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1. Introduction

It is a consequence of the Kurosh subgroup theorem for free products
that if a group has two decompositions

where each A ,- and each Bi is indecomposable, then / and J can be placed
in one-to-one correspondence so that corresponding groups if not conjugate
are infinite cycles. We prove here a corresponding result for free products
with a normal amalgamation.

(1.1) THEOREM. If G is a group with two decompositions as a free product
with normal amalgamation:

G = n*{{At : i e / } ; H) = 77*({B3. : / e / } ; K)

where H, K are normal in G and where for each i el and each j e J, A JA{ n K
and BjjBj n H are indecomposable then

(i) H = K,
and

ii) there exists a one-to-one correspondence between I and J such that if i, j
correspond then either At and Bt are conjugate in G or each is a (splitting)
extension of H by an infinite cycle. (We assume that for each iel and each
jeJ,H<AiandK<Bj.)

Of course it is easy to construct groups with two different free decom-
positions which do not satisfy the conclusions of the theorem. For example
if X = A * B and if A : A -> A', /x : B -> B' are epimorphisms, at least
one of which is proper, then X, /u can be extended simultaneously to an
epimorphism a. : A * B ->• A' * B' and, by (2.5)

X = IT*({A • ker a, B • ker a}; ker a).

1 This work formed part of an M.Sc. thesis presented to the University of Queensland
in 1964. My thanks are due to my supervisor, Mr M. P. O'Donnell and to Professor Hanna
Neumann who suggested this problem to me.
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The hypotheses of the theorem are not satisfied here since A < A • ker a
and a simple application of the Kurosh subgroup theorem and (2.1) yields
that A • ker a is properly decomposable. So far as I am aware, it is unknown
whether a free product can have a proper factor group decomposable in an
essentially different way to that just described.

2. Preliminary results

First we state the well-known Schreier theorem for free products with
a single amalgamation.

(2.0) THEOREM (cf. (2.4) and (i.3) on pp. 510-1 in [2]). A group P
which embeds the amalgam 91 =?= ({-X̂  :i el}', L) is the generalized free product
of 91 if and only if every element p e P can be written uniquely in the form

\ p = SjSjj- • • Sj

where each s, is not the identity and belongs to some arbitrary but fixed left
transversal Sk of L in Xk (chosen so that 1 e Sit i el), where I eL and where
Sj and sJ+1 belong to different Sk for 1 f£ j 5S n—1. The number n is, as usual,
the length l(p) of p; elements of L have zero length.:

The following lemmas are more or less trivial modifications of well-
known results in the literature.

(2.1) LEMMA (cf. Theorem 5.1 on p. 514 of [2]). / / P = n*{{X(: i el}; L)
and p e P has finite order u modulo some Xt then p is conjugate to an element
of some Xk. If pu ^ 1 and L is normal in P then p is conjugate to an element
ofXt.

PROOF. Suppose that p has normal form

p = s ^ - • • sj

where we may assume n > 1. By hypothesis pu e Xt. If snlsx $ L then for
all non-zero integers m, X(pm) > 1; and hence snls1 = lxeL. Similarly we
deduce that

sn~thst+i = h+i eL< 2 = 0, 1, • • •, [M/2] —1.

If n is even, say n = 2r, then sr+1lr_1sreL which implies that sr, sr+1

belong to the same Xk, hence n is odd, say n = 2m-\-1 and we have

sm sm-l ' sl PS1S2 ' sm = sm+l/m>

that is, p is conjugate to an element of some Xk. When L is normal in P
elements of different Xk cannot be conjugate unless they belong to L;
the last part of the Lemma follows from this.
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(2.2) LEMMA. If P = 77*{{X{ : i el}; L) and N is a normal subgroup
of P contained in some Xt then N 5S L.

