- and P- f{fibrations.

DEFINITION 2.1. Let Z:Jf~ £ be a functor and e:1 — Z
a natural transformation from the identity functor to Z . Then
we call a morphism ¢:C1-> C a (Z, e)- fibration if to every

object X and each commutative square of the form

7
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1
’,"7
2.2) - exl N
ZX > C
B

there exists a morphism @ :ZX - C as indicated such that
woeX=gqa, ow =f.

DEFINITION 2.3. Let P:L~- L be a functor and s:P -+ 1
a natural transformation. Then we call a morphism ¢:C1 = C

a (P, s)- fibration if to each object X and each commutative
square of the form

X = C1
(2.4) p l l ¢
PC - C
sC

there exists a morphism o'X = PC . such that Poow =§ and

sC1 aw Ta.
From now on we shall use the following abbreviations:
Instead of eX:X = ZX , sX:PX = X we will write e, s respectively
and instead of (Z,e)- and (P, s)- fibrations we will speak of
Z- and P-fibrations.

Observe further that, if ¢ is a P-fibration, we can derive
from (2. 4) a commutative diagram of the form

X
\\\(AJ [23
B N
(2.5) PC 37 c
1 1
L've L
PC 3 cC

Now we are interested in "natural' relations between Z
and P, e and s such that the notions of Z- and P-fibrations
coincide. For this purpose we prove the following theorem:

8
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THEOREM 2.6.' If Z is adjoint to P by
¢: hom (ZX,Y)=hom (X,PY) and if e is adjoint to s such that

hom (ZX, Y) S’, hom (X, PY)

(2.6) e* l ls*
) hom (X, Y) T hom (X, Y)

commutes, then Z- and P-fibrations coincide.

The proof is straightforward since the commutativity of
(2.6) yields that for each B:ZX -+ Y we have Pe = s¢p . Hence
if ¢ is a Z-fibration and if a commutative square like (2. 4) is

. -1 . .
given then ¢a=¢ ~ Be which gives us an w such that we = o

and ¢gw = 4)-1 B . Now it is obvious that for the morphism
dw X -~ PC‘1 the equations s¢w = o and Pedw = hold, the

latter by the naturality of ¢ . Itis plain that the converse holds
too,

Now proposition 1.3 shows us that given Z and P with Z
adjoint to P and given e:1 = Z (or s:P - 1), there exists a
natural transformation s:P -+ 1 (e:1 = Z) such that Z- and
P-fibrations coincide. This and our notion of homotopy, which
will be introduced later, leads us to the following assumptions
which we shall make from now on: we assume that we are given functors
Z,P: - with Z adjointto P by ¢:hom (ZX, Y) - hom (X, PY)
and, further, that we have natural transformations e, € :1 = Z
and r:Z -+ 1 suchthat re=1=ré& . Then there are unique
natural transformations s,5:P- 41, f:1 - P coadjoint to e, €,r
with respect to ¢ and 1, where 1 stands for the trivial ad-
jointness of the identity functor to itself. Given all this, we know
that Z- and P-fibrations coincide; hence we will speak shortly
of fibrations. A (Z) or (P) at the end of the statement of a
theorem will indicate that the proof will be given entirely by
using only the definition of Z- , or P-fibration respectively.

Section 3. Structure theorems for fibrations. From
the definition it is plain that compositions of fibrations yield
fibrations. The first important theorem is that on induced
fibrations:

THEOREM 3.1. Let ga:C1 -+ C be a fibration, q.::C2 - C

any morphism. Then ¢' in the cartesian square (¢',y"') = I (¢, )
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is a fibration. (Z)

Proof. Consider any commutative square of the form

b
§R

Since (1.2) commutes and ¢ is a fibration there exists an
©ZX - C1 with e = y'a and ¢&% = ¢p . The latter equation

gives us a uniquely determined w:ZX = 1 with (' = & and
¢'w = B . Since the square

X C1
<P'ﬂ’l l @
C - C

Z oy

also commutes there exists a uniquely determined vy: X = I with
Ylv=d'a=3%e and ¢'v=g¢'o=Pe . This gives us by uniqueness
v=aoa=we . Hence ¢' is a fibration.

For completeness we mention here that if ¢ is a retraction
then ¢' is also a retraction. But this is so in general and does
not depend on the fact that ¢ is a fibration. The same is true
of the statement that | can be factored through ¢ if and only if
@' is a retraction (often such theorems are related to fibrations
in the literature; compare [1], [2]).

