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Abstract Isometric deformations of immersed surfaces in Euclidean 3-space are studied by means of the
drehriss. When the immersion is of constant mean curvature and the deformation preserves the mean
curvature, we determine the drehriss explicitly in terms of the immersion and its Gauss map. These
methods are applied to obtain an alternative classification of the Smyth surfaces, i.e. constant mean
curvature immersions of the plane into Euclidean 3-space which admit the action of S1 as a non-trivial
group of internal isometries.
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1. Introduction

In [3], Smyth posed the following problem. Classify all two-dimensional Riemannian
manifolds (M, g) which allow a non-trivial one-parameter group of isometries ψt :
(M, g) → (M, g) and for which there exists a constant mean curvature isometric immer-
sion f : M → R

3. The main result that was obtained in [3] is now given.

Theorem 1.1 (Smyth). For each integer m � 0 there exists a 1-parameter family of
conformal immersions fm : C → R

3 of constant mean curvature 1, such that the induced
metric is complete and invariant by the group of rotations about 0. Moreover, 0 is an
umbilic of index −m/2, only powers of the rotation through 2π/(m + 2) about 0 extend
to motions of R

3 and the associates of fm are given by (fm)θ = fm ◦ e−iθ.
Conversely, any complete surface of constant mean curvature 1 in R

3 which admits a
one-parameter group of isometries is (to within associates) congruent either to one of the
above surfaces fm or to a Delaunay surface.

The purpose of this paper is twofold. Firstly, it is to develop the concept of the drehriss
for continuous isometric deformations, especially for immersions f : (M, g) → R

3, where
the deformation preserves mean curvature. Our second purpose is to apply the method
of the drehriss to give another characterization of the Smyth surfaces. We note that the
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idea of the drehriss has already found application in the case of infinitesimal deformations
(see Liebmann [2] and Blaschke [1]).

2. Isometric deformations and the drehriss

In what follows, M will be an oriented surface with Riemannian metric g and f t :
M → R

3 will be a one-parameter family of orientation-preserving isometric immersions.
The positively oriented unit normal field along the immersion f t will be denoted by ξt.
Relative to isothermal coordinates (x, y) on a neighbourhood about a fixed point p ∈ M ,
we write g = e2ρ(x,y)(dx2 + dy2) and along the curve t �→ f t(p) in R

3 consider the moving
frame F t

p := [f t
x(p), f t

y(p), ξt(p)]. For each t, f t is an isometric immersion. Thus, there
exists Gt

p ∈ SO(3), depending smoothly on t, such that F t
p = Gt

p ·F 0
p . Furthermore, since

Ġt
p(G

t
p)

−1 is skew-symmetric, it follows that

Ḟ t
p = [Ġt

p(G
t
p)

−1] · F t
p = ηt(p) × F t

p

for some uniquely determined ηt(p) ∈ R
3, where the superposed dot denotes differentia-

tion with respect to t and ‘×’ denotes the cross product in R
3. Therefore, for each fixed

‘time’ t we obtain a map
ηt : M → R

3 : p �→ ηt(p),

called the drehriss of the deformation f t at time t. When the defining identity
Ḟ t

p = ηt(p) × F t
p is expressed in component form, we obtain

ḟ t
x(p) = ηt(p) × f t

x(p),

ḟ t
y(p) = ηt(p) × f t

y(p),

ξ̇t(p) = ηt(p) × ξt(p).

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

Using the identities ḟxy = ḟyx and fxy = fyx, it follows from Equations (2.1) that
ηx × fy = ηy × fx and, consequently,

〈ηy, ξ〉e2ρ = 〈ηy, fx × fy〉 = 〈ηy × fx, fy〉 = 〈ηx × fy, fy〉 = 0.

With the same argument applied to 〈ηx, ξ〉, we obtain

〈ηx, ξ〉 = 〈ηy, ξ〉 = 0. (2.2)

Proposition 2.1. If At is the Weingarten map corresponding to f t and if J is the
positively oriented complex structure on M which is compatible with the metric g, then
η∗ = −f∗ ◦ J ◦ Ȧ.

Proof. Using Equations (2.1), we find from the identity ξjt = ξtj that

ξ × ηj = f∗

(
Ȧ

∂

∂xj

)
,
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and, since f is an isometric immersion preserving the orientation, we have

ξ × (ξ × ηj) = ξ × f∗

(
Ȧ

∂

∂xj

)
= f∗

(
JȦ

∂

∂xj

)
.

