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Abstract

The affine Deligne–Lusztig variety -F (1) in the affine flag variety of a reductive group G depends on two

parameters: the f-conjugacy class [1] and the element w in the Iwahori–Weyl group ,̃ of G. In this paper, for

any given f-conjugacy class [1], we determine the nonemptiness pattern and the dimension formula of -F (1) for

most F ∈ ,̃ .

1. Introduction

1.1. Motivation

The notion of the affine Deligne–Lusztig variety was introduced by Rapoport in [Ra05]. It plays an

important role in arithmetic geometry and the Langlands programme. One of the main motivations

comes from the reduction of Shimura varieties. In this paper we focus on the affine Deligne–Lusztig

varieties in the affine flag variety. In this case, the affine Deligne–Lusztig varieties are closely related

to the Shimura varieties with Iwahori level structure. On the special fibres, there are two important

stratifications:

◦ Newton stratification, indexed by specific f-conjugacy classes [1] in the associated p-adic group

◦ Kottwitz–Rapoport stratification, indexed by specific elements w in the associated Iwahori–Weyl

group

A fundamental question is to determine when the intersection of a Newton stratum indexed by [1]

and a Kottwitz–Rapoport stratum indexed by w is nonempty and to determine its dimension. Such an

intersection is closely related to the affine Deligne–Lusztig variety -F (1) (see, e.g., [HR17]). In a

parallel story over function fields, affine Deligne–Lusztig varieties also arise naturally in the study of

local shtukas (see, e.g., [HV11]).

Motivated by the study of Shimura varieties and local shtukas, we would like to understand the

following fundamental questions on affine Deligne–Lusztig varieties:

◦ When is the affine Deligne–Lusztig variety nonempty?

◦ If nonempty, what is its dimension?

It is also worth pointing out that much information on affine Deligne–Lusztig varieties in par-

tial affine flag varieties (which are closely related to Shimura varieties with other parahoric level
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structures) can be deduced from the information on affine Deligne-Lusztig varieties in the affine flag

variety.

1.2. The main result

In this paper we determine, for any givenf-conjugacy class [1], the nonemptiness pattern and dimension

formula of -F (1) for most w in the Iwahori–Weyl group ,̃ . To state the result, we introduce some

notation first. For simplicity, we will consider here only the split groups G. The general case will be

studied in the body of the paper.

The Iwahori–Weyl group ,̃ is the semidirect product of the coweight lattice with the relative Weyl

group ,0. We may write ,̃ as ,̃ = ⊔_ is dominant,0C
_,0. For any F ∈ ,0C

_,0, we set _F = _.

The f-conjugacy classes [1] are classified by Kottwitz [Ko85] via two invariants: the image under

the Kottwitz map ^ and the Newton point a1 (which is a dominant rational coweight). By Mazur’s

inequality for affine Deligne–Lusztig varieties in the affine Grassmannian [Ga10], we deduce that if

-F (1) ≠ ∅, then ^(F) = ^(1) and _F ≥ a1 with respect to the dominance order of the rational

coweights.

The converse, however, is far from being true. The main result of this paper is the following:

Theorem 1.1. Let F ∈ ,̃ . Suppose that w is in a shrunken Weyl chamber. If ^(F) = ^(1), _F − a1 is a
linear combination of the simple coroots with all the coefficients positive and _♭♭F ≥ a1 , then we have a
complete description of the nonemptiness pattern and dimension formula for -F (1).

We refer to Section 2.2 for the definition of shrunken Weyl chambers, Section 5.2 for the definition

of −♭♭ and Theorem 6.1 for the precise description of the nonemptiness pattern and dimension formula.

These assumptions are satisfied for example when _F ≥ a1 + 2d∨, where d∨ is the half sum of positive

coroots (see Corollary 6.4).

As an application of Theorem 1.1, in joint work with Q. Yu [HY21] we establish a dimen-

sion formula for the group-theoretic analogue of Newton strata for sufficiently large dominant

coweights.

1.3. Some previous results

In [GHKR10, Conjecture 9.5.1], Görtz, Haines, Kottwitz and Reuman made several influential conjec-

tures on the nonemptiness pattern and dimension formula of -F (1).

First, for the basic f-conjugacy class [1], they gave a conjecture in [GHKR10, Conjecture 9.5.1 (a)]

on the nonemptiness pattern and dimension formula of -F (1) for w in the shrunken Weyl chamber.

This conjecture was established in [He14]. For -F (1) with [1] basic and w outside the shrunken Weyl

chamber, in [GHKR10, Conjecture 9.4.2] they gave a conjecture on the nonemptiness pattern. This

conjecture is established in [GHN15]. But for [1] basic and w outside the shrunken Weyl chamber, no

conjectural dimension formula of -F (1) has even been formulated so far.

For arbitrary f-conjugacy class [1], they made an interesting conjecture in [GHKR10, Conjecture

9.5.1 (b)] which predicts the difference of the dimensions of -F (1) and -F (110B82), where [110B82]

is the unique basic f-conjugacy class such that ^(1) = ^(110B82). In this conjecture, w is not required

to be shrunken, but the length of w is required to be big enough with some (unspecified) lower bound.

In later works, we studied -F (1) via a somewhat different direction. First, the assumption that w is in

the shrunken Weyl chamber is added, as even for the basic b, the dimension formula of -F (1) with w
outside the shrunken Weyl chamber is still very mysterious. Second, we would like to have a specific

lower bound on w.

For split groups and the case where [1] is represented by translation elements, under the ‘very

shrunken’ assumption the nonemptiness pattern and the dimension formula of -F (1) were given in

[He15, Theorem 2.28 & Theorem 2.34]. A similar result was obtained in [MST19] under a different

condition on w.
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For other nonbasic f-conjugacy classes, little is known so far on the nonemptiness pattern and

dimension formula of -F (1).

1.4. Old strategies

We discuss several strategies used in previous work to study the nonemptiness pattern and dimension

formula for -F (1).

