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Abstract

The Hopf bifurcation and homoclinic bifurcation of the quintic Hamiltonian system is analyzed under
quintic perturbations by using unfolding theory in this paper. We show that a quintic system can have at
least 29 limit cycles.
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1. Introduction

At the beginning of the 20th century Hilbert [4] posed 23 famous problems; the 16th
problem remains unsolved. This problem consists of two parts. The absorbing interest
is in the second part, which is concerned with the number and relative location of the
limit cycles to a planar polynomial differential system

(1.1) dx/dt = Pn(x, v), dy/dt = Qn(x, y),

where Pn(x, y) and Qn(x, y) are polynomials in x, y with degree n. The first major
contribution is due to Dulac [3]. He proved that the number of limit cycles to
system (1.1) is finite although his proof was recently discovered to be incomplete. For
n = 2, namely, for quadratic system, Shi [6], Chen and Wang [1] independently gave
an example which shows that (1.1) has at least four limit cycles with the so called
(3-1) distribution. Li [5], using a perturbation of a Hamiltonian system, constructed
a cubic system which has at least 11 limit cycles. Recently, Zoladek [9] showed
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FIGURE l. FIGURE 2.

that a cubic system can generate 11 limit cycles with small amplitude from the
neighbourhood of a centre by slightly perturbing its parameters. In this paper we
construct a quintic Hamiltonian system which can generate 29 limit cycles under
some perturbation of a quintic polynomial. The distribution diagram of these limit
cycles is also given. Our result ensures that a quintic polynomial differential system
has at least 29 limit cycles.

The idea of constructing quintic perturbed system which can generate 29 limit
cycles begins with the quintic Hamiltonian system

(1.2) dx/dt = y (1 - y2/2) (l - y
2/%), dy/dt = -x(l - 2x2) (l -x2/2).

System (1.2) has 25 critical points and has Hamiltonian functions

(1.3) H(x,y)= x2/2 + y2/2 - 5x4/S - 5//32 + x6/6 + / /96.

The graph of H(x, y) = h, according to the value of h, can be sketched as in Figure 1,
where A,-, Bit C,, £>,, £,, Fh i = 1, 2, 3, 4, and O are critical points of system (1.2).

Consider a perturbed system

dx/dt = y(l - y2/2)d - y2/8) = P£(x, y),

(1.4) dy/dt = -x(l-2x2)(l-2 2 3 4 2 3 5

= Qe(x,y)

as a small disturbance of Hamiltonian system (1.2), where 0 < |e| <& 1. Without loss
of generality we will assume that 0 < e <3C 1. System (1.4) also has 25 critical points
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A,, Bj, Cj, £>,, Et, Fit i = 1, 2, 3,4, and O, each of which lies near A,-, Bit C,, £),-, £,
and F,, respectively (O is unchanged). We claim that system (1.4) has the following
properties:

(i) A i, A2, A3 and A4 are fine foci with first order;
(ii) D\, D2, D3 and DA are fine foci with second order.

It is well known that the number of limit cycles to a perturbed system can be
determined by the zeros of Mel'nikov function (Chow [2]). The Mel'nikov function
corresponding to system (1.4) is

M{h) = (b (8y + fix2y + ry3 + kx4y + nx2y3 + y5)dx,-i
where Vh is a compact component of H(x, y) — h. If M(h') — 0, then there are
limit cycles of system (1.4) in the neighbourhood of I"V. If Th is a homoclinic loop of
system (1.2), then the validity of M(h) = 0 also shows that there exists a separatrix
loop of system (1.4) which passes through a saddle point near Th.

Using this reasoning we first find the zeros of M(h), consequently, we obtain 5 limit
cycles and 8 homoclinic loops of system (1.4), their distributions shown in Figure 2,
where f ,-A) is a limit cycle surrounding A,, i = 1, 2, 3, 4; f, is the homoclinic loop
which passes Bt and surrounds A,, i — 1, 2, 3, 4; while f, is the other homoclinic
loop which passes £} and surrounds D,, where i — 1, 2 for j = 1 and i = 3, 4 for

j=2-
One will find that the inner stability of f, and the stability of A, are opposite,

i = 1,2,3, 4, so, by the generalized Poincare Bendixson Theorem, there must be at
least one limit cycle which is contained in f, and is surrounding the critical point A,,
i = 1, 2, 3,4. Now system (1.4) has at least 9 limit cycles and 8 homoclinic loops.

