Limits on the Masses of Supermassive Black Holes in 105 Nearby Galaxies

E. M. Corsini1, A. Beifiori1, M. Sarzi2, E. Dalla Bont\`a1, A. Pizzella1, L. Coccato3, and F. Bertola1

1Dipartimento di Astronomia, Universit\`a di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova, Italy
Email: enricomaria.corsini@unipd.it

2Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK

3Max-Planck-Institut f"ur extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching bei M"unchen, Germany

Keywords. black hole physics, galaxies: kinematics and dynamics, galaxies: nuclei

Secure measurements of the mass of the central supermassive black hole, M_{BH}, in external galaxies are traditionally obtained through the modeling of the stellar and/or gaseous kinematics, most often derived using Hubble Space Telescope (HST) observations in the optical domain. The modeling of the nuclear ionized-gas kinematics has led to accurate M_{BH} measurements at a relatively cheap cost in terms of observation time compared to stellar-dynamical M_{BH} determinations. But only a handful of the objects have turned out to have sufficiently regular gas velocity fields for the purpose of modeling. Nevertheless, the HST archive contains a yet untapped resource that can be used to better constrain the M_{BH} budget across the different morphological types of galaxies, which consists of the vast number of the Space Telescope Imaging Spectrograph (STIS) spectra from which a central emission-line width can be measured. These data allow to put an upper limit on M_{BH} for a large number of galaxies and promise to compensate for the lack of exact measurements when studying the M_{BH}–host galaxy relationships.

For this reason, we used STIS to obtain $H\alpha$ spectra of the nuclei of 105 nearby ($D < 100$ Mpc) galaxies spanning a wide range of Hubble types (E–Sc) and values of the central stellar velocity dispersion, σ_c (58–419 km s$^{-1}$). We obtained stringent upper bounds on their black hole masses (Beifiori \textit{et al.} 2009). For the vast majority of the objects, the derived upper limits on M_{BH} run parallel to and above the well-known M_{BH}–σ_c relation, independent of the galaxy distance, suggesting that our nebular line-width measurements trace the nuclear gravitational potential rather well. For values of σ_c between 90 and 220 km s$^{-1}$, 68\% of our upper limits fall immediately above the M_{BH}–σ_c relation without exceeding the expected M_{BH} values by more than a factor 4.1. No systematic trends or offsets are observed in this σ_c range as a function of the galaxy Hubble type or with respect to the presence of a bar. For 6 of our 12 upper limits on M_{BH} with $\sigma_c < 90$ km s$^{-1}$, our line-width measurements are more sensitive to the stellar contribution than to the gravitational potential, either due to the presence of a nuclear stellar cluster or because of a greater distance compared to the other galaxies at the low-σ_c end of the M_{BH}–σ_c relation. Conversely, our M_{BH} upper bounds appear to lie closer to the expected M_{BH} in the most massive elliptical galaxies with values of σ_c above 220 km s$^{-1}$. Such a flattening of the M_{BH}–σ_c relation at its high-σ_c end would appear consistent with a coevolution of supermassive black holes and galaxies driven by dry mergers, although more consistent measurements for σ_c and K-band luminosity are needed for these kind of objects before systematic effects can be ruled out.

Reference