The emptiness pattern is established via the method of P-alcove elements introduced in [GHKR10,

Definition 2.1.1]. The upper bound of dim -F (1) is given by the virtual dimension 3F (1) introduced

in [He14, §10.1].

In [He14], we combined the Deligne–Lusztig reduction with some remarkable properties of minimal

length elements in their conjugacy classes in ,̃ to establish a method to compute dim -F (1) for arbitrary

w and arbitrary [1]. As a consequence, in [He14, Theorem 6.1] we established the ‘dimension=degree’

theorem, which relates the dimension of affine Deligne–Lusztig varieties with the degree of the class

polynomials of the affine Hecke algebras. However, the computation of the class polynomials, in

general, is extremely difficult. The dimension=degree theorem does not lead to explicit descriptions of

the nonemptiness pattern and the dimension formula of -F (1).

For basic [1], assume that -F (1) ≠ ∅. It remains to show that dim -F (1) reaches the upper bound

3F (1). Note that for any Coxeter element c, dim -2 (1) is easy to compute. This will be used as the

starting point. In [He14, §11], we constructed an explicit ‘reduction path’ from an element w in the

shrunken Weyl chamber to an element F′ with finite part a Coxeter element. By [HY12, Theorem 1.1],

the minimal length elements in the conjugacy class of F′ in ,̃ are the Coxeter elements c. This gives a

reduction path from w to c and thus leads to a lower bound of dim -F (1). Fortunately, the lower bound

also equals the virtual dimension 3F (1). Thus we proved the nonemptiness pattern and the dimension

formula of -F (1) with basic [1].

For split groups and the case where [1] is represented by translation elements, in [He15] we used the

superset method of [GHKR10] to relate the nonemptiness pattern and dimension formula of -F (1) with

-F′ (1) for a given F′. Note that [1] is a basic f-conjugacy class. We then used the result on -F′ (1)

established in [He14] to obtain the desired result on -F (1). A very different approach was introduced in

[MST19], where the authors used alcove walks and Littelmann paths to study the nonemptiness pattern

and dimension formula of -F (1).

It is unclear how or whether the methods in [He15] or in [MST19] for the translation elements may

be generalised to arbitrary f-conjugacy classes [1]. The reduction method introduced in [He14] works,

in theory, for an arbitrary f-conjugacy class [1]. However, constructing an explicit reduction path from

a given w to a minimal length element associated to a nonbasic [1] is very challenging. Q. Yu has

written a computer program to construct the reduction path for groups with small ranks. But so far it is

not clear how such a reduction path may be constructed in general.

1.5. New strategy

The new strategy in this paper is as follows. Instead of using minimal length elements as the starting point,

we use the cordial elements introduced by Milićević and Viehmann in [MV20] as the starting point. In

Section 4, we construct a new family of cordial elements. For any element F′ in this family, dim -F′ (1)

equals the virtual dimension. We then construct in Section 5 an explicit reduction path from an element

w in the shrunken Weyl chamber to an element in this family. This is where the assumption _♭♭F ≥ a1
is used. This shows that dim -F (1) ≥ 3F (1). Finally we use the result that dim -F (1) ≤ 3F (1)

established in [He14] to prove the desired nonemptiness pattern and the dimension formula of -F (1).

Another issue we would like to point out here is that previous works (e.g., [GH10]) are in less general

situations (e.g., with the assumption that G is split or tamely ramified) than the one we consider here.

However, in this paper we use the geometric results Theorem 3.2 and Proposition 3.3, which hold for

any reductive group G, and then use combinatorics of the Iwahori–Weyl groups ,̃ . The results from
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previous works that we use here are to deduce certain nice combinatorial properties of ,̃ . Thus we may

apply the previous works in the more general setup here.

2. Preliminaries

2.1. The reductive group G and its Iwahori–Weyl group

Let F be a nonarchimedean local field and �̆ be the completion of the maximal unramified extension of

F. We write Γ for Gal
(

�/�
)

, where � is an algebraic closure of F. We write Γ0 for the inertia subgroup

of Γ. Let t be a uniformiser in F.

Let G be a connected reductive group over F. Let f be the Frobenius morphism of �̆/�. We write

�̆ for G
(

�̆
)

. We use the same symbol f for the induced Frobenius morphism on �̆.

We fix a maximal �̆-split torus S in G defined over F which contains a maximal F-split torus. Let T
be the centraliser of S in G. Then T is a maximal torus. Let A be the apartment of G�̆ corresponding

to (�̆ . Thus A is (noncanonically) isomorphic to + = -∗())Γ0
⊗Z R. The Frobenius f naturally acts on

A. We fix a f-stable alcove a in A, and let �̆ ⊂ �̆ be the Iwahori subgroup corresponding to a. Thus �̆

is f-stable.

We denote by N the normaliser of T in G. The relative Weyl group,0 is defined to be #
(

�̆
)

/)
(

�̆
)

.

The Iwahori–Weyl group (associated to S) is defined as

,̃ = #
(

�̆
)

/)
(

�̆
)

∩ �̆ .

For any F ∈ ,̃ , we choose a representative ¤F in # (!).

We have a natural short exact sequence 0 → -∗ ())Γ0
→ ,̃ → ,0 → 0. We choose a special vertex

of a and represent ,̃ as a semidirect product,

,̃ = -∗())Γ0
⋊,0 =

{

C_F;_ ∈ -∗())Γ0
, F ∈ ,0

}

.

The Iwahori–Weyl group ,̃ contains the affine Weyl group,0 as a normal subgroup and we have

,̃ = ,0 ⋊Ω,

where Ω is the stabiliser of a. The length function ℓ and Bruhat order ≤ on,0 extend in a natural way

to ,̃ . The Frobenius f naturally acts on ,̃ , in such a way that the subset S̃ ⊂ ,̃ is stable.

For any  ⊂ S̃, we denote by , the subgroup of ,̃ generated by B ∈  . Let  ,̃ (resp., ,̃ ) be

the set of minimal length elements in their cosets in, \,̃ (resp., ,̃/, ).