In the case that § is a retraction the converse of theorem
3.1 holds:

THEOREM 3.2. I, in addition to the assumptions of 3.1
y is a retraction then ¢' is a fibration if and only if ¢ is a
fibration. (Z)

Proof. Assume that ¢! is a fibration and let o¢: C— CZ

be a morphism with o =1 . Consider any commutative square
like (2.2). Since Yo B e = ga there exists N: X = 1 with
¢'\ = @ and ¢')\ = o PBe . Hence the square

10
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X 71
e l &, l 0!
ZX = C
B

commutes and since ¢' is a fibration there exists an § as in-
dicated rendering both triangles commutative. Setting w = '@
yields the theorem.

Another important theorem states that the path lifting
property is equivalent to the fibration property. This is expressed
as follows:

THEOREM 3.3. Let ¢: C1 -+ C be any morphism and let
(¢!, s') =1(p, sC). Denote by p: PC1 - I the uniquely deter-
mined morphism satisfying s'p = sC‘l and ¢'p = P¢p . Then ¢ is
a fibration if and only if p is a retraction, (P)

Proof: Necessity. In(2.4)1let X =1, a=5s'", B=¢'.
This gives us an w :I = PC, rendering the corresponding diagram
(2.5) commutative. Now the uniqueness of the universal property
of a cartesian square shows pw = 1.

Sufficiency. Let T:I1-— PC1 be a morphism with p7v =1 .

Since ¢' = ¢'p7 = Py- T and s' = s'pT = s the diagram

commutes and in the general case of a commutative square like
(2. 4) there exists certainly an $:X = 1 with o= s'G and
B =¢'® . Define w =7T&% and the theorem is proven.

t
PROPOSITION 3. 4. Let 2K Ci - Ci (i =1,2) be
fibrations. Then ?y I ?, is a fibration. (Z)

11
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This is plain since if (cpir[ cpz)oz= Be and ﬂiB factors
through ¢, by © with respect to moa then B factors through
¢1H¢2 by {wi , wz} with respect to o .

Looking for types of morphisms which are always fibrations
we will prove:

PROPOSITION 3.5. Egquivalences, projections and
0:C =+ 0 are fibrations. (Z)

Proof. I the square

A2 2
|+
e s .
/, 1
X C
Z 3 1
commutes, choose w as {f, m, ar} . This proves the theorem

2
for projections and by choosing C2 = 0 it follows for equivalences,

by C1 = 0 for the null morp-hisrn to a null object.

To proceed in the theory of fibrations let us introduce a
concept of homotopy: given two morphisms o, @:X > Y, we say
that @ is homotopic to o if there exists a morphism w:ZX —~+ Y
such that we =« and wé =a@. w 1is then called a homotopy from
we to wé& . Turning to P, s, § we can clearly express homotopy
as & is homotopic to o iff there exists an w:X = PY such that
sw = a and Sw = @&. This notion of homotopy is not necessarily
an equivalence relation. But it has the following two properties.
(i) If @ is homotopic to @, and B 1is any morphism such that
Bo is defined, then P& is homotopic to Ba, and (ii) if @ is
homotopic to o, B a morphism such that off is defined then ap
is homotopic to of . In addition our homotopy relation is reflexive
since r:Z —> 1 is a retractionfor e and € and to have symmetry
it is necessary and sufficient to have morphisms +: ZX -+ ZX for
every object X satisfying ve =& and €& =e .

We can now state a theorem on liftings:

THEOREM 3.6. Let <p:C1 =+ C be a fibration, and let
i C2 - C be homotopic to 0. Then § can be factored through ¢

12

https://doi.org/10.4153/CMB-1967-002-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-002-8

by a morphism which is itself homotopic to 0 .

Proof., Let @: ZCZ - C be a homotopy with G e

=0 s
€ = . Hence the square

0
TS
Oi/
I

zC.

commutes, which gives us w as indicated.
we =

Now w@e& lifts |y and
0 shows w & homotopic to 0 .

COROLLARY 3.7. If ¢: C1 -+ C is a fibration and

1:C—+ C is homotopic to 0 then ¢ is a retraction.

We introduce now the notion of fiber by defining fiber ¢
= ker ¢ . Then we have the following

THEOREM 3.8. Let ¢: C1 = C be a fibration, a: C'J2 - C1
any morphism. Then there exists &: C2 - C1 homotopic to «

such that & factors through the fiber if and only if 0 is homo-
topic to ga. (Z)

Proof. (i) Let O be homotopic to ¢a by <.T):ZC2 - C.
Since the square

[°3
2~ %
l w -7 l
e .2 @
ZC

commutes we can find w as indicated.” Hence w & is homotopic
to o and gpwe€ =5 € = 0 shows that w & factors through the fiber.
(i) If there exists & homotopic to « and factoring through

the fiber, then ¢&= 0 is homotopic to ¢a.