Now, using the identity ξ × (ξ × ηj) = 〈ξ, ηj〉ξ − 〈ξ, ξ〉ηj , together with Equations (2.2),
it follows that

η∗
∂

∂xj
= −(f∗ ◦ J ◦ Ȧ)

∂

∂xj
for each j ∈ {1, 2},

which proves the proposition. �

3. The determination of At
p and ηt

We now specialize to the case where the mean curvature is preserved by the deformation.
That is, where, for each p ∈ M , the mean curvature H(p) = 1

2 Tr At
p is constant in t.

Recall that, for each t, the Weingarten map, At
p is symmetric with respect to g and

therefore can be orthogonally diagonalized over the reals. Furthermore, the eigenvalues,
λ1(p) � λ2(p), of At

p are the roots of the equation λ2 − 2H(p)λ + K(p) = 0, where K(p)
is the Gaussian curvature of g at p. In particular, these eigenvalues are independent of
t and, therefore, At

p and A0
p are orthogonally similar. Thus, when p is not an umbilic

(i.e. λ1(p) �= λ2(p)) there exists a unique ϕ(p, t) ∈ [0, 2π) such that

At
p = eϕ(p,t)JA0

pe
−ϕ(p,t)J .

It is easy to see that (A0 − HI)p(−J) = J(A0 − HI)p, where Ip is the identity map on
TpM . Therefore,

(A0 − HI)pe−ϕ(p,t)J = eϕ(p,t)J(A0 − HI)p

and so we obtain that

(At − HI)p = eϕ(p,t)J(A0 − HI)pe−ϕ(p,t)J = e2ϕ(p,t)J(A0 − HI)p. (3.1)

Proposition 3.1. If f t : (M, g) → R
3 is a one-parameter family of isometric immer-

sions, each having the same constant mean curvature H, then

(At − HI)p = eα(t)J(A0 − HI)p

and

ηt(p) = −α̇(t)[ξt(p) + Hf t(p)] + Et,

where Et ∈ R
3 does not depend on p.

Proof. Since both I and J are parallel, it follows from Codazzi’s equation that,
when H is constant, the angle ϕ(p, t) in Equation (3.1) is independent of p. Thus,
the first part of the proposition is proved on replacing 2ϕ(p, t) in (3.1) by α(t). To
establish the second part, take the t-derivative (with p fixed) across the equation
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(At − HI)p = eα(t)J(A0 − HI)p to find Ȧt
p = α̇(t)J(At − HI)p. From Proposition 2.1 we

have η∗ = −f∗ ◦ JȦ. After substituting the latter expression for Ȧ, we find that

η∗ = α̇(t)(f∗ ◦ A − Hf∗) = −{α̇(t)(ξ + Hf)}∗,

from which the second part of the proposition follows. �

Remark 3.2. Since (At − HI)p = eα(t)J(A0 − HI)p, the deformation f t is through
the associates of f0.

4. The Smyth surfaces

Here we take M to be R
2 with a conformally flat metric g which is invariant under

the group of rotations about the origin. Thus, in polar coordinates (r, θ), we may write
g = e2ω(r)(dr2 + r2 dθ2). In this setting, f t(r, θ) = f0(r, θ + t), from which it follows that,
for all (r, θ) and t, we have

ξt(r, θ) = ξ0(r, θ + t),

At(r, θ) = A0(r, θ + t).

Combining this observation with the first result in Proposition 3.1, we see that

(A0 − HI)(r,θ+t) = (At − HI)(r,θ) = eα(t)J(A0 − HI)(r,θ).

In particular,

eα(t1+t2)J(A0 − HI)(r,θ) = (A0 − HI)(r,θ+t1+t2) = eα(t2)Jeα(t1)J(A0 − HI)(r,θ),

so that the function ‘: R → R : t �→ α(t)’ is linear and, therefore, α(t) = ct for some
constant c ∈ R. Furthermore, since

eα(2π)J(A0 − HI)(r,θ) = (A0 − HI)(r,θ+2π) = (A0 − HI)(r,θ),

it follows that the constant c is an integer which we may take to be −n for some integer
n. Thus −α̇(t) = n and, from the second part of Proposition 3.1, the drehriss of this
deformation is given by

ηt(r, θ) = nξt(r, θ) + (Et + nHf t(r, θ)). (4.1)

From the identity f t(r, θ) = f0(r, θ + t) it follows that

ḟ t(r, θ) = f0
θ (r, θ + t),

ḟ t
r(r, θ) = f0

θr(r, θ + t),

ḟ t
θ(r, θ) = f0

θθ(r, θ + t),

ξ̇t(r, θ) = ξ0
θ(r, θ + t).
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On setting t = 0 and dropping the superscript ‘0’ from all functions in the previous
set of equations, we find (with the help of the moving frame equation Ḟ t

p = ηt(p) × F t
p)

that

frθ(r, θ) = ḟr(r, θ) = η(r, θ) × fr(r, θ),

fθθ(r, θ) = ḟθ(r, θ) = η(r, θ) × fθ(r, θ),

ξθ(r, θ) = ξ̇(r, θ) = η(r, θ) × ξ(r, θ).

Now use the formula (4.1) for the drehriss to obtain

frθ = nξ × fr + (E + nHf) × fr,

fθθ = nξ × fθ + (E + nHf) × fθ,

ξθ = (E + nHf) × ξ.