Let S ⊂ S̃ be the set of simple reflections of,0. By convention, the dominant Weyl chamber of V is

opposite to the unique Weyl chamber containing a. Let Δ be the set of relative simple roots determined

by the dominant Weyl chamber. For any B ∈ S, we denote by UB ∈ Δ the corresponding simple root and

U∨B the corresponding simple coroot. We denote by FS the longest element of,0.

We define thef-conjugation action on �̆ by 6 ·f 6
′ = 66′f(6)−1. Let �(G) be the set off-conjugacy

classes on �̆. The classification of the f-conjugacy classes was obtained by Kottwitz in [Ko85]. Any

f-conjugacy class [1] is determined by two invariants:

◦ the element ^([1]) ∈ Ωf and

◦ the Newton point a1 ∈
(

(

-∗())Γ0 ,Q

)+
) 〈f〉

.

Here −f denotes the f-coinvariants and
(

-∗())Γ0 ,Q

)+
denotes the set of dominant elements in

-∗ ())Γ0
⊗Q = -∗())

Γ0 ⊗Q; the action of f on
(

-∗())Γ0 ,Q

)

/,0 is transferred to an action on
(

-∗())Q
)+

(L-action).

For any F ∈ ,̃ , we write ^(F) for ^( ¤F). It is easy to see that ^(F) is independent of the choice of

the representative w.
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We use the convention of Bruhat and Tits that the translation element C_ acts by −_ on the apartment.

In this way, we have ℓ
(

GC_
)

= ℓ(G) + ℓ
(

C_
)

for any G ∈ ,0 and _ dominant.

2.2. Affine Deligne–Lusztig varieties

We have the following generalisation of the Bruhat decomposition:

�̆ = ⊔F ∈,̃ �̆ ¤F�̆,

due to Iwahori and Matsumoto [IM65] in the split case and to Bruhat and Tits [BT72] in the general

case. Let �; = �̆/�̆ be the affine flag variety. For any 1 ∈ �̆ and F ∈ ,̃ , we define the corresponding

affine Deligne–Lusztig variety in the affine flag variety:

-F (1) =
{

6�̆ ∈ �̆/�̆; 6−11f(6) ∈ �̆ ¤F�̆
}

⊂ �;.

In the equal characteristic, -F (1) is the set of F̄@-points of a scheme [BS17].

As discussed in [GHN15, §2], the study of the nonemptiness pattern and dimension formula of affine

Deligne–Lusztig varieties for an arbitrary reductive group may be reduced to simple and quasi-split

groups over F. From now on, we assume that G is simple and quasi-split over F. In this case, thef-action

on ,̃ preserves,0 and -∗())Γ0
. Moreover, we have f(S) = S and f(Δ) = Δ .

Now we recall the definition of the virtual dimension in [He14, §10.1].

Note that any element F ∈ ,̃ may be written in a unique way as F = GC`H with ` dominant,

G, H ∈ ,0, such that C`H ∈ S,̃ . In this case,

ℓ(F) = ℓ(G) + ℓ(C`) − ℓ(H). (2.1)

We set

[f (F) = f
−1(H)G.

Let J1 be the reductive group over F with J1 (�) =
{

6 ∈ �̆; 61f(6)−1 = 1
}

. The defect of b is

defined by def(1) = rank� G − rank� J1 . Here for a reductive group H defined over F, rank� is the

F-rank of the group H. Let d be the dominant weight with 〈U∨, d〉 = 1 for any U ∈ Δ . The virtual
dimension is defined to be

3F (1) =
1

2

(

ℓ(F) + ℓ([f (F)) − def(1)
)

− 〈a1 , d〉.

The following result is proved in [He14, Corollary 10.4] for residually split groups and in [He15,

Theorem 2.30] for the general case:

Theorem 2.1. Let 1 ∈ �̆ and F ∈ ,̃ . Then dim -F (1) ≤ 3F (1).

For any F ∈ ,0, we denote by supp(F) ⊂ S the set of simple reflections appearing in some (or

equivalently, any) reduced expression of w. We set suppf (F) = ∪8∈Zf
8 (supp(F)).

For any F ∈ ,̃ , let _F be the unique dominant coweight such that F ∈ ,0C
_F,0. For any

_ ∈ -∗())Γ0
, we denote by _♦ the average of the f-orbit of _. For any _, _′ ∈ -∗())

+
Q

, we write _ ≥ _′

if _−_′ ∈
∑

U∈Δ Q≥0U
∨ and write _ ≥Z _

′ if _−_′ ∈
∑

U∈Δ NU
∨. Here N is the set of natural numbers,

that is, the set of nonnegative integers.

A critical strip of the apartment V is the subset {E;−1 < 〈E, U〉 < 0} for a given positive root U in

the reduced root system associated to the affine Weyl group ,0. We remove all the critical strips from

V and call each connected component of the remaining subset of V a shrunken Weyl chamber.
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3. Some combinatorial properties

3.1. Minimal length elements

For any f-conjugacy class O in ,̃ , we denote by Omin the set of minimal length elements in O. For

F, F′ ∈ ,̃ and B ∈ S̃, we write F
B
−→fF

′ if F′ = BFf(B) and ℓ(F′) ≤ ℓ(F). We write F→fF
′ if there

is a sequence F = F0, F1, . . . , F= = F′ of elements in ,̃ such that for any k, F:−1
B
−→fF: for some

B ∈ S̃. We write F ≈f F
′ if F →f F

′ and F′ →f F. It is easy to see that F ≈f F
′ if F →f F

′ and

ℓ(F) = ℓ(F′).

The following result is proved in [HN14, §2]:

Theorem 3.1. Let O be a f-conjugacy class of ,̃ and F ∈ O. Then there exists F′ ∈ Omin such that
F →f F

′.

Theorem 3.2. Let 1 ∈ �̆ and F ∈ Omin for some f-conjugacy class O of ,̃ . Then -F (1) ≠ ∅ if and
only if ¤F ∈ [1]. In this case, dim -F (1) = ℓ(F) − 〈a1 , 2d〉.