By an appropriate perturbation, the stability of A, changes according to the Hopf
bifurcation, system (1.4) generates at least one limit cycle in the neighbourhood of A,.
By the same reason, there will be generated at least two limit cycles in the periphery
of Dj. Under perturbation, the homoclinic loops f,-, f,, i = 1, 2, 3, 4, are broken,
by homoclinic bifurcation, at least one limit cycle occurs in the inner neighbourhood
of each f,, f1,, / = 1, 2, 3,4. At the same time the limit cycles generated previously
preserve their existence. Hence system (1.4) has now 29 limit cycles, and we have the
following result.

THEOREM 1.1. There is a region V in the parameter space {(8, /A, r, k, n) \ (S, /z, r,
k, n) e R5} such that system (1.4) has at least 29 limit cycles when (8, ix, r k, n) e V.
The distribution of these limit cycles is shown as on Figure 3.

In Section 2, we shall outline how to sketch the graph of the curve H(x, y) = h; in
Section 3, Hopf bifurcation and homoclinic bifurcation of system (1.4) are given; and
in the last section we give a rigorous proof of our result.
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FIGURE 3.

2. The graph of the curve H(x,y) = h

It is easy to see that the vector field defined by system (1.2) is symmetric with
respect to both jc-axis and v-axis, so it suffices to consider the graph of H(x, y) = h
in the first quadrant.

Let u = y2 — 5, s = x2 — 5/4, then H(x, y) = h becomes

(2.1)
* ( « , s, h) = u3 - 27u + 16s3 - 21s - 25/2 - 96h = 0,

(s, u)eQ = {(s, u)\s> - 5 / 4 , u > - 5 } .

In order to sketch the graph of H(x, y) = h in (x, y) plane, it is sufficient to analyze
the implicit function u = u(s, h) satisfying ^(u{s, h), s, h) = 0 in the region u > —5,
s > -5 /4 . The implicit function u = u(s, h) is closely related to the maximal and
minimal values of function * = *(«, s, h), which is regarded as a function of u
with parameters s and h, and its value at u = — 5 (*(—5, s, h)). By the methods of
elementary calculus it is not difficult to calculate that the maximal and minimal values
of ^(M, S, h) are

(2.2) 2^ (s,h) = 16s3 - 27s + 83/2 - 96h, s> -5 /4 ,

and

(2.3) 2<p2(s, h) = 16s3 - 27s - 133/2 - 96h, s > -5 /4 ,

respectively, and that

(2.4) tf ( -5, s, h) = 2(p3(s, h) = 16s3 - 27s - 5/2 - 96ft, s > -5 /4 .
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It is straightforward to see that *(«, s, ft) > 2(p2(s, ft), for u > —5, and <p2(s, ft) <
<p3(s, ft) < <pi(s, ft).

Equation (2.1) can also be regarded as a cubic algebraic equation of u with param-
eters s and ft. Its discriminant is

(2.5) D(*,ft) = ^(s,ft)p2(s,ft),

where <px (s, ft) and cp2(s, ft) are defined by (2.2) and (2.3). From (2.5) we know that

(1) if <p2(s, ft) > 0 or <pi(s, ft) < 0, then D(s, ft) > 0 and (2.1) has a unique real
root;
(2) if <pt(s, ft) = 0 or <p2(s, ft) = 0, then D(s, ft) = 0 and (2.1) has two real roots,

one of them a double root;
(3) if <p2(s, ft) < 0 < <pi(s, h), then D(s, h) < 0 and (2.1) has three real roots.

Also <pi(s, h) = 0, <p2(s, h) = 0 and ^ ( s , h) = 0 are cubic equations of s with
parameter h; their discriminants are

dx(h) = 9(h- 7/24) (fc - 55/96), d2(h) = 9(h + 5/6) (h + 53/96)

and d3(h) = 9(h- 11/96) (fc + 1/6)

respectively.

REMARK. Relations (2.2M2.4) can be rewritten in the following forms

s, h) = (s + 5 /4)(8s 2 - 1 0 s - l ) - 4 8 ( / i - 11/24),

<p2(s, h) = (s + 5/4) (8s2 - 10s - 1) - 48 (h + 2/3),

and

) = (s + 5/4)(8s2 - 105 - 1) - 48/i.

Since di(h) = 0, i = 1,2, 3, and by the Remark we can obtain hi = —5/6,
h2 = - 2 / 3 , hi = -53/96, h4 = -1 /6 , h5 =0,h6 = 11/96, h-, = 7/24, fc8 = 11/24,
h9 = 55/96, where dt(h), i = 1, 2, 3, are defined by (2.6). It is worth indicating that
the critical points of system (1.2) correspond to the values hh i = 1,2,..., 9.