PROOF. Suppose N n L = M. Choose a left transversal of M in JV,

say T, with 1 e T. The elements of T are left coset representatives of L
in X(, since t1)t2eT and t^t^ e L implies t^t^e L nN = M so that
tx = t2 • A system of left coset representatives of L in X( can now be chosen,
St say, with T QSt. li j =£ i, 1 ^ sd e S, and I j ^ t eT then since N is
normal in P

sj1tsj = t'm, t'eT, meM.

But the left-side has length three and the right-side length one at most.
Hence N ^ L.

(2.3) LEMMA (cf. IV on p. 16 of [1]). If P = n*{{Xt : iel}; L) and

J QI, write Nj for the normal closure of the set {Xs : j e J} in P. If Po is the
subgroup generated by {Xt : iel—J} and No the normal closure of L in
Po then

- Po/No.

PROOF. The passage from P to P/Nj involves putting equal to 1 all
the elements of Xjt j ej. Hence P/Nj is generated by Xit i el—J with
defining relations those of Xit i el—J together with the relations I = 1,
I e L. In other words PjNj ~ P0IN0.

(2.4) THEOREM. (Theorem 13.4 in [3]; also provable direct from the
Kurosh subgroup theorem). If P = II*({Xi : i el}; L), if L is normal in
P and if U < L is a subgroup of P, then U contains subgroups F, Uu

(i el, j e J\) such that

U = n*({F,Uii:ieJ,jeJi};M)

where M = L n U, FjM is free and V'u is conjugate to a subgroup of X{.
Any or all of F, Ui} may be M.

(2.5) LEMMA. Let P be a group, L a normal subgroup of P and Xt,
i el, subgroups of P containing L. Then P = 77*({Xt : i el}; L) if and
only if PjL = n*{XJL; i e I}.

PROOF. See, for example, [4].

3. Proof of Theorem (1.1)

Using (2.4), (2.5) and the fact that AJAf n K is indecomposable for
alii el we deduce that either

(3.1) At = gp(fi)Kt or At is conjugate to a subgroup of some Bj
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where K{ = K n A(, jitAi has infinite order and gp(ft) nK( = 1. Similarly

(3.1) Bj = gp{gj)Hj or Bj is conjugate to a subgroup of some A{

where Ht = H n Bj, g} e Bj has infinite order and gp{g}) n Ht = 1.

(3.2) AiSKandB^Hforiel.jeJ.

For if for some i, j , At ^ K and B3 5S # , we would have at once
H = Ait which we have ruled out. Hence if At ^ K, Bj fg H for any
/ e / . If Bj is conjugate to a subgroup of some A t, t e I, then At is conjugate
to a subgroup of ^4, which implies t = i, and then B, <S K since K is normal;
if Bj = gp(gj)Hj t h en since H, < At< Bt, Af = gp{g")Hj for some integer

a / 0 . Lemma 2.1 then shows that g3- is conjugate to an element of Ai

and hence Bj is conjugate to a subgroup of Ait giving a contradiction in
either case.

(3.3) If Ai is conjugate to a subgroup of Bjt then At is conjugate to Br

By (3.1), if Bj/Hj is not free, then Bj is conjugate to a subgroup of
At, t el, say

(*) A\ ^ B3. and B) ^At.

Then

(**) A?^At

which implies t = i; and strict inequality in (**) would imply gh$Af

contradicting Schreier's theorem; whilst strict inequality in either place
in (*) would mean strict inequality in (**). Hence A{ and Bj are conjugate.

If BjjHj is free then Bj = gp(gj)H} as in (3.1). Since here H < Bj,
H = Hj. If A\ ^ Bj then since H < A\,

for some integer a =£ 0. Therefore B, is conjugate to a subgroup of A{

by (2.1) and the preceding part gives A{ and Bj conjugate.

(3.4) / / Sx = {At: At conjugate to some Bj} and S2 = {Bj: Bj conjugate
to some A{}, then Sx and S2 can be placed in one-to-one correspondence; and
if AiiS1 then A, = gp(ft)Kt and if Bj $ S2, Bj = gP(gj)Hj.