3.2. Deligne–Lusztig reduction

Now we recall the ‘reduction’ à la Deligne and Lusztig for affine Deligne–Lusztig varieties (see [DL76,

Proof of Theorem 1.6] and [GH10, Corollary 2.5.3]).

Proposition 3.3. Let 1 ∈ �̆. Then

(1) if F, F′ ∈ ,̃ with F ≈f F
′, we have

dim -F (1) = dim -F′ (1);

(2) if F ∈ ,̃ and B ∈ S̃ with ℓ(BFf(B)) = ℓ(F) − 2, we have

dim -F (1) = max
{

dim -BF (1), dim -BFf (B) (1)
}

+ 1.

Here, by convention, we set dim ∅ = −∞ and −∞ + = = −∞ for any = ∈ R.

3.3. The relation ⇒

Following [GH10, Definition 3.1.4], for F, F′ ∈ ,̃ we write F ⇒f F
′ if for any 1 ∈ �̆,

dim -F (1) − 3F (1) ≥ dim -F′ (1) − 3F′ (1).

Again by convention, we set dim ∅ = −∞. If the right-hand side is −∞, then the inequality holds

regardless of the left-hand side. It is also easy to see that the relation is transitive.

Note that by the definition of virtual dimension, F ⇒f F′ if and only if for any 1 ∈ �̆ with

-F′ (1) ≠ ∅, -F (1) ≠ ∅, and in this case,

dim -F (1) − dim -F′ (1) ≥
1

2

(

ℓ(F) + ℓ([f (F)) − ℓ(F
′) − ℓ([f (F

′))
)

.

We write F ⇔f F
′ if F ⇒f F

′ and F′ ⇒f F.

3.4. The monoid structure on ,̃

By [He09, Lemma 1], for any F, F′ ∈ ,̃ the subset {DF′; D ≤ F} of ,̃ contains a unique maximal

element which we denote byF∗F′. Moreover,F∗F′ = max{DE; D ≤ F, E ≤ F′}. Hence ∗ is associative.

This gives a monoid structure on ,̃ . If F1 ≤ F and F′
1
≤ F′, then F1 ∗ F

′
1
≤ F ∗ F′.
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4. The cordial elements

4.1. Definition

There is a natural partial ordering ≤ on �(G) defined as follows: Set [1], [1′] ∈ �(G). Then [1] ≤ [1′]

if ^(1) = ^(1′) and a1 ≤ a1′ .

Now we recall the cordial elements introduced by Milićević and Viehmann in [MV20].

For anyF ∈ ,̃ , there is a unique maximalf-conjugacy class [1] such that -F (1) ≠ ∅. We denote this

f-conjugacy class by [1F ]. The element w is called cordial if dim -F (1F ) = 3F (1F ). Equivalently,

w is cordial if and only if ℓ(F) − ℓ([f (F)) =
〈

a1F , 2d
〉

− def(1F ) [MV20, Definition 3.14].

By definition, if F ⇔f F′, then w is a cordial element if and only if F′ is a cordial element. The

following result is proved in [MV20, Theorem 1.1 & Corollary 3.17]:

Theorem 4.1. Let F ∈ ,̃ be a cordial element. Then the following hold:

(1) Set [1], [1′] ∈ �(G). If [1] ≤ [1′] ≤ [1F ] and -F (1) ≠ ∅, then -F (1′) ≠ ∅.
(2) If -F (1) ≠ ∅, then dim -F (1) = 3F (1).

It is mentioned in [MV20] that fully characterising the cordial elements is fairly difficult. In [MV20,

Theorem 1.2], some interesting families of cordial elements are provided. The main result of this section

is to provide another family of cordial elements.

Theorem 4.2. Let _ be a dominant coweight and set G ∈ ,0. Then GC_ is a cordial element and
[1GC_] =

[

¤C_
]

.

Remark 4.3. The original proof we had was a bit technical. The proof to come was suggested by

E. Viehmann.

4.2. Mazur’s inequality

Recall that G is quasi-split over F. Let  ̆ ⊃ �̆ be a f-stable special maximal parahoric subgroup of

�̆. The nonemptiness pattern of the affine Deligne–Lusztig varieties in the affine Grassmannian �̆/ ̆

is determined in terms of Mazur’s inequality. This was established by Gashi [Ga10, Theorem 1.1] for

unramified groups and proved in the general case in [He14, Theorem 7.1]. We may reformulate the

result as follows:

Theorem 4.4. Let _ be a dominant coweight and set 1 ∈ �̆. Then [1] ∩  ̆ ¤C_ ̆ ≠ ∅ if and only if
^(1) = ^

(

C_
)

and a1 ≤ _♦.

4.3. Proof of Theorem 4.2

Set F ∈ ,̃ . By definition, [1F ] is the unique maximal f-conjugacy class that intersects �̆ ¤F�̆. By

[Vi14, Corollary 5.6], [1F ] is also the unique maximal f-conjugacy class that intersects �̆ ¤F�̆. Since

C_ ≤ GC_ ≤ FSC
_, we have

�̆ ¤C_ �̆ ⊂ �̆ ¤G ¤C_ �̆ ⊂ �̆ ¤FS ¤C_ �̆ =  ̆ ¤C_ ̆ .

By Theorem 4.4,
[

1FSC_
]

=
[

¤C_
]

. Thus [1GC_ ] =
[

¤C_
]

.

Now a1
GC_

= _♦ and def (1GC_) = 0. Hence

ℓ
(

GC_
)

− ℓ
(

[f

(

GC_
))

= ℓ(G) + ℓ
(

C_
)

− ℓ(G) = ℓ
(

C_
)

= 〈_, 2d〉 =
〈

_♦, 2d
〉

.

Thus GC_ is a cordial element.
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4.4. Another family of cordial elements

Set F ∈ ,̃ such that Fa is in the dominant Weyl chamber–that is, F = FSC
_H, where _ is a dominant

coweight and H ∈ ,0 with C_H ∈ S,̃ . It was proved by Milićević and Viehmann in [MV20, Theorem 1.2

(a)] that w is also a cordial element.