By analyzing the real roots of <p,(s, h) = 0, i = 1, 2, 3,andhenceof ^(w, 5, ft) = 0,
it is not difficult to sketch the graph of H(x, y) = h in the first quadrant of the (x, y)-
plane. We give only the analysis of the curve H(x, y) = h for some values of h,
say, h 6 (-oo, -5/6), h = h{, h 6 (-5/6, -2/3), and ft = ft2. The graph of
H(x,y) = ft corresponding to the other values of ft can be obtained similarly. We list
the results obtained in the table below.

1. ft € (-oo, -5/6) .
In this case, <pt(s, ft) > 0, for s > —5/4 (see Figure 4). Hence D(s, ft) > 0, for

s > -5 /4 , ft < —5/6 and 4'(M, S, ft) > 2(p2(s, ft) for u > —5. The unique real root
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of *(M, S, h) = 0 lies on the left of u = -5, in other words, *(w, s, h) > 0, for
(s, u) € £2, h € (-oo, -5 /6) . So H(x, y) = h has no real orbit in the (x, y)-plane.

2. h = hi = - 5 /6 .
In this case <p2(s, h) > 0, for 5 > —5/4 and the unique real root of <p2(s, ft) = 0 in

the region {s \ s > -5/4} is ^ = 3/4, which is a double root (see Figure 5).
D(s,hi) = (p2(s,hi)<pi(s,hi) > Oifs e [-5/4, 3/4) U (3/4,+00), and the unique

real root of *(«, s, ft) = 0 lies on the left of u = - 5 , so *(« , s, h) > 0 for « > - 5 ,
s e [-5/4, 3/4) U (3/4, 00). Therefore, H(x, y) = ft, has no real orbit in the region
[(x, y) I x ^ ±V2} of the (x, y)-plane.

Ass = si= 3/4, * (« , si, hi) = (u + 6)(u - 3)2, and u = 3 is the unique real root
of *(«, «!, hi) = 0 in the region {« | u > -5} , in other words, (su «,) = (3/4, 3) is
the unique real root of equation *(« , s, hx) = 0 in the region Q. Consequently, the
real orbits of H(x, y) — hi are critical points A,( ± y/2, ±2\/2), j = 1, 2, 3,4.

3. ft = ft2 = - 2 / 3 .
By the Remark, cp2(s, h2) can be rewritten as

<Pi(s, h2) = 8 (5 + 5/4) (s - 5/8 + V33/8) (s - 5/8 - V33/8) ,

so <p2(s, h2)=0 has three real roots: sx— - 5/4, s2=(5-V33)/$ and ^3=(5+\/33)/8
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f

f= 9t(s, hi)

FIGURE 8.

(see Figure 6). Since

the real root of * (u, st, h2) = 0 in the region {« | u > — 5} is M = 3, which is a double
root, correspondingly, H(x, y) = h2 has real orbits £, = (0, (—1)'~'2-</2), i = 1,2,
which are critical points of system (1.2). While s = sh i = 2, 3, ^(M, J,, /I2) =
*(w, su h2), i = 2, 3, again u = 3 is the real root of *(«, •*,-, /i2) = 0, 1 = 2, 3, but
their corresponding points in the (x, y)-plane are points

As s e (-5/4,50 U (s2, +00), (p2(s,h2) > 0, and the unique real root of
*(M, 5, /J2) = 0 lies on the left of M = - 5 , so V(u,s,h2) > 0 for u > - 5 ,
5 € (-5/4, si) U (52, +00). Therefore, H(x, y) = h2 has no real orbit in the corre-
sponding region of (x, y)-plane.

As s € (si, s2), D(s, h2) = y2(s, h2)<p{(s, h2) < 0, equation W(u, s, h2) = 0 has
three real roots, one of them lies to the left of u — —5, the other lie to the right of
u = —5. So *(M, S, h2) = 0 has two real roots in the region u > - 5 , for s e (su s2).
Therefore, H(x,y) = h2 has two real orbits in the corresponding region of (x, y)
plane (see Figure 7).

In this case <p2(s, h2) < <p2(s, h) < <p2(s, h{), the curve (p = <p2(s, h) always lies
between the curves <p = <p2(s, h2) and <p2(s, h{) for h € (-5/6, —2/3) (see the shaded
region in Figure 8). So (p2(s, h) = 0 always has two real roots Si(h) and s2(h) in
the region s > -5 /4 , we assume that s{(h) < s2(h). Since D(Si(h), h) = 0, thus
*!>(«, Si(h), h) = 0 has two real roots u = 3 and u = — 6 for 1i = 1, 2, where u = 3
is a double root and u = — 6 is less than u = —5. Correspondingly, the real orbits of
H(x, y) = hzie points {y/s^h) + 5/4, 2^2), (1 = 1, 2).