This is just (3.1) and (3.2) and the fact that no two different factors
of a free product can be conjugate, by Schreier's theorem.

(3.5) If Sx is not empty then the theorem is true.

For if At e Sx, At is conjugate to some B, and therefore H ^ B} and
K ^ At which by (2.2) gives H <K ^H; that is H = K. Next put N
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for the normal closure in G of Sx; N is then also the normal closure in G
of Sa. Put Gx = gp{At :Att SJ, G2 = gp{Bj : B, £ S2}. By (2.3)

G/N s GJH and G/N = G2/#.

Gx/i7 and GJH are free groups by (2.5) and therefore have the same rank.

(3.6) / / Sj is empty, then AinBj = HnK = L,ieI,jeJ.

Since Ki = K nAi^Ain Bj and Hj = H n B, ^ 4 , n B,.,

A- n B, = #(#')*< = gpig'Wt
for integers M(, vt. H ut =£ 0 for some i, then l / ^ e B,-. Using (2.1) we
deduce that At is conjugate to a subgroup of B, contradicting (3.3) and the
hypothesis that Sx is empty. Hence u{ = 0, all i el; similarly v} = 0, all
j e J. Finally

L = H n K ^ K{ = ^ . ^ L,

so that 4̂t- n B,- = L.

(3.7) / / 5X is empty then the theorem is true.

Suppose H ^ K; then i / say, contains L properly, and there are integers
ut ^ 0 with

iel.

We have /"' = ffUt (mod Z.); for there exist integers a, /? such that

/?' = /?"• (mod L) and ^« = /?"' (mod L)
and therefore

so that «t(l —a/3) = 0 and a^ = 1.
It follows that /"• commutes, modulo L, with ft, tel, and therefore

with every element of G. In particular

#'& = &#'(mod L)

which, if i, / are chosen so that /"' as a normal word with respect to the
B-amalgam does not begin with gt, provides a contradiction. Hence H = K
and mapping onto GjH we have two sets of free generators for it, giving

Ul = 171-

(3.8) COROLLARY. The hypothesis of the theorem that Ai\Aic\K and
BjjBj n H are indecomposable is realized if A t and Bj are all completely
indecomposable {that is, no factor group of At or Bj is decomposable). In this
case H is a characteristic subgroup of G.
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4. An example

That any attempt to generalize this theorem to the case of non-normal
amalgamation will fail is almost obvious. In fact we will show that there
exists a group with two decompositions satisfying the conditions of (3.8),
except that one amalgamation is not normal, but not the conclusions.

Let
G = n*({A, B, C};H)

where A is non-abelian of order 6, B and C are non-cyclic of order 4 and H
is of order 2. Write N = AG, the normal closure of A in G. Then by (2.3)
and (2.5)

G = n*{{BN, CN}; N) = II*{{A, B, C); H).

Clearly A, B, C are all completely indecomposable and we have to
show that the same is true of BN and CN. To this end note first that

N = HBN = HCN.

This is true since A = HA and therefore AN = HN which in turn means
that HN is normalized by A, B, C and is therefore normal in G. That is

N = AG ^ AN = HN ^ AT

which gives N = HN = HBN = HCN as required.
Finally suppose that BN, say, has a decomposition

BN = n*{{X, Y};M)

where M is normal in BN. Applying Theorem 2.4 we deduce that A is
conjugate in BN to a subgroup of X, say; and therefore without loss of
generality we may suppose A ^ X. Two cases arise; first, if H ^ M then
JV = I/SN^M and slnce BN/2V ~ B(Bn#= B(H, a group of order 2,
BN/M cannot be decomposable. Hence H n M = 1 and applying Schreier's
Theorem we deduce that B <[ X, which yields

BN = B • HBN ^ B • XBN = XBN

and hence Y = M. We have thus shown that BN (and in a similar fashion
CN) is completely indecomposable.
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