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Acquiring several images of parts of a sample at high magnification and assembling them into a single 

composite image is called montaging, which can be done either by moving the stage in an X-Y raster then 

capturing snapshots from an SEM or by using a unique tool like a Multi-SEM [4]. Usually, a degree of 

overlap is preserved between adjacent images, or tiles, which is used to align these images along vertical 

and horizontal seams, a process is known as stitching. 

The automatic creation of a large high-resolution montaged image is a growing research area involving 

computer vision and image processing. Achieving the stitched image is time-consuming and inefficient 

manually; there are some attempts at automating this process like the MIST image stitching tool [2]. 

This study attempts to address the image stitching problem for two cases in the montaging of 

semiconductor metallization layers for microelectronics applications. 

Intentional shift, where one slides one tile on the overlap area of the other tile to resolve the shift and stitch 

the images from the overlap area; Instrument drift, which is usually a change in the imaging conditions 

related to a change in temperature in the laboratory. 

Instrument drift happens during the scan and is not predictable. We deployed a Fourier transform-based 

method to determine the degree of the shift caused by the instrument. The shift theorem states that delaying 

a signal x(t) by 'a' seconds multiplies its Fourier transform by e-jwa [1]. We chose a part of the image with 

the obvious instrument drift and summed over the columns and rows of the regions of interest in the 

images separately. Therefore, we could take advantage of 1D Fourier transform rather than the 2D, which 

facilitates a faster calculation and is temporally in sync with the X-Y raster mechanics of the scan 

generation pattern in the SEM. Multiplication of the Fourier transform of the resulting line from the first 

image by the conjugate of Fourier transform of its shifted one will return the shift's amount (signal delay). 

We put a window, 'Lanczos window', on the image to reduce ringing artifacts. Mathematically, outside of 

the window interval is having a zero value when a wave is multiplied by a window function. So, all that 

is left is the part where they overlap, which is called the 'view through the window'. The isolated segment 

of the data within the window is multiplied by the window function values called tapering. Lanczos 

window is the normalized sinc function sinc (x), which is the central lobe of a horizontally stretched sinc 

function sinc(x/a) for -aπ ≤ x ≤ aπ, see Fig 1c. In particular, there may be ringing artifacts just before and 

after abrupt changes in the sample values, which may lead to clipping artifacts. Given the special role of 

edge sharpness in vision, these effects are reduced, and the image's subjective quality is improved by using 

the sinc filter. So, we formulated our problem as, 

FFT (Lineimg1 {L · img1}) • (FFT (Lineimg2{ L · img2})*  

where '*' means conjugate, Lineimg1 is a row-wise or columns-wise summation of the sub-image of the 

Img1 and Lineimg2 is the same for Img2, and 'L' stands for Lanczos window (in order to adjust the 

window, we used a square root of it). 

Figure 1a is an example of two SEM images having 500 pixels overlap along the horizontal seam at the 

top of the image (highlighted in red). These images are taken using a scanning electron microscope (SEM) 
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with backscattered electrons. We tried our algorithm on parts of the image with some landmarks to detect 

the shift better because in plain areas with repeated patterns, the shift is more difficult to estimate 

accurately, see Fig 1b. 

The result of applying the Lanczos window on the image is shown in Fig 1c. We summed up the result 

both column-wise and row-wise to get two vectors which can be used as inputs for the Fourier shift 

theorem. 

The Fourier transform is a complex-valued function of frequency. Complex numbers can be represented 

in Cartesian or Polar coordinates. A complex number z=Re(z) + i Im(z) in Cartesian coordinates can be 

shown by its 'Phase' and 'Magnitude' as z = reiΘ, where r=|z| is the magnitude and Θ = atan2(Im(z), Re(z)) 

is the phase. By calculating the angle using 'atan2' and number of phase changes by 

arctan×length(Line))/(2×π), one can calculate the number of phase changes over time, which is 19.13 for 

rows and 47.95 in columns. These amounts match the shift we detected in the first step by plotting the 

lines we got from summing the rows and columns of the regions of interest in the images, see Fig 2. One 

advantage of using this method is that we can calculate even fractional shifts.  

When this method is compared to other available methods like cross-correlation, Entropy, Mutual 

Information, and Sum of Square differences [3], we find this method is better in calculating even a sub-

pixel shift. This algorithm can calculate the instrument drift, one of the most important problems in image 

stitching. 

 
Figure 1. (a) Representative BSE SEM images that are part of a larger montage experimental run from a 

semiconductor metallization sample (magnification: 7.743959 mm). The red box denotes a 500-pixel 

overlapping region between the two images. The yellow box is a sub-tile we chose to work on from the 

overlap area. (b) A subtile from the overlap, which is marked as yellow in (a). (c) top: Square root of the 

Lanczos window; reduce the artifacts of the image (The spurious signals near the sharp transitions in 

signals are called ringing artifacts which appear as bands or ghosts near edges), bottom: The image subtiles 

are multiplied by the Lanczos window. 
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Figure 2. Plot of the lines obtained from row-wise and columns-wise summation of the regions of interest 

in the images. The result of the orange line is from Img1 and the blue line is from Img2. Left plot is for 

row-wise summation and right one stands for column-wise summation. The result from calculation 

'arctan×length(Line))/(2×π)' matches this graph as expected, showing a shift of 47.95 pixels in the x-

direction and 19.13 pixels in the y-direction. X-axis is for the pixels of the line obtained from the row-

wise and column-wise summation and Y-axis is for the summation values. 
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