Also<pi(s,h) ><PiO/A,h) = 14-48/t > 0, if* g (si(h), s2(h)), then <p2{s, h) <
0 < <p{(s, h), hence D(j, h) < 0. Therefore, *(«, s, h) = 0 has three real roots, M =
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Ui(s,h),i = 1,2,3. Assume that ux(s, h) < u2(s,h) < M3(J, h), theni^Cs, h) < - 5 ,
- 3 < u2(s,h) < 3 < u3(s,h). By the continuity of u(s,h), when 5 = st(h),
u2(Si(h), h) = u3(Si(h), h), i = 1, 2. So the corresponding real orbits of H(x,y) — h
are closed orbits which surround critical point AJtj = 1,2,3,4, ass € [st(h), s2(h)].

If s <= [-5/4, si(h)) U (s2(h), +oo), then <p2(s, h) > 0 and so D(s, h) > 0. In this
case, the unique real root of *(«, s, h) = 0 lies on the left of u = - 5 . Therefore, as
we have analyzed above, H(x,y) = h has no real orbit in the corresponding region
of (x, y) plane.

Summing up, if h e (-5/6, -2/3) , the orbits of H(x, y) = h are closed orbits
which surround critical points Aj,j = 1, 2, 3, 4.

Figure 9 shows the graph of * = *!>(«, s, h) corresponding to (i) <p2(s, h) > 0 (/i);
(ii) ip2(s, h) = 0 (/2); (Hi) ^ ( s , /?) < 0 and <p3(s, h) > 0 (/3), respectively. While
Figure 10 shows the orbits of H(x, y) = h in the first quadrant of (x, y)-plane for
h e [-5/6, -2/3] .

The graph of H(x, y) = h in the first quadrant of (x, y)-plane for other values of
parameter h are shown in Table 1.

3. Hopf bifurcation and homoclinic bifurcation

Now we consider the Hopf bifurcation of (1.4) at A i. Let x =x—a,y = y - 2\fl,
where (a, 2\/2) is the coordinate of Au then (1.4) becomes

(3.1)

di/dr = 6y + 25y/2y2/4

dy/dt = b01x + bmy + bx b2xy

x3ybsx
4 + b9x

3y

S + y5/l6,

b4x
3 + b5x

2y

f + bl2y
4 + bl3x

5

bl4x
4y
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TABLE 1. The graph for H(x,y) = h in the first quadrant corresponding to different values of parameter
h

No The values of h H(x,y) = h No The values of h H(x,y) =

h < -5/6 NO REAL ORBIT 11 0 <h < 11/96

= hi = -5/6 12 = ht= 11/96

-5/6 < h < -2/3 13 11/96 < h < 7/24

r*
= h2 = -2/3 14 = h1 = 7/24

-2 /3 <h< -53/96 15 7/24 < h < 11/24

= hi = -53/96 16 = hg = 11/24

y

o

-53/96 </i < -1 /6 17 11/24 <h < 55/96

18 = h9 = 55/96

10

— 1/6 < A < 0

= h5 = 0

19 55/96 < h< -oo
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where b02 = s(S + a2n + 24r + a4k + 24a2n + 320) and fcOi, bu b2,..., bH, bl6, bn

are constants which are relative to the parameters \i, r, k, n and e. The necessary
condition for the origin being a fine focus or a center of system (3.1) is b02 = 0.
Because 0 < e «; 1, thus

(3.2) S + a2n + 24r + a4k + 24a2n + 320 = 0.

Since \a2 — 2| «; 1, we may assume that a = \/2 + be + o(e). We notice that
(a, 2\/2) is a critical point of system (1.4), so by (3.2), we have b = -\6y/2r/3 —
32\/2n/3—256V2/3. Hence the first approximation of the first order Hopf bifurcation
a t i i ( a , 2V2)is

(3.3) L{H'B :S + 2fx + 24r + 4k + 48n + 320 = 0.

Let x = S/c, y = r)/a and dt/dz = \/a, where c = 6 - s(Sfi + 8OOr/3 + 32* +
1792n/3 + 12800/3) + o(s), a2 = 6c (or a = -JZc), then we have

d£ _ 25V2 2 35

(3.4)
dr

b3r,2

+ bitfW + blsr,5,

where bt (i = 1, 2 , . . . , 14, 16, 18) are constants which are relative to the parameters
/x, r, k, n and e.

