INTEGRAL BASES FOR QUADRATIC FORMS

J. H. H. CHALK

1. Let

$$Q_n(\mathbf{x}) = Q_n(x_1, \ldots, x_n) = \sum_{\tau,s=1}^n a_{\tau s} x_{\tau} x_s$$

be an indefinite quadratic form in the integer variables x_1, \ldots, x_n with real coefficients of determinant $D = ||a_{\tau s}||_{(n)} \neq 0$. The homogeneous minimum $M_H(Q_n)$ and the inhomogeneous minimum $M_I(Q_n)$ of $Q_n(\mathbf{x})$ are defined as follows:

(1)
$$M_H(Q_n) = \inf_{\mathbf{x}\neq\mathbf{o}} |Q_n(\mathbf{x})|,$$

(2)
$$M_I(Q_n) = \sup_{\mathbf{x}_0} \inf_{\mathbf{x}} |Q_n(\mathbf{x} + \mathbf{x}_0)|,$$

where the upper bound in (2) is over all real $x_0 = (x_1^{(0)}, \ldots, x_n^{(0)})$. By a theorem of Blaney (2, Theorem 2), it has been known for some time that there is a constant C_n , depending only on n, such that $M_I(Q_n) \leq C_n |D|^{1/n}$. The least such value of C_n is known for n = 2, 3 and, recently, Birch (1) has proved that, when n = 2m and Q_{2m} is any quadratic form of signature $s(Q_{2m}) = 0$, then

(3)
$$M_I(Q_{2m}) \leqslant |\frac{1}{4}D|^{1/2m},$$

thus generalizing the special case m = 1, due to Minkowski. Although a similar bound $M_H(Q_n) \leq C_n' |D|^{1/n}$ holds for the homogeneous minimum, the situation is not strictly analogous. A classical theorem of Meyer asserts that every $Q_n(\mathbf{x})$ with rational coefficients in at least 5 variables represents 0 with $\mathbf{x} \neq \mathbf{0}$ and this, in part, has given rise to the conjecture that $M_H(Q_n) = 0$ for every *real* Q_n in at least 5 variables. The most important advance in this direction was made by Davenport (3), with subsequent improvements by others, and we now know that $M_H(Q_n) = 0$ when $n \ge 21$. However, a connection between the two minima was exhibited by Birch (*loc. cil.*) in the course of his paper, in a relatively easy way, when Q_n has at least 3 variables and represents arbitrarily small non-zero values (as, for example, when $M_H(Q_n) = 0$ and is not attained). Under these conditions he showed that $M_I(Q_n) = 0$. In an attempt to find a closer relation between $M_I(Q_n)$ and the homogeneous problem, I propose to introduce another "homogeneous" minimum $M_B(Q_n) \ge M_H(Q_n)$ of Q_n , associated with a set of n integral basis

Received March 16, 1962.

vectors: let $\mathbf{x} = \mathbf{x}_r = (x_1^{(r)}, \ldots, x_n^{(r)}), r = 1, 2, \ldots, n$, be a set of such vectors with

(4)
$$\det(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \pm 1$$

and define

(5)
$$M_B(Q_n) = \inf \left\{ \max_{\tau=1, \dots, n} |Q_n(\mathbf{x}_{\tau})| \right\},$$

where the bound is over all sets of n integral vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ satisfying (4). To summarize information for n = 2, 3, we have

$$M_H(Q_2) \leqslant \frac{1}{2\sqrt{5}} |D|^{1/2} (\operatorname{Markoff})^*,$$

(6)
$$M_B(Q_2) \leqslant |D|^{1/2} (\text{Minkowski})^*,$$

(7)
$$M_I(Q_2) \leqslant \frac{1}{2} |D|^{1/2} \, (\text{Minkowski})^*,$$

and

$$M_H(Q_3) \leqslant \left|\frac{2}{3}D\right|^{1/3} (\text{Markoff})^*,$$

(8)
$$M_B(Q_3) \leqslant \left| \frac{27}{25} D \right|^{1/3}$$
 (Foster 5),

(9)
$$M_I(Q_3) \leqslant \left|\frac{27}{100}D\right|^{1/3}$$
 (Davenport 4),

where the numerical constant in each of these inequalities is best possible. It is also known (see, for example, Lemma 1) that there is some constant C_n'' , depending only on n, such that