Now we show that it can also be deduced from Theorem 4.2.

Set F′ = f−1(H)FSC
_. By Theorem 4.2, F′ is a cordial element. Note that [f (F

′) = [f (F) =

f−1 (H)FS. Moreover, it is easy to see that F ≈f F
′. Hence F ⇔f F

′, and w is also a cordial element.

It is also worth mentioning that not every element of the form GC_ is ≈f-equivalent to an element in

the dominant Weyl chamber.

5. From w to a cordial element

We first show the following:

Proposition 5.1. Let _, _′ be dominant coweights. Then the set

{`′; `′ is dominant, `′ + _′ ≥Z _}

contains a unique minimal element with respect the dominance order ≥Z.

Remark 5.2. The proof is due to S. Nie.

Proof. Let `′
1
, `′

2
be dominant coweights with `′

1
+ _′ ≥Z _ and `′

2
+ _′ ≥Z _. We may write `′

1
− `′

2

as `′
1
− `′

2
= W1 − W2, where W1 ∈

∑

U∈�1
Z>0U, W2 ∈

∑

U∈�2
Z>0U for some �1, �2 ⊂ Δ with �1 ∩ �2 = ∅.

Set ` = `′
1
− W1 = `′

2
− W2. Set U ∈ Δ . Since �1 ∩ �2 = ∅, we have U ∉ �1 or U ∉ �2. If U ∉ �1, then

〈`, U〉 ≥
〈

`′
1
, U

〉

≥ 0. If U ∉ �2, then 〈`, U〉 ≥
〈

`′
2
, U

〉

≥ 0. Thus ` is dominant. By definition, `′
1
≥Z `

and `′
2
≥Z `. Moreover,

_′ − _ + `′1 = _′ − _ + `′2 + W1 − W2 ∈

(

∑

U∈Δ

Z>0U + W1 − W2

)

∩
∑

U∈Δ

Z>0U.

Since �1 ∩ �2 = ∅, we have _′ − _ + `′
1
− W1 ∈

∑

U∈Δ Z>0U. In other words, _′ + ` ≥Z _.

The statement is proved. �

5.1. The normalised subtraction

For any dominant coweights _, _′, we denote by _ −dom _
′ the unique minimal element in the set

{`′; `′ is dominant, `′ + _′ ≥Z _}.

It is easy to see that if _ − _′ is dominant, then _ −dom _′ = _ − _′. We call −dom the normalised
subtraction. Now we prove some of its properties.

Corollary 5.3. Let _, _′ be dominant coweights. Let _′′ be a dominant coweight with _′ ≥Z _′′. Set
G ∈ ,0 and let ` be the unique dominant coweight in the,0-orbit of _ − G(_′′). Then ` ≥Z _ −dom _

′.

Proof. Note that ` − (_ − G(_′′)) ∈
∑

U∈Δ NU, _′′ − G(_′′) ∈
∑

U∈Δ NU and _′ − _′′ ∈
∑

U∈Δ NU. Thus

` + _′ = (` − _ + G(_′′)) + _ − G(_′′) + _′

= (` − _ + G(_′′)) + (_′′ − G(_′′)) + (_′ − _′′) + _

≥Z _.

�
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Corollary 5.4. Let _, _1, _2 be dominant coweights. Then

(_ −dom _1) −dom _2 = _ −dom (_1 + _2).

Proof. Set `1 = (_ −dom _1) −dom _2 and `2 = _ −dom (_1 + _2). By definition,

(_1 + _2) + `1 = _1 + (_2 + `1) ≥Z _1 + (_ −dom _1) ≥Z _.

So `1 ≥Z `2.

On the other hand,

_1 + (_2 + `2) = (_1 + _2) + `2 ≥Z _.

So by definition, _2 + `2 ≥Z _ −dom _1 and `2 ≥Z `1. �

5.2. The double flat operator

For any subset J of S, we denote by d∨� the dominant coweight with

〈

d∨� , UB
〉

=

{

1 if B ∈ �,

0 if B ∉ �.

Let [∨� be the unique dominant coweight in the,0-orbit of −f−1
(

d∨�
)

.

Set F ∈ ,̃ . We write w as F = GC_H with _ dominant, G, H ∈ ,0 and C_H ∈ S,̃ . Let � = {B ∈

S; BH < H}. Since C_H ∈ S,̃ , we have 〈_, UB〉 > 0 for any B ∈ �. In particular, _− d∨� is dominant. We set

_♭♭F =
(

_ − d∨�
)

−dom [
∨
� = _ −dom

(

d∨� + [
∨
�

)

.

The main result of this section is as follows:

Theorem 5.5. Assume that G is quasi-split over F. Set F ∈ ,̃ such that Fa is in a shrunken Weyl
chamber. Then there exist a dominant coweight W with W ≥Z _

♭♭
F and 0 ∈ ,0 with suppf (0) ⊃

suppf ([f (F)) such that

F ⇒f 0C
W .

5.3. A convenient notation

Following [GH10, §2.4], we give a convenient notation for varieties of tuples of elements in �;. We

explain the notation by examples. Let OF =
{(

6�̆, 6 ¤F�̆
)

; 6 ∈ �̆
}

⊂ �; × �;. Then we set

{

6
F

// 6′′
F′

// 6′
}

=
{

(6, 6′, 6′′) ∈ (�;)3; (6, 6′′) ∈ OF , (6
′′, 6′) ∈ OF′

}

.

Similarly,

{

6
F

//

F′′

??

6′′
F′

// 6′
}

=
{

(6, 6′, 6′′) ∈ (�;)3; (6, 6′′) ∈ OF , (6
′′, 6′) ∈ OF′ , (6, 6′) ∈ OF′′

}

.