By the formulae of focal quantities to the polynomial system (Zhang [8]), we
have Wi = e(ll/x + 33r + 32* + 33On + 640)/1296 + o(e). Therefore, the first
approximation of the second order Hopf bifurcation at Ax{a, 2\/2) is

(2) f S + 2fi + 24r + 4k + 48n + 320 = 0,
( 3 ' } L"B' j l l + 33 + 32A + 330 +640 = 0.

The symmetry of the vector field (1.2) with respect to both x-axis and v-axis implies
that the first approximation of the first and the second orders Hopf bifurcations at
A2(a2, 2v/2), A3(a3, -2\ /2) and A4(a4, -2V2) are the same as that at A,(a, 2y/l).

By the same way we can obtain the first approximations of the first and second
orders Hopf bifurcations at £>,(/>,, (-l)[('~1)/2] V2), i = 1,2, 3,4, they are

(3.6) 1™B : S + fi/2 + 6r + jfc/4 + 3n + 20 = 0
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and

L(2, f * + /*/2 + 6r + */4 + 3n + 20 = 0,

"B " ( 80 -15n + 4 / t - 6 r - 2 / z = 0,

respectively, where [(i — l)/2] is the integer part of (i — l)/2.
As we have mentioned above (Chow [2]), when e is very small and if

(3.8) M(h) = (b (Sy + fix2y + ry3 + kx4y + nx2y3 + ys)dx = 0

holds, then there are limit cycles of (1.4) in the neighbourhood of FA, where Fh

is a compact component of H(x, y) = h and H(x, y) is defined in (1.3). If Th is a
homoclinic loop of (1.2) which passes through a saddle point, then the validity of (3.8)
also shows that near Th there exists a separatrix loop of (1.4) passing through a saddle
point. Thus M(h) is the first approximation LHLB of homoclinic loop bifurcation of
(1-4).

Let h = ^ = —53/96, then rh, has four branches, each branch is a singular closed
orbit which passes through a saddle point Bt and surrounds only A, (i = 1, 2, 3, 4).
We first consider a branch of Thi which passes through B{ and surrounds A1. The first
approximation of homoclinic bifurcation surface to (1.4) is

(3.9)
HLB

: (b (Sy + ^x2y + ry3 + kx*y + nx2y3 + y5)dx = 0.

It passes through saddle point B\ and surrounds Au where

y2 5x4 5y4 x6 y6 53 A/2 VTT

and F^' is a branch of rh} which passes through Bt and surrounds
By calculation, (3.9) can be expressed as follows

(3.10) LHLB :

Since the orbits of (1.2) are symmetric with respect to both jc-axis and y-axis (see
Figure 1), the first approximation of the homoclinic bifurcation surface which passes
through saddle point fi, and surrounds Ah i = 2, 3,4 are also (3.10).

If h = hg = 11/24, then Tht has four branches, the first branch passes through
saddle point £3 (0, -s/2) and surrounds D{; the second one passes through £3 and
surrounds D2; the third one passes through £4(0, — <\/2) and surrounds D3; and the
last one passes through E4 and surrounds D4. Similarly, the first approximations of
the homoclinic bifurcation surfaces of the other three branches are

(3.11) LHLB : -0.5825S-0.2571/i-3.4490r-0.1648*-1.5213n-12.1861=0.
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4. Proof of Theorem 1.1

Based on a paragraph in Section 3, we can now sketch the first approximation of
Hopf bifurcation surfaces and homoclinic bifurcation surfaces (3.3), (3.7), (3.10) and
(3.11) in the parameter space {(8, /x, r, k, n) \ (8, /x, r, k, ri) e R5}, and find their
intersection point (8, fi,, r, k, n). In fact, from the linear algebraic equations

8 + 2/x + 2Ar + Ak + \2n + 320 = 0,

8 + ii/2 + 6r + k/4 + 3n + 20 = 0,

-2\x - 6r + Ak - \5n + 80 = 0,

0.38255 + 0.6501/x + 8.9927r + 1.2152* + 15.2548/1 + 118.7860 = 0,

-0.58256 - 0.2571/A - 3.4490r - 0.1648* - 1.5213n - 12.1861 = 0,

we have 8 = 49.5065, /Z = 17.8431, r = -11.5151, k = -30.4935, h = -0.5713.

LEMMA 1. If (8, fi, r, k, n) = (8, p,, r, k, h) then there are limit cycles of system
(1.4) which surround single critical points Ah i = 1, 2, 3,4, respectively (see Fig-
ure 2).