(10)
$$M_B(Q_n) \leqslant C_n'' |D|^{1/2}$$

for all indefinite forms Q_n with determinant $D \neq 0$. For forms in 4 or more variables, the signature assumes importance and I conjecture that

(11)
$$\sup M_B(Q_{n,s}) = 4^{1/n} \sup M_I(Q_{n,s}), \qquad n = 2, 3, \ldots,$$

where both bounds are over all forms $Q_{n,s}$ with fixed signature s and fixed determinant $D \neq 0$. In support of this conjecture we have (6), (7) and (8), (9) which settle it for n = 2, 3. In this paper, I prove that for all forms of signature 0,

(12)
$$M_B(Q_{2m,0}) \leqslant |D|^{1/2m}, \quad n = 2m.$$

^{*}For these classical results, see, for example, Koksma, *Diophantische Approximationen* (Chelsea), Kap. III, §§ 2, 4; VI, § 2. A short proof of Markoff's inequality for Q_3 is given by H. Davenport, J. London Math. Soc., 22 (1947), 96–99.

Since the equality signs in both (3) and (12) are essential for the special cases

(13)
$$\sum_{i=1}^{m-1} x_{2i-1} x_{2i} + 2x_{2m-1} x_{2m},$$
$$x_1 \equiv \ldots \equiv x_{2m-2} \equiv 0, x_{2m-1} \equiv x_{2m} \equiv \frac{1}{2} \pmod{1}$$

and

(14)
$$\sum_{i=1}^{m-1} (x_{2i-1}^2 - x_{2i}^2) + 2x_{2m-1}x_{2m},$$

respectively, the conjecture is thus established for the case s = 0. In the course of the proof of (12), I also prove that

$$(15) M_B(Q_n) = 0$$

for any form Q_n in at least 3 variables which represents arbitrarily small non-zero values (Theorem 1). Having established this, the proof of (12) for $2m \ge 4$ may be conveniently divided into two cases:

Case I: $M_H(Q_{2m,0}) > 0$.

Case II: $Q_{2m,0}$ represents 0 with $\mathbf{x} \neq \mathbf{0}$, but does not represent arbitrarily small non-zero values (from the work of Oppenheim (7) we know that such forms have commensurable coefficients). For convenience, we shall state our main result in a different way. Clearly, (12) is an immediate consequence of the following theorem.

THEOREM. If Q_{2m} is any quadratic form of signature 0 and determinant $D \neq 0$, it is equivalent, by an integral unimodular substitution, to a form with coefficients a_{ij} , say, which satisfy

$$|a_{ii}| \leq |D|^{1/2m}, \quad i = 1, 2, \ldots, 2m.$$

The proof in Case I (see Theorem 2) depends on a reduction^{*} of Q_{2m} used by Birch, the relevant details of which are assembled in Lemma 3. A similar sort of reduction is available in Case II (see Lemma 4 and Theorem 3).

Acknowledgment. I wish to thank Dr. G. L. Watson[†] for an interesting discussion of this problem which, in particular, led me to a proof of Theorem 1.

2. The critical case (14). Suppose, if possible, that the form Q in (14) satisfies $M_B(Q) < |D|^{1/2m} = 1$; we shall deduce a contradiction. Since Q has integral coefficients, we see that there are integral vectors $\mathbf{x}_r = (x_1^{(r)}, \ldots, x_n^{(r)})$. $r = 1, 2, \ldots, 2m$, with determinant ± 1 for which $Q(\mathbf{x}_r) = 0, r = 1, 2, \ldots, 2m$, But since $x^2 \equiv x \pmod{2}$,

414

^{*}The reduction theory developed by Birch in his work on the inhomogeneous problem is the foundation for my proof of (12) and I have borrowed freely from his paper (1) to avoid tedious repetition.

[†]Further properties of forms satisfying the hypotheses of Theorem 1 are contained in (9).

$$Q(\mathbf{x}_r) \equiv x_1^{(r)} + \ldots + x_{2m-3}^{(r)} \pmod{2},$$

whence

$$x_1^{(r)} + \ldots + x_{2m-3}^{(r)} \equiv 0 \pmod{2}, \quad r = 1, 2, \ldots, 2m.$$

Clearly, then, det $(\mathbf{x}_1, \ldots, \mathbf{x}_{2m}) \equiv 0 \pmod{2}$, a contradiction. Hence $M_B(Q) \ge |D|^{1/2m}$, and the equality sign in (12) is necessary.