The affine Deligne–Lusztig varieties can be written as

-F (1) = {6
F

// 1f(6)} .
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In all these cases, we do not distinguish between the sets given by the conditions on the relative

position and the corresponding locally closed sub-ind-schemes of the product of affine flag varieties.

The following result is proved in [GH10, Proposition 2.5.2]:

Proposition 5.6. Set F, F′ ∈ ,̃ , and set F′′ ∈ {FF′, F ∗ F′}. Then the map

c :
{

6
F

//

F′′

??

6′′
F′

// 6′
}

−→
{

6
F′′

// 6′
}

, (6, 6′, 6′′) ↦−→ (6, 6′),

is surjective. Moreover, all the fibres have dimension

dim c−1((6, 6′)) ≥

{

ℓ(F) + ℓ(F′) − ℓ(F ∗ F′) if F′′ = F ∗ F′,
1
2

(

ℓ(F) + ℓ(F′) − ℓ(FF′)
)

if F′′ = FF′.

5.4. Proof of Theorem 5.5

We write w as F = GC_F H with G, H ∈ ,0 and C_F H ∈ S,̃ . Let � = {B ∈ S; BH < H} and � ′ =
{

B ∈ S; B
(

_F − d∨�
)

= _F − d∨�
}

. We write f−1 (H)G as f−1(H)G = G ′I for some G ′ ∈ , � ′

0
and I ∈ ,� ′ .

By [GH10, §2.3], the assumption that Fa is in a shrunken Weyl chamber implies that GU 9 < 0 for any

9 ∈ � ′. In particular,

ℓ
(

GI−1
)

= ℓ(G) − ℓ(I). (5.1)

Let W be the unique dominant coweight in the,0-orbit of _F−d
∨
� +(G

′)−1f−1
(

d∨�
)

. By Corollary 5.3,

W ≥Z _
♭♭
F . Let  = {B ∈ S; B(W) = W} and set H′ ∈ , 

0
with _F − d∨� + (G ′)−1f−1

(

d∨�
)

= H′(W).

SetU > 0 with (H′)−1U < 0. Then
〈

W, (H′)−1U
〉

≤ 0. On the other hand, if
〈

W, (H′)−1U
〉

= 0, then since

H′ ∈ , 
0

, we have U = H′
(

(H′)−1U
)

< 0. That is a contradiction. Hence 〈H′(W), U〉 =
〈

W, (H′)−1U
〉

< 0.

Since _F − d∨� is dominant,
〈

_F − d∨� , U
〉

≥ 0. Thus
〈

(G ′)−1f−1
(

d∨�
)

, U
〉

=
〈

f−1
(

d∨�
)

, G ′(U)
〉

< 0.

Since f−1
(

d∨�
)

is dominant, G ′(U) < 0. By [GH10, Lemma 2.6.1], we have

ℓ(G ′H′) = ℓ(G ′) − ℓ(H′). (5.2)

Set B ∈ � ′. Since G ′ ∈ , � ′

0
, we have ℓ(G ′B) = ℓ(G ′)+1. Thus ℓ(G ′)−ℓ(H′) = ℓ(G ′H′) = ℓ

(

(G ′B) (BH′)
)

≥

ℓ(G ′B) − ℓ(BH′) = ℓ(G ′) + 1 − ℓ(BH′). So ℓ(BH′) ≥ ℓ(H′) + 1. Therefore

H′ ∈ � ′,0. (5.3)

In particular, we have

ℓ
(

(H′)−1I
)

= ℓ(H′) + ℓ(I). (5.4)

Set F1 = GI−1C_F−d∨
� H′ and F2 = (H′)−1ICd

∨
� H. Then F = F1F2. By formula (5.3), C_F−d∨

� H′ ∈ S,̃ .

By the definition of J, we have Cd
∨
� H ∈ S,̃ . Hence by equation (2.1), we have

ℓ(F) = ℓ(G) + ℓ
(

C_F
)

− ℓ(H) (5.5)

ℓ(F1) = ℓ
(

GI−1
)

+ ℓ
(

C_F−d∨
�

)

− ℓ(H′) (5.6)

ℓ(F2) = ℓ
(

(H′)−1I
)

+ ℓ
(

Cd
∨
�

)

− ℓ(H). (5.7)
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By equations (5.1) and (5.4), we have

ℓ(F1) + ℓ(F2) = ℓ(G) − ℓ(I) + ℓ
(

C_F−d∨
�

)

− ℓ(H′) + ℓ(H′) + ℓ(I) + ℓ
(

Cd
∨
�

)

− ℓ(H)

= ℓ(G) + ℓ
(

C_F
)

− ℓ(H) = ℓ(F). (5.8)

By equations (5.2) and (5.4), we have

ℓ
(

(H′)−1I
)

+ ℓ(G ′H′) = ℓ(H′) + ℓ(I) + ℓ(G ′) − ℓ(H′) = ℓ(G ′) + ℓ(I)

= ℓ(G ′I) = ℓ
(

f−1(H)G
)

. (5.9)

By equation (5.8) we have

-F (1) =
{

6
F

// 1f(6)
}

�

{

6
F1

// 61
F2

// 1f(6)
}

.

Set

-1 =

{

61
F2

// 62

f (F1)
// 1f(61)

}

�

{

61

(H′)−1I
// 63

C
d∨
� H

// 62

f (F1)
// 1f(61)

}

.

Here the isomorphism follows from equation (5.7).

The map (6, 61) ↦→ (61, 1f(6)) is a universal homeomorphism from -F (1) to -1. We have

Hf
(

GI−1
)

= f
(

f−1 (H)GI−1
)

= f(G ′) and

Cd
∨
� Hf(F1) = C

d∨
�f

(

G ′C_F−d∨
� H′

)

= f(G ′)f
(

CH
′ (W)

)

f(H′) = f(G ′H′CW).

Let

-2 =

{

61

(H′)−1I
// 63

C
d∨
� H

//

f (G′H′CW )

==

62

f (F1)
// 1f(61)

}

⊂ -1.

We have

dim(-F (1)) = dim(-1) ≥ dim(-2).