PROOF. When (8, /x, r, k, n) = (8, fi, r, k, h), WY = -0.5463e + o(e). By the
formulae of focal quantities (Zhang [8]) it is easy to see that A, (i = 1, 2, 3, 4) is
an unstable first order fine focus. However, when (8, fi, r, k, n) = (8, p., r, k, h), the
separatrix cycle which passes through Bt and surrounds A, (i = 1, 2, 3, 4) is inner
unstable; this is due to the fact that M(h3) = 0 and -T-(PE, QJIg, = (dPe/dx +
9 Qe/dy^B; = e(8 + ix/2 + 2Ar + k/A + I2h + 320) = 87.5866e > 0. Hence by
the generalized Poincare-Bendixson Theorem (Ye [7]), there is at least one limit cycle
surrounding A; and lying inside the separatrix loop which passes fi, (i = 1, 2, 3, 4)
(see Figure 2). •

LEMMA 2. If (8, /x, r, k, n)=(8, jl, r, k, h), then there exists a /ilo6(7/24, 11/24)
suchthatThm : x2/2+y2/2-5x4/S-5y*/32+x6/6+y6/96 = hw has two connected
components Fj,^ and F ^ which are closed orbits of (1.2), and

F ^ simultaneously surrounds singular points Du D2 and £3, and F ^ simultaneously
surrounds singular points D3, D4 and E4. Namely, there is a limit cycle of (1.4) near
each connected component ofThm-
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PROOF. If (8, /x, r, k, n) = (8, jl, r, k, h), let h = h = 7/16. By calculation,
M(h) = -0.0102, in which

x2 v2 5x4 5v4 x6 v6 7
r>-l + l-T--k + T + k = h -

Again let h = 1/3, then M(l/3) = 1.4198 > 0, in which

x2 v2 5x* 5v4 x6 v6 1

Since M(h) = §r (8y + jxx2y + ry3 + kx4y + nx2yi + ys)dx is continuous with
respect to h (Chow [2]), there exists hw € (1/3, 7/16) c (7/24, 11/24) such that
rAl0 : *2/2 + y2/2 - 5x4/8 - 5 / / 3 2 + x6/6 + y6/96 = hw consists of two closed
orbits of (1.2) and

=0, i = 1, 2,

where F ^ is a branch of rhl0 which simultaneously surrounds singular points Du D2

and Ey, and F ^ is another branch of Fhl0 which surrounds singular points D3, D4

and £4. The proof is complete. •

LEMMA 3. // (8, /A, r, k, n)=(8, /i, r, k, h), then there exist hne(\\/96, 39/192)
and hn € (39/192, 7/24) such that Thi : *2/2 + y112 - 5x4/8 - 5y*/32 + x6/6 +
y6/96 = hi, i = 11, 12, has a connected component T'h, (i = 11, 12), which is a
closed orbit of (1.2), and

M{hi) = <p (ly + jxx2y + ry3 + kx4y + hx2y3 + y5) dx = 0, i = 11, 12,
•'r;.

where T'hn C r'h[2 and Vhii simultaneously surrounds singular points O, Fu F2, F3and
F4. It means that there are two limit cycles of (1.4), which lie in the neighbourhoods
°fr'hu andT'hn respectively.

PROOF. If (8,fi,r,k,n) = (8,p,,r,k,h), let h = h6 - 11/96, then F*6 is a
singular closed orbit passing through saddle points F3 and F4 (see Figure 1). By
calculation, we obtain

M(hb) = <£ (8y + jlx2y + ?y3 + kx4y + hx2y3 + y5)dx = -0.8815,
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where r*6 : x2/2 + y2/2 - 5x4/8 - 5y4/32 + x6/6 + y6/96 = 11/96, -vTT/2 <
x < vTT/2. Again let h = h* = 8959/30720 < h7 = 7/24, then Fh. : x2/2 +
y 2 / 2 - 5 x 4 / 8 - 5 / / 3 2 + x 6 / 6 + y6/96 = 8959/30720,-1.7116<x < 1.7116,has
a branch of closed orbit T'h. to system (1.2), which simultaneously surrounds singular
points O, F\, F2, F3 and F4. By calculation, it follows that

M(h*) = (b (8y + (ix2y + ry3 + kx4y + nx2y3 + y5)dx = -0.0185.

At last let h = h = 39/192, 11/96 < 39/192 < 8959/30720, then there is a closed
orbit T̂  of system (1.2) which is a branch of Fj, lying between Fh6 and r'h,. Of course
F'. simultaneously surrounds singular points O, Fu F2, F3 and F4. By calculation, we
have

M(h) = & (Sy + \xx2y + ?y3 + kx4y + hx2y* + y5) dx = 17.2495.
Jr.