3. For the proof of (15), or (26) in Theorem 1, we use the following reduction of Q_n .

LEMMA 1. For $n \ge 2$, let Q_n be an indefinite quadratic form of determinant $D \ne 0$. Then Q_n is equivalent to a form whose coefficients a_{ij} , say, satisfy

(16)
$$|a_{ij}| \ll |D|^{1/n}, \quad i, j = 1, 2, \ldots, n,$$

and

(17)
$$a_{11} > 0, \ldots, a_{nn} > 0,$$

(18)
$$a_{ii} \gg |D|^{1/n}$$
 $(i = 1, 2, ..., n).$

The constant implied by the Vinogradov symbol \ll depends only on n. A proof of the reduction of Q_n to one satisfying (16) has been given recently by Watson (8, Theorem 1), in the course of which he shows that Q_n is equivalent to

(19)
$$\sum_{i=1}^{n} a_{i}(x_{i}+l_{i})^{2}, \quad a_{i}\neq 0,$$

where l_i is a linear form in $x_j (j > i)$, l_n is identically zero, and where

(20)
$$|a_i| \ll |D|^{1/n} \ll |a_i|, \quad a_{n-1} < 0,$$

$$(21) a_n > 0.$$

Since the coefficients of l_i may be taken to lie between $\pm \frac{1}{2}$, this is sufficient for (16). Starting from this point, our proof is confined to further reductions of Q_n which can be made to obtain (17), (18) without disturbing (16).

Proof. The first step is a preliminary transformation to change the form into one for which

(22)
$$a_{11} > 0$$
, $|D|^{1/n} \ll a_{11} \ll |D|^{1/n}$, $a_{ij} \ll |D|^{1/n}$ $(i, j = 1, 2, ..., n)$.

Let

(23)
$$t_n = [a_n^{-1/2} (|a| + \ldots + |a_{n-1}|)^{1/2} + 1]$$

and choose integers t_r (r = n - 1, ..., 1) successively with

(24)
$$|t_r + l_r(t_{r+1}, \ldots, t_n)| \leq \frac{1}{2}.$$

By (20), we see that

(25) $t_r \ll 1$ $(r = 1, ..., n), t_n^2 \ge \max\{1, a_n^{-1}(|a_1| + ... + |a_{n-1}|)\}.$ Then

$$a_{n}t_{n}^{2} + \frac{1}{4}(|a_{1}| + \ldots + |a_{n-1}|) \ge Q_{n}(t_{1}, \ldots, t_{n}) \\ \ge a_{n}t_{n}^{2} - \frac{1}{4}(|a_{1}| + \ldots + |a_{n-1}|) > 0;$$

hence, by (25) and (20),

$$|D|^{1/n} \gg Q_n(t_1, \ldots, t_n) \gg |D|^{1/n}.$$

Let
$$\delta = \text{g.c.d.}(t_1, \ldots, t_n)$$
 and put $\delta x_r^* = t_r$, then

g.c.d.
$$(x_1^*, \ldots, x_n^*) = 1$$

and $1 \leq t_n = \delta x_n^* \ll 1$, whence $\delta \ll 1$. Since

$$Q_n(t_1,\ldots,t_n) = \delta^2 Q_n(x_1^*,\ldots,x_n^*),$$

we also have

$$|D|^{1/n} \gg Q_n(x_1^*,\ldots,x_n^*) \gg |D|^{1/n}, \qquad Q_n(x_1^*,\ldots,x_n^*) > 0.$$