Since W is dominant, we have ℓ(f(G ′H′CW)) = ℓ(f(G ′H′)) + ℓ(f(CW)). Set

-3 =

{

61

(H′)−1I
// 63

f (G′H′CW )
// 1f(61)

}

�

{

61

(H′)−1I
// 63

f (G′H′)
// 64

f (CW)
// 1f(61)

}

.

Let c : -2 → -3 be the projection map. Set #1 =
ℓ
(

C
d∨
� H

)

+ℓ (F1)−ℓ (G
′H′CW)

2
. By Proposition 5.6, the

map c is surjective and the dimension of each fibre is larger than or equal to #1.

We show that

(a) dim(-2) ≥ dim(-3) + #1.

Now suppose that dim(-2) < dim(-3) + #1. Let Z be an irreducible component of -3 with dim / =

dim -3. For each irreducible component Y of c−1 (/), we construct a closed subscheme /. of Z such

that dim
(

c−1(I) ∩ .
)

< #1 if I ∈ / − /. . The construction is as follows.
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If c(. ) is not dense in Z, then let /. be the closure of c(. ). If c(. ) is dense in Z, then the morphism

c : . → / is dominant. By [GW10, Corollary 14.116], there exists an open dense subscheme V
of Z contained in c(. ) such that for any I ∈ + , we have dim

(

c−1 (I) ∩ .
)

= dim(. ) − dim(/) ≤

dim(-2) − dim(-3) < #1. We set /. = / −+ . This finishes our construction.

Note that in either case, /. is a proper subscheme of Z. Hence ∪. /. $ / . Set I ∈ / − ∪. /. . Then

dim
(

c−1 (I) ∩ .
)

< #1 for any irreducible component Y of c−1 (/). Thus dim
(

c−1 (I)
)

< #1. That

gives a contradiction.

So (a) is proved.

Set 0 = f−1
(

(H′)−1I
)

∗ (G ′H′). Then

suppf (0) = suppf (f(0)) = suppf

(

(H′)−1I
)

∪ suppf (f(G
′H′))

= suppf

(

(H′)−1I
)

∪ suppf (G
′H′)

⊃ suppf

(

G ′H′(H′)−1I
)

= suppf (G
′I)

= suppf ([f (F)).

We set

-4 =

{

61

(H′)−1I
//

f (0)

??

63

f (G′H′)
// 64

f (CW )
// 1f(61)

}

⊂ -3,

-5 =

{

61

f (0)
// 64

f (CW)
// 1f(61)

}

.

By Proposition 5.6 and the same argument as in (a),

dim(-3) ≥ dim(-5) + ℓ
(

(H′)−1I
)

+ ℓ(G ′H′) − ℓ(0) = dim(-5) + ℓ([f (F)) − ℓ(0).

Notice that ℓ(f(0CW)) = ℓ(f(0)) + ℓ(f(CW)). Thus the map (61, 64) ↦→ 61 gives an isomorphism

-5 � -f (0CW) (1), which is universally homeomorphic to -0CW (1). If -0CW (1) ≠ ∅, then -f (0CW ) (1) ≠ ∅

and -F (1) ≠ ∅. Note that ℓ
(

(H′)−1I
)

+ ℓ(G ′H′) = ℓ
(

f−1(H)G
)

= ℓ([f (F)). Therefore,

dim-F (1) − dim -0CW (1)

≥
ℓ
(

Cd
∨
� H

)

+ ℓ(F1) − ℓ (G
′H′CW)

2
+ ℓ([f (F)) − ℓ(0)

=

ℓ
(

Cd
∨
� H

)

+ ℓ
(

(H′)−1I
)

+ ℓ(F1) − ℓ(G
′H′CW) + ℓ(G ′H′) − ℓ(0)

2
+
ℓ([f (F))

2
−
ℓ(0)

2

=
ℓ(F2) + ℓ(F1) − ℓ(0C

W)

2
+
ℓ([f (F))

2
−
ℓ(0)

2

=
ℓ(F) − ℓ(0CW)

2
+
ℓ([f (F))

2
−
ℓ(0)

2
= 3F (1) − 30CW (1).

So F ⇒f 0C
W . The theorem is proved.
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6. Proof of main theorem

Now we state our main result.

Theorem 6.1. Suppose that G is quasi-split over F. Set 1 ∈ �̆ and F ∈ ,̃ such that Fa is in a shrunken

Weyl chamber, _♦F − a1 ∈
∑

U∈Δ Q>0U
∨ and

(

_♭♭F

)♦

≥ a1 . Then -F (1) ≠ ∅ if and only if ^(1) = ^(F)

and suppf ([f (F)) = S. In this case, dim -F (1) = 3F (1).

Remark 6.2. It is worth mentioning that in most cases, _F − _♭♭F is dominant and nonzero. In this

case, _♦F −
(

_♭♭F

)♦

∈
∑

U∈Δ Q>0U
∨. However, if G is split over F and _F is a minuscule coweight, then

_♭♭F = _F . Thus the assumption _♦F − a1 ∈
∑

U∈Δ Q>0U
∨ is needed in our statement.

We first prove the theorem and then discuss the assumptions in the statement. In particular, we will

give a simple condition where the assumptions are satisfied in Corollary 6.4.

6.1. The (�, F, X)-alcove elements

We recall the alcove elements introduced in [GHKR10] for split groups and then generalised to quasi-

split groups in [GHN15].

For any � ⊂ S with f(�) = �, we denote byM� ⊂ G the standard Levi subgroup corresponding to J
and let P� ⊃ M� be the standard parabolic subgroup. Let UP� be the unipotent radical of P� .