Next we will introduce the notion of irreducibility: an epic
morphism o is called irreducible if each morphism homotopic

13
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to o is again epic. Irreducible morphisms are of interest be-
cause if o C1 ->> C2 is irreducible and C2 is not a null object,

then 0 1is not homotopic to o. For the proof we need only to
observe that if 0: C1 - C2 is epic then 0 =1: C2 - C2 , hence

CZ’-:O.

PROPOSITION 3.9. Let ¢: C1 => C be an epic fibration.

I o: C2 =>> C1 is irreducible then ¢o is irreducible. (Z)

Proof. Let $:Z2C_ - C be any morphism with ©e =¢a.

2
Then
o
C —>
2 o 1
w//
e ] 2T e
zC - C
2 @
commutes for a certain w . Now ©& = 9w & with w& epic

since ¢ is irreducible. Thus & & is epic.

COROLLARY 3.140. I ¢ is an epic fibration and 1 :C1 - C1

is irreducible then ¢ and 1:C = C are irreducible. (2Z)

Proof. ¢ is clearly irreducible since ¢ = o1 . If
®:2C—= C is any morphism with G e =1 we get a commutative
diagram of the form

-

1, -

z

i€

Zzc

Now G €9 =0 Z2Z¢é€ = ¢gw €& which is epic. Hence % & is epic

which proves 1C irreducible.

As a special case we get from 3.10 that if ¢ is an epic
fibration and C is not a null object and 1C is irreducible then
1

0 is neither hornotopic to ¢ nor to 1C .

14
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Let us now turn to the notion of regular fibrations. For
that purpose we give the definition of a stationary covering homo-
topy. We start from the following situation: let

e
ZXQ\A£ ’

be a commutative triangle. Then o is called stationary with &
if for any subobject p,:Xi > X such that

zX, Zy zZX
r l 16
X1 ; C

commutes for a certain # there exists a morphism T:Xi» C

such that
ZzX 1 %? X
- | | o
X T 4

commutes too. A (Z-) fibration ¢ is then called regular if in
any commutative square (2.2) w can be chosen stationary with

B . Itis left to the reader to transfer the definition of stationarity
to P, { . Further it may be verified by the reader which propo-
sitions hold with regularity for the fibration ¢ presumed and

how one has to modify theorems in this special case (e.g. pro-
jections are regular fibrations). Our purpose for introducing
regularity is a theorem on strong deformation coretractions. To
formulate this theorem we define k:C' = C to be a deformation
coretraction if there exists an w : ZC -+ C such that we =1 and

w&=xp with p:C= C' and pK=1C'.. If one can further

choose w in such a way that

zct 2% zc
(3.11) r | l w
c - C
X
15
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commutes, K is called a strong deformation coretraction. Itis
obvious that if x is a deformation coretraction then K is monic,

THEOREM 3.12. Let ¢: C1 - C be a regular fibration
and k: CZ —+ C a strong deformation coretraction. Then x' in

the cartesian square (¢', K') =1 (¢, x) is a strong deformation
coretraction. (Z)

Proof. Let ©3:ZC - C be chosen such that e =1,
®€&=kKp where p:C— C2 , pk =1 and the corresponding square

(3.11) commutes. Consider

with @ Zge =G eg = ¢ showing the square commutative. Insert
w stationary with & Z¢ as indicated rendering in addition the
two triangles commutative. Since 9w € =G Z¢&E=wé€¢ = Kp ¢ ,
there exists a unique p': C1 - ] with ¢'p'=p¢ and Kk'p'=wé

where
K'
I - C
1
(3.13) ¢! l l @
c, £ ¢
2
shows the cartesian square (¢', k') =I(¢, x) . Turning to the
diagram '
o
I ______
/) > C1
€ /
3. =
( 14) I o ZITK}—)ZC1 Z(p (4
r ZC -
Ko'
I ——— C
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the calculation 3 Zo Zk' =G Z(9 k') =G Z (ke') =& ZxZ¢' = krZ ¢'
= Ke¢'r shows the lower part commutative. Hence there exists o
rendering the upper part commutative. But then o=w Zk'e =
wek' = x' and o=w Zk'eé = x'p'x' . Hence ¢'p'k' = ¢' and
k'p'k' = k' which gives by the uniqueness of the universal
property of the cartesian square (3.413) v'k' =41 . In addition
(3.14) shows that k' is a strong deformation coretraction.
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