We now form an integral unimodular matrix X^* with (x_1^*, \ldots, x_n^*) as the first column, this being possible since g.c.d. $(x_1^*, \ldots, x_n^*) = 1$. Moreover, $t_r \ll 1$ implies $x_r^* \ll 1$ and so we can complete X^* with elements $\ll 1$. Applying the substitution $\mathbf{x} = X^* \mathbf{x}'$ to $Q_n(\mathbf{x})$ the coefficient of $x_1'^2$ in the new form is equal to $Q_n(x_1^*, \ldots, x_n^*)$. Hence we can assume that Q_n satisfies (22). Now, with a_{11} fixed, it is possible to modify a_{jj} $(j \neq 1)$, if necessary, by a substitution of the type $x_1 = x_1' + n_j x_j$ without violating (22) or affecting the coefficient of x_k^2 when $k \neq j$. The new coefficient a'_{jj} of x_j^2 is given by

$$a'_{jj} = a_{11}n_j^2 + 2a_{1j}n_j + a_{jj} = a_{11}^{-1} \{ (a_{11}n_j + a_{1j})^2 + (a_{11}a_{jj} - a_{1j}^2) \}.$$

We select n_j as the integer determined by

$$n_j = a_{11}^{-1} |a_{1j}^2 - a_{11}a_{jj}|^{1/2} - a_{1j}a_{11}^{-1} + \theta_j, \qquad 1 < \theta_j \le 2.$$

Then $n_j \ll 1$ and so the conditions in (22) are maintained. Moreover, we have

$$a'_{jj} = \begin{cases} 2\theta_j |a_{1j}^2 - a_{11}a_{jj}|^{1/2} + a_{11}\theta_j^2, & \text{if } a_{11}a_{jj} - a_{1j}^2 \leqslant 0, \\ 2\theta_j |a_{1j}^2 - a_{11}a_{jj}|^{1/2} + a_{11}\theta_j^2 + 2(a_{11}a_{jj} - a_{1j}^2)a_{11}^{-1} & \text{if } a_{11}a_{jj} - a_{1i}^2 > 0 \end{cases}$$

and so, in either case,

$$|D|^{1/n} \ll a'_{jj} \ll |D|^{1/n}, \qquad a'_{jj} > 0.$$

Applying this in turn, we secure the remaining conditions in (17) and (18).

THEOREM 1. For $n \ge 3$, let Q_n be an indefinite quadratic form of determinant $D \ne 0$, which represents arbitrarily small non-zero values. Then, for any $\epsilon > 0$, Q_n is equivalent to a form with coefficients a_{ij} , say, where

(26)
$$|a_{ii}| < \epsilon \qquad (i = 1, 2, \ldots, n).$$

416

INTEGRAL BASES

Proof. By considering $-Q_n$ in place of Q_n , if necessary, we may suppose that the signature $s(Q_n)$ is non-negative. By Oppenheim's work (6), we know that an indefinite form in at least 3 variables, which assumes arbitrarily small values, does so with *both* signs. Let δ be any positive number $< \epsilon$. Then, we can suppose that, after a suitable integral unimodular substitution,

$$Q_n = a(x_1 + l_1)^2 - Q_{n-1}(x_2, \ldots, x_n),$$

where

 $(27) 0 < a < \delta$

and $s(Q_n) \ge 0$. Observe that l_1 is a linear form in x_2, \ldots, x_n and that Q_{n-1} is a quadratic form with determinant $-D/a \ne 0$. Since Q_{n-1} is non-singular, the conditions $s(Q_n) \ge 0$ and a > 0 together imply that Q_{n-1} is indefinite. Thus, Lemma 1 may be applied to

$$Q_{n-1} = \sum_{i,j=2}^{n} b_{ij} x_{i} x_{j},$$

say, and we can suppose (after a suitable transformation) that, in particular,

$$0 < b_{ii} \ll |D/a|^{1/n-1}$$
 $(i = 2, ..., n).$

Putting $x_i = 1$, $x_j = 0$ if $j \ge 2$, $j \ne i$, Q_n reduces to $Q_n^{(i)}$, say, where

(28)
$$Q_n^{(i)} = a(x_1 + \alpha_i)^2 - b_{ii}$$

and

(29)
$$0 < ab_{ii} \ll a |D/a|^{1/n-1} \ll a^{1/2} |D|^{1/n-1}$$

since $n \ge 3$. Selecting $x_1 = x_{1i}$ $(i \ge 2)$ to be an integer for which

$$|x_{1i} + \alpha_i - a^{-1/2} b_{ii}^{1/2}| \leq \frac{1}{2},$$

we have

$$\begin{array}{l} Q_n{}^{(i)} \ll a \,+\, (ab_{\,i\,i})^{\,1/2} \\ \ll \delta \,+\, |D|^{1/2n-2}\,\delta^{1/4} \end{array}$$

by (29) and (27). Thus with δ chosen sufficiently small, initially, we can ensure that $|Q_n^{(i)}| < \epsilon$ (i = 2, ..., n). Since the set