Set � ⊂ S with f(�) = � and G ∈ ,0. Set F ∈ ,̃ . We say that w is a (�, G, f)-alcove element
if G−1Ff(G) ∈ ,̃� and ¤GUP�

(

�̆
)

∩ ¤F �̆ ⊆ ¤GUP�
(

�̆
)

∩ �̆. The following result is proved in [GHN15,

Corollary 3.6.1].1

Theorem 6.3. Set [1] ∈ �(G) and F ∈ ,̃ . Suppose that w is a (�, G, f)-alcove element. Let ^M�
be

the Kottwitz map for the group M� . If ^M�

(

G−1Ff(G)
)

≠ ^M�
(1′) for any 1′ ∈ [1] ∩M�

(

�̆
)

, then
-F (1) = ∅.

6.2. The emptiness pattern

Suppose that Fa is in a shrunken Weyl chamber and
(

_♭♭F

)♦

≥ a1 . We write w as F = GC_H with

G, H ∈ ,0 and C_H ∈ S,̃ . If ^(1) ≠ ^(F), then -F (1) = ∅.

Now suppose that ^(1) = ^(F) and suppf
(

f−1(H)G
)

≠ S. Set � = suppf
(

f−1(H)G
)

. By [GHN15,

Lemma 3.6.3], w is a
(

�, f−1(H), f
)

-alcove element. Set 1′ ∈ [1] ∩M�
(

�̆
)

. We denote by a
M�

1′
the

image of 1′ under the Newton map forM� . Then a
M�

1′
∈ ,0 (a1). Hence a1 − a

M�

1′
∈

∑

U∈Δ Q≥0U
∨.

By assumption, _♦ − a1 ∈
∑

U∈Δ Q>0U
∨. Thus _♦ − a

M�

1′
∈

∑

U∈Δ Q>0U
∨ and cannot be written as

a linear combination of the coroots inM� . Therefore ^M�

(

f−1(H)FH−1
)

≠ ^M�
(1′). By Theorem 6.3,

-F (1) = ∅.

6.3. Dimension formula

Suppose that ^(F) = ^(1) and suppf ([f (F)) = S. By Theorem 5.5, there exist a dominant coweight

W ≥Z _
♭♭
F and 0 ∈ ,0 with suppf (0) = S such that

F ⇒f 0C
W .

By our assumption, W♦ ≥
(

_♭♭F

)♦

≥ a1 . By Theorem 4.2, [¤CW] = [10CW ]. Since ^(F) = ^(CW) = ^(1),

we have [1] ≤ [¤CW].

1There we assume that [1] is basic. In fact, the assumption is required in [GHN15, Propositon 3.5.1 & Remark 3.6.2], but it is
not needed in [GHN15, Corollary 3.6.1].
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By [He15, Theorem 2.27], -0CW ( ¤g) ≠ ∅, where g ∈ Ω with ^(F) = ^(CW) = ^(g). Since ^(F) = ^(1),

we have [ ¤g] ≤ [1].

By Theorem 4.2, 0CW is a cordial element. Hence by Theorem 4.1(1), -0CW (1) ≠ ∅, and by Theorem

4.1(2), dim -0CW (1) = 30CW (1).

So by the definition of ⇒f , we have -F (1) ≠ ∅ and

dim -F (1) − 3F (1) ≥ dim -0CW (1) − 30CW (1) = 0.

Hence dim -F (1) ≥ 3F (1). On the other hand, by Theorem 2.1, dim -F (1) ≤ 3F (1). So dim -F (1) =

3F (1).

6.4. Some remarks on the condition
(

_♭♭F

)♦

≥ a1

We first consider the case where [1] is basic. In this case, the condition
(

_♭♭F

)♦

≥ a1 follows directly

from the condition ^(1) = ^(F).

Now we consider nonbasic [1]. Suppose that _♦F ≥ a1 + 2d∨. In this case, although _F − 2d∨

may not be dominant, its f-average is dominant and is larger than or equal to a1 . By definition,

_♭♭F −
(

_F − d∨� − [
∨
�

)

∈
∑

U∈Δ Q≥0U
∨ for some J. Note that 2d∨ − d∨� − [∨� ∈

∑

U∈Δ Q≥0U
∨. We

have _♭♭F − (_F − 2d∨) ∈
∑

U∈Δ Q≥0U
∨. Hence

(

_♭♭F

)♦

≥ _♦F − 2d∨ ≥ a1 . It is also easy to see that

_♦F − a1 ∈
∑

U∈Δ Q>0U
∨.

In particular, if _F = =l∨, where l∨ is a fundamental coweight and = ≫ 0 with respect to [1], then

_♦F ≥ a1 + 2d∨, and hence the condition
(

_♭♭F

)♦

≥ a1 is satisfied in this case.

Corollary 6.4. Suppose that G is simple and quasi-split over F. Set 1 ∈ �̆ and F ∈ ,̃ such that Fa is
in a shrunken Weyl chamber. Suppose that _♦F ≥ a1 + 2d∨. Then -F (1) ≠ ∅ if and only if ^(1) = ^(F)
and suppf ([f (F)) = S. In this case, dim -F (1) = 3F (1).

6.5. A side remark

By Theorem 4.4, if -F (1) ≠ ∅, then ^(1) = ^(F) and a1 ≤ _♦F .

Set F ∈ ,̃ such that Fa is in a shrunken Weyl chamber. If suppf ([f (F)) = S, then Theorem 6.1

describes the nonemptiness pattern and the dimension formula of -F (1) for most of the f-conjugacy

classes [1] with ^(1) = ^(F) and a1 ≤ _♦F .

If suppf ([f (F)) = � $ S, then by [GHN15, Lemma 3.6.3] w is a
(

�, f−1 (H), f
)

-alcove element

for some H ∈ ,0. Then the Hodge–Newton decomposition (see [GHKR10, Theorem 2.1.4] for the split

group and [GHN15, Propositon 2.5.1 & Theorem 3.3.1] in general) reduces the study of -F (1) to the

study of a suitable affine Deligne–Lusztig variety associated to the Levi subgroupM� . One may apply

Theorem 6.1 to the latter. In this way, one also obtains an explicit description of the nonemptiness

pattern and the dimension formula of -F (1) for most of the f-conjugacy classes [1] with ^(1) = ^(F)

and a1 ≤ _♦F .
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