Therefore, there exist hn € (11/96,39/192) and hn € (39/192,8959/30720) C
(39/192, 7/24) such that Thi : x2/2 + y2/2 - 5x4/8 - 5 / / 32 + x

6/6 + y6/96 = A,-
has a branch of closed orbit r'h. to system (1.2) (i = 11, 12), and

M{hi) = i> (Sy + jlx2y + ry3 + kx4y + hx2y3 + y5) dx = 0, / = 11, 12,

where T'h c T'h and T'h simultaneously surrounds singular points O, F\, F2, F3

and F4.
It is shown that there are two limit cycles of (1.4) which lie in the neighbourhoods

of T'hn and T'hn respectively. •

LEMMA 4. If (8, /x, r, k, n) = (8, ft, r, k, h), then there exists hu e (7/24, 1) c
(7/24, +oo), such that Thn : x2/2 + y2/2 - 5x4/8 - 5y4/32 + x6/6 + y6/96 = ha

has a connected component r'hn, which is a closed orbit of (1.2) simultaneously
surrounding all 25 singular points and

f -
= d> (8y + \xx2y + ry3 + kx4y + hx2y3 + y5) dx = 0.

^•3

This means that there is a limit cycle of (1.4) which lies in the neighbourhood ofT'hji.

PROOF. If (8, fi, r, k, n) - (8, /x, r, k, h), let h = hu = 1/3. Then T/,,, has a
connected component r;,4 : x2/2 + y2/2 - 5^4/8 - 5 / / 32 + x6/6 + y6/96 = 1/3,
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— 1.8404 < x < 1.8404, which is a closed orbit of (1.2) simultaneously surrounding
all 25 singular points. By calculation we have

M(hH) = (b (8y + jxx2y + ry3 + kx4y + nx2y3 + y5) dx = 69.0355.

Similarly, let h = A15 = 1, then f/,,, is a closed orbit of (1.2) and surrounds all 25
singular points, and by calculation, we have

M(hl5) = <f> (h + tJ-x2y + ry3 + kx4y + hx2y3 + y5) dx = -151.8140.

Therefore, there exists hi3 € (1/3, 1) C (7/24, +oo) such that rh[i : x2/2 + y2/2 -
5x4/& - 5y4/32 + x6/6 + v6/96 = hn has a connected component T^ which is a
closed orbit of (1.2) simultaneously surrounding all 25 singular points, and

(Sy + P,x2y + Fy3 + kx4y + hx2y3 + y5) dx = 0.

It is shown that there is a limit cycle of (1.4), which lies in the neighbourhood
ofT' •

" 1 3

THEOREM 4.1. If (S,^,r,k,n) = (8,[i,r,k,h), then system (1.4) has 9 limit
cycles and 8 homoclinic cycles (see Figure 2).

Theorem 4.1 follows from Lemma 1-Lemma 4 immediately.

THEOREM 4.2. If (8, /*, r, k, n) = (8, p,, r, k, n), then Dit i = 1, 2, 3, 4, are stable
second order fine foci of (1.4).

PROOF. In this case, W{ = 0, W2 = -0.1381 < 0. Since dt/dr = -1/CT < 0,
singular point D\ of (1.4) is a stable second order fine focus. By the symmetry, the
other singular points D,, i = 2, 3,4 of (1.4) are also stable second order fine foci. •

THEOREM 4.3. If (8, (M, r, k, n) = (8, fi, r, k, h), then Ah i = 1, 2, 3, 4 are unsta-
ble first order fine foci of (1.4).

PROOF. In this case W{ = —0.5463 < 0. Since dt/dz = 1/cr > 0, a singular point
A i of (1.4) is an unstable first order fine focus.

By the symmetry, the other singular points A,-, i = 2, 3, 4 of (1.4) are also unstable
first order fine foci. •
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PROOF OF THEOREM 1.1. By the continuity of limit cycles with respect to the varia-
tion of parameters (Ye [7]), we know that there is a neighbourhood E of (<5, jx, r, k, h),
such that when (8, /z, r, k,ri) e E system (1.4) still has 9 limit cycles, (see for example
Figure 2). Let E, = E n {(8, /z, r, k, n) | 0 < -{8 + 2/x + 24r + 4k + 48n + 320) «
I, 8 + ix/2 + 6r + k/4 + 3n + 20 = 0, 0 < 80 - 15n + 4k - 6r - 2/x « 1}, then,
when (8, /z, r, k, n) € Elf A,, i = 1, 2, 3,4, become stable rough foci, so an unstable
limit cycle with small amplitude appears near each of A, (i = 1, 2, 3,4). At the same
time Dj, i — 1,2, 3, 4, become unstable first order fine foci, so, a stable limit cycle
with small amplitude also appears near each of D,(i = 1, 2, 3, 4).