 $(1, 0, \ldots, 0), (x_{12}, 1, 0, \ldots, 0), \ldots, (x_{1n}, 0, \ldots, 0, 1)$

has determinant 1, Q_n can be transformed into a form whose diagonal elements are $a, Q_n^{(2)}, \ldots, Q_n^{(n)}$ and the conclusion follows.

4. For the proof of Cases I and II, we recall the results of Birch on the reduction of Q_{2m} (Lemmas 3, 4), together with an estimate for the minimum of a binary quadratic polynomial (Lemma 2).

LEMMA 2. Let ϕ be an indefinite binary form of determinant -d. Then, for any x^* , y^* and any μ , there are $(x, y) \equiv (x^*, y^*) \pmod{1}$ such that (30) $|\phi(x, y) + \mu| \leq \max\{2^{-1/2} d^{1/2}, d^{1/4} |\mu|^{1/2}\}.$ Proof. See Birch (1, Lemma 4).

LEMMA 3. Let Q_{2m} be a quadratic form in at least 4 variables of determinant $D \neq 0$ with $s(Q_{2m}) = 0$ and with $|Q_{2m}|$ bounded below.* Then Q_{2m} is equivalent to

(31)
$$\psi(x_1 + a_{12}x_2 + \ldots, x_2 + \ldots) + Q_{2m-2}(x_3, \ldots, x_{2m}),$$

where ψ is an indefinite binary quadratic form of determinant -d, say, where

(32) $0 < d \leq \left(\frac{5}{6}\right)^{m-1} |D|^{1/m}$

and $|Q_{2m-2}|$ is bounded below.

Proof. See Birch (1); this follows from his Lemmas 9, 10, and 11.

LEMMA 4. For $m \ge 1$, let Q_{2m} be a rational quadratic form with determinant $D \ne 0$ and signature 0, that represents 0 non-trivially. Then it can be expressed, equivalently, as

(33)
$$Q_{2m} = \psi(x_1 + a_{12}x_2 + \ldots, x_2 + \ldots) + Q_{2m-2}(x_3, \ldots, x_{2m}),$$

where either

(34)
$$\psi = 2a(x_1 + ...)x_2$$
 and $0 < a \le |D|^{1/2m}$
or

(35)
$$d(\psi) < |D|^{1/m} \quad and \quad m \ge 2.$$

Proof. See Birch (1, Lemma 12). This result is not stated explicitly, although it is an easy deduction from Lemma 12 and the argument of the Corollary.

5. Case I.

THEOREM 2. For $m \ge 1$, let Q_{2m} be a quadratic form in 2m variables of determinant $D \ne 0$ with signature 0 and with $|Q_{2m}|$ bounded below. Then Q_{2m} is equivalent to a form which satisfies

(36)
$$|a_{ii}| \leq (\frac{5}{6})^{\nu_m} |D|^{1/2m}$$
. $(i = 1, 2, ..., 2m),$

where

(37)
$$\nu_m = \begin{cases} \frac{1}{2}(m-3) + 2^{-(m-1)} & \text{for } m \ge 3, \\ 0 & \text{for } m = 1, 2 \end{cases}$$

Remarks. In the proof, we put $\lambda_m = (\frac{5}{6})^{\nu_m}$ and use the relations

(38)
$$\lambda_1 = \lambda_2 = 1$$
 and $\lambda_m^2 = (\frac{5}{6})^{\frac{1}{2}(m-2)} \lambda_{m-1} \ (m \ge 2),$

which are easily verified for m = 1, 2, while for $m \ge 3$, we have $2\nu_m - \frac{1}{2}(m-2) = m - 3 + 2^{-(m-2)} - \frac{1}{2}(m-2) = \frac{1}{2}(m-4) + 2^{-(m-2)} = \nu_{m-1}$. Note also that

(39)
$$\lambda_m = (\frac{5}{6})^{\frac{1}{2}(m-3)+2^{(-m+2)}} \ge (\frac{5}{6})^{\frac{1}{2}(m-1)}$$
 for $m \ge 2$.