⎫⎪⎬
⎪⎭ (4.2)

However, ξ × rfr = fθ and ξ × fθ = −rfr, so the first two equations above may be
written as

frθ =
n

r
fθ + (E + nHf) × fr (4.3)

fθθ = −nrfr + (E + nHf) × fθ. (4.4)

When n �= 0, one obtains from the integrability conditions, frθ = fθr and frθθ = fθθr,
the additional equation

frr +
1
r
fr +

1
r2 fθθ =

2H

r
fr × fθ. (4.5)

This is exactly the condition under which the immersion f has constant mean curva-
ture H, because the expression on the left of (4.5) is just the Laplacian of f in polar
coordinates. By a change of scale in R

3, or on replacing f by (1/H)f , we may assume
that f satisfies (4.3)–(4.5) with H = 1. Furthermore, up to a congruence, we may put
fr(0, 0) = eω(0)e1 and put f(0, θ) = 0 together with ξ(0, θ) = e3, for all θ, where e1, e2,
e3 form the usual basis for R

3 and ω(0) ∈ R is the initial value for the metric function
ω(r). With these conventions, we see from the third equation in (4.2) that, when r = 0,
0 = ξθ = E × ξ so that E = kξ = ke3 for some k ∈ R. Since fr(0, θ) is obtained by
rotating fr(0, 0) through θ about e3, it follows that frθ(0, θ) = e3 × fr(0, θ). Combining
this with the first equation in (4.2) when r = 0, we find that E = (1 − n)e3. Henceforth,
we will assume that the immersion is selected so that the above conditions hold.

Proposition 4.1. With the notation as above, where f is replaced by an appropriate
associate, we have

〈(1 − n)e3 + nf, fθ〉 = rn sin nθ,

〈(1 − n)e3 + nf, fr〉 = re2ω(r) − rn−1 cos nθ,

〈(1 − n)e3 + nf, ξ〉 = rω′(r) − (n − 1).
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Proof. If we put Ψ(r, θ) = 〈(1 − n)e3 + nf, fθ〉, then it follows from (4.3) that
Ψr = (n/r)Ψ and, therefore, Ψ(r, θ) = rnΓ (θ) for some smooth function θ �→ Γ (θ).
Using (4.3) and (4.4), we find that Ψθθ = −n2Ψ , so Γ (θ) = γ sin(nθ + δ) for some con-
stants γ and δ. If we replace f by an appropriate associate, we may assume that δ = 0,
and by making a change of scale in R

2 we may assume that γ = 1. This proves the first
formula. To establish the second formula, differentiate across the first with respect to θ

and then use Equation (4.4). To prove the third formula, differentiate across the identity
r2e2ω(r) = 〈fθ, fθ〉 with respect to r and then use Equation (4.3). �

Remark 4.2. A result similar to that in Proposition 4.1 was obtained in [4], where
it was used to show that the immersion f is proper.

Corollary 4.3. If the immersion f is as in Proposition 4.1, then the corresponding
Hopf differential is given by zn−2 dz2.

Proof. If we write ∂ζ to denote ∂/∂ζ, etc., then

∂z = 1
2 (∂x − i∂y) = 1

2e−iθ
(

∂r −
(

i
r

)
∂θ

)
.

Let (aij) denote the matrix representation of the Weingarten map relative to the frame
{∂r, (1/r)∂θ}. The Hopf differential is given by Φ(z) dz2, where

Φ(z) = 2g(A∂z, ∂z) = e−i2θe2ω(r){(1 − a22) − ia21}.

On the other hand,

−
(

a21fr +
(

a22

r

)
fθ

)
= −f∗

(
A

(
1
r

)
∂θ

)
= ξ∗

((
1
r

)
∂θ

)
=

(
1
r

)
ξθ.

Therefore, by the third equation of (4.2) with E = (1 − n)e3 and H = 1, we have that

−
(

a21fr +
(

a22

r

)
fθ

)
=

(
1
r

)
(E + nf) × ξ

=
(

1
r2e2ω(r)

)
{(E + nf) × (fr × fθ)}

=
(

1
r2e2ω(r)

)
{〈E + nf, fθ〉fr − 〈E + nf, fr〉fθ}.

It now follows from Proposition 4.1 that a21 = −rn−2e−2ω(r) sin nθ and that a22 =
1 − rn−2e−2ω(r) cos nθ. Hence,

Φ(z) = e−i2θe2ω(r){(1 − a22) − ia21} = rn−2e(n−2)iθ = zn−2.

�

Thus, by replacing (n − 2) by m in the above, we have proved the following theorem.
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Theorem 4.4. If, for any integer m � 0, fm : C → R
3 is a Smyth surface as described

in Theorem 1.1, then, up to a congruence of an associate, f is determined by

frθ =
m + 2

r
fθ + {(m + 2)f − (m + 1)e3} × fr,

fθθ = −(m + 2)rfr + {(m + 2)f − (m + 1)e3} × fθ,

frr = −1
r
fr − 1

r2 fθθ +
2
r
fr × fθ,

with initial conditions: fr(0, 0) = eω(0)e1 and f(0, θ) = 0, together with ξ(0, θ) = e3, for
all θ, where e1, e2, e3 form the usual basis for R

3 and ω(0) is an arbitrary real constant.
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