LetE2 = Ein{(<5,/z, r, k, n)\0 < -(<5 + /z/2 + 6r + k/4 + 3n + 20) « 1}, when
(8, ix, r, k, n) e E2, D,, / = 1, 2, 3, 4, become stable rough foci, so an unstable limit
cycle with small amplitude appears near each of I), (/ = 1, 2, 3,4).

Let E3 = E2 n {{8, ix, r, k, n)\ (3.10) and (3.11) hold}, then when (8, /x, r, k, n)
6 E3, system (1.4) has 21 limit cycles and 8 homoclinic cycles. Denote f£3 the homo-
clinic cycle which surrounds A, and passes through saddle point Bt (i = 1, 2, 3,4);
and denote r£ the homoclinic cycle which surrounds Dk and passes through saddle
point Ej, where j =3,ifk=l,2;j = 4 if k = 3, 4 .

Therefore, when (8, /z, r, k, n) e E2 varies from E3 to an appropriate direction,
f'h and f'h>, i = 1, 2, 3,4, are broken, and an unstable limit cycle occurs in the inner
neighbourhood of each fj,3 and F'hs (i = 1, 2, 3, 4); and each limit cycle occurred
surrounds the other two small amplitude limit cycles inside each of f 'hi and f 'h>

respectively.

In order to know the direction of the variable (8, /x, r,k,n) for which f 'h and f 'h
generate limit cycles, let us consider Th : x2/2 + y2/2 - 5x4/S - 5y4/32 + x6/6 +
y6/96 = h. From which we have dy/dh = l/(y(l - y2/2){\ - y2/S)), then

M'(h) = & (8 + /xx2 + 3ry2 + kx4 + 3nx2y2 + 5y4)(dy/dh) dx

(8 + ixx2 + 3ry2 + kx4 + 3nx2y2 + 5 / ) ,

= /
J PA

-i

y(l-y2/2)(l-y2/S)

' + 3ry2 + kx4 + 3nx2y2 + 5y4) dt

Since (dPJdx + d Qe/dy)\Bi > 0, as (8, fi, r, k, n) = (8, fx, r, k, h), it may assume
that when (8, n, r, k, n) € E2, (dPJdx + dQe/dy)\B. > 0. Assume that rA, is a
heteroclinic loop surrounding A,, and tending to Bt (i = 1, 2, 3, 4) as t -> ±oo,
thus, M'(h3) = §Th (dPe/dx + dQ£/dy)dt > 0; but M(h3) = 0, so there exists
a left neighbourhood (h3 — Ah, /i3) of /z3, such that M(h) < 0, M'(h) > 0 as
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h e (h3- Ah,h3).
Now let D = E2n{(<S, fi, r, k, n)\ §rh (8y+nx2y+ry3+kx4y+nx2y3+y5)dx > 0},

for (8, n, r, k, n) € D, then there exists a h* e (h3 - Ah, /i3) such that M(h*) < 0,
M(h3) > 0, so there exists a hi6 € (h*, h3) such that M(hi6) = 0, and M'(hl6) > 0,
where M(h^) is an integral over a connected component T'h of Vhl6 which is a closed
orbit of (1.2) surrounding singular point At (i = 1,2, 3,4). Therefore there is an
unstable limit cycle of (1.4) in the neighbourhood of T'h .

Similarly, when (<5, /x, r, k, n) = (8, £L, r, k, h), we have M(hs) = 0, M'(/i8) =
§r (dP£/dx + dQe/dy)dt > 0, so there exists a right neighbourhood (/i8, hs +
Ah)of h^ such that M(h) > 0, Af'(ft) < 0 as h e (ft8, /i8 + A/i). Now let V =
D n [(8, n, r, k, n) \ ^ (8y + /xx2y + ry3 + kx*y + nx2y3 + y5)dx > 0), then
for (8, fi, r, k, n) € V, there exists a hn € (hg, h& + Ah) such that M(hn) = 0,
M'(hn) > 0, where M(hn) is an integral over a connected component T'hii of
FAl7 which is a closed orbit of (1.2) surrounding singular point D, (i = 1, 2, 3, 4).
Therefore there exists an unstable limit cycle of (1.4) in the neighbourhood of 1^ .

Summing up the above discussion, when (8, fi, r, k, n) € V, we conclude that sys-
tem (1.4) has 29 limit cycles with their distributions as shown in Figure 3. Theorem 1.1
is proved. •
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