*I.e.,
$$M_H(Q_{2m}) > 0$$
.

Proof. The case m = 1 is well known, having been established by Minkowski. For $m \ge 2$, we use Lemma 3 to reduce Q_{2m} to the form

$$\psi(x_1 + a_{12}x_2 + \ldots, x_2 + \ldots) + Q_{2m-2}(x_3, \ldots, x_{2m}),$$

where ψ is an indefinite binary quadratic form of determinant -d, say, satisfying

(40)
$$0 < d \leq \left(\frac{5}{6}\right)^{m-1} |D|^{1/m}$$

and where $|Q_{2m-2}|$ is bounded below. Since Q_{2m-2} has signature 0 and determinant $-D/d \neq 0$, we may proceed by induction on *m*. Suppose then that the theorem holds for all such forms in 2m - 2 variables; we shall deduct that it then holds for 2m variables. Thus, by a suitable reduction of Q_{2m-2} we may suppose that

(41)
$$|Q_{2m-2}^{(\tau)}| = |Q_{2m-2}(x_3^{(\tau)}, \ldots, x_{2m}^{(\tau)})| \leq \lambda_{m-1}(|D|/d)^{1/2m-2}$$

for $r = 3, \ldots, 2m$, where

$$x_s^{(r)} = \begin{cases} 1 & \text{if } r = s, \\ 0 & \text{if } r \neq s. \end{cases}$$

Now, for each $r \ge 3$, we select integers $x_1^{(r)}$, $x_2^{(r)}$ such that

$$|Q_{2m}(x_1^{(r)},\ldots,x_{2m}^{(r)})| = |\psi(x_1^{(r)}+a_{12}x_2^{(r)}+\alpha_r,x_2^{(r)}+\beta_r)+Q_{2m-2}^{(r)}|,$$

say, is small. By Lemma 2, we can arrange that this does not exceed

$$\max\{(\frac{1}{2}d)^{1/2}, |Q_{2m-2}^{(r)}|^{1/2}d^{1/4}\} \leqslant \max\left\{\frac{1}{\sqrt{2}}\left(\frac{5}{6}\right)^{(m-1)/2}|D|^{1/2m}, \lambda_{m-1}^{1/2}d^{(m-2)/4}|D|^{1/2m}\right\}$$
$$= \lambda_m |D|^{1/2m}$$

by (40), (41), and (38). Having chosen $(x_1^{(r)}, \ldots, x_{2m}^{(r)})$ for $r \ge 3$ with $x_r^{(r)} = 1$, $x_s^{(r)} = 0$ if $s \ne r$, $r \ge 3$, $s \ge 3$, it suffices to take

$$x_{3}^{(r)} = \ldots = x_{2m}^{(r)} = 0$$
 and $\begin{vmatrix} x_{1}^{(1)} & x_{2}^{(1)} \\ x_{1}^{(2)} & x_{2}^{(2)} \end{vmatrix} = \pm 1$

for r = 1, 2. Then

$$Q_{2m}^{(r)} = \psi(x_1^{(r)} + a_{12}x_2^{(r)}, x_2^{(r)}), \qquad r = 1, 2$$

and we appeal to the case m = 1 of the theorem to obtain

$$|Q_{2m}^{(r)}| \leq d^{1/2} \leq (\frac{5}{6})^{(m-1)/2} |D|^{1/2m} \leq \lambda_m |D|^{1/2m},$$

by (40) and (38). This completes the proof.

6. Case II.

THEOREM 3. For $m \ge 1$, let Q_{2m} be a rational quadratic form of determinant

 $D \neq 0$ with signature 0, which represents 0, non-trivially. Then Q_{2m} is equivalent to a form which satisfies

(42)
$$|a_{ii}| \leq |D|^{1/2m}$$
 $(i = 1, 2, ..., 2m)$

Proof. By Lemma 4, we can reduce Q_{2m} to the form

$$Q_{2m} = \psi(x_1 + a_{12}x_2 + \ldots, x_2 + \ldots) + Q_{2m-2}(x_3, \ldots, x_{2m}),$$

where either

(a)
$$\psi = 2a(x_1 + a_{12}x_2 + ...)x_2$$
 and $0 < a \le |D|^{1/2m}$

or

(b)
$$d(\psi) < |D|^{1/m}$$
 and $m \ge 2$.

In case (a) we select

$$(x_1^{(r)}, \ldots, x_{2m}^{(r)}) = \begin{cases} (1, 0, \ldots, 0) & \text{if } r = 1, \\ (x_1^{(2)}, 1, 0, \ldots, 0) & \text{if } r = 2, \\ x_2^{(r)} = x_r^{(r)} = 1, x_s^{(r)} = 0 & \text{if } s \neq r, r \ge 3, s \ge 3. \end{cases}$$

For r = 1, $Q_{2m} = 0$ and for $r \ge 2$, Q_{2m} takes the value

$$2a(x_1^{(r)} + a_{12}) + \alpha^{(r)}$$
, say.

Then, by a suitable choice of $x_1^{(r)}$, we have

$$|Q_{2m}| \leqslant a \leqslant |D|^{1/2m}.$$

To complete the proof, we proceed by induction on m. Suppose then that the theorem is true for 2m - 2 variables, we shall deduce that it then holds for 2m variables. We know that it is true for m = 1 (Minkowski), so we may assume that $m \ge 2$. Since we have dealt with case (a), it suffices to consider case (b). Applying our inductive hypothesis to Q_{2m-2} , we can assume, after a suitable reduction, that $x_r^{(r)} = 1$, $x_s^{(r)} = 0$, $s \ne r$, $r \ge 3$, $s \ge 3$ gives

(44)
$$|Q_{2m-2}^{(r)}| = |Q_{2m-2}(x_3^{(r)}, \ldots, x_{2m}^{(r)})| \leq |D/d|^{1/2m-2},$$

whenever Q_{2m-2} represents 0 non-trivially. However, by Theorems 1 and 2, we know that this holds, even if Q_{2m-2} does not represent 0. Hence, arguing as in Theorem 2 and using Lemma 2, we can choose $x_1^{(r)}$, $x_2^{(r)}$ $(r \ge 3)$ so that

$$\begin{aligned} |Q_{2m}(x_1^{(r)},\ldots,x_{2m}^{(r)})| &= |\psi(x_1^{(r)}+a_{12}x_2^{(r)}+\alpha_r,x_2^{(r)}+\beta_r)+Q_{2m-2}^{(r)}|, \text{ say,} \\ &\leqslant \max\{(\frac{1}{2}d)^{1/2}, |Q_{2m-2}^{(r)}|^{1/2}d^{1/4}\}, \\ &\leqslant |D|^{1/2m} \qquad (r=3,\ldots,2m), \end{aligned}$$

by (b) and (44). Similarly, with $x_3^{(r)} = \ldots = x_{2m}^{(r)} = 0$ (r = 1, 2) we have $|Q_{2m}^{(r)}| = |\psi(x_1^{(r)} + a_{12}x_2^{(r)}, x_2^{(r)})| \leq d^{1/2} \leq |D|^{1/2m},$

on appealing to the known result for two variables. This completes the proof.

Having established Theorems 1, 2, and 3 the main theorem is also completed.

References

- 1. B. J. Birch, The inhomogeneous minimum of quadratic forms of signature zero, Acta Arith., 4 (1957), 85–98.
- 2. H. Blaney, Indefinite quadratic forms in n variables, J. London Math. Soc., 23 (1948), 153-160.
- 3. H. Davenport, Indefinite quadratic forms in many variables, Mathematika, 3 (1956); 81-101; see also D. Ridout, 5 (1958), 122-124, for references and later work.
- 4. Non-homogeneous ternary quadratic forms, Acta Math., 80 (1948), 65-95.
- 5. D. M. E. Foster, in preparation.
- 6. A. Oppenheim, Value of quadratic forms I, Quart. J. Math. Oxford (2), 4 (1953), 54-59.
- 7. —— Value of quadratic forms III, Monats. Math., 57 (1953), 97-101.
- 8. G. L. Watson, Distinct small values of quadratic forms, Mathematika, 7 (1960), 36-40.
- 9. Indefinite quadratic polynomials, Mathematika, 7 (1960), 141-144.

University of Toronto and University College, London