A NOTE ON FREE PRODUCTS WITH A NORMAL AMALGAMATION

R. A. BRYCE ${ }^{1}$
(Received 17 April 1967)

1. Introduction

It is a consequence of the Kurosh subgroup theorem for free products that if a group has two decompositions

$$
G=\Pi^{*}\left\{A_{i}: i \in I\right\}=\Pi^{*}\left\{B_{j}: j \in J\right\}
$$

where each A_{i} and each B_{j} is indecomposable, then I and J can be placed in one-to-one correspondence so that corresponding groups if not conjugate are infinite cycles. We prove here a corresponding result for free products with a normal amalgamation.
(1.1) Theorem. If G is a group with two decompositions as a free product with normal amalgamation:

$$
G=\Pi^{*}\left(\left\{A_{i}: i \in I\right\} ; H\right)=\Pi^{*}\left(\left\{B_{j}: j \in J\right\} ; K\right)
$$

where H, K are normal in G and where for each $i \in I$ and each $j \in J, A_{i} / A_{i} \cap K$ and $B_{j} / B_{j} \cap H$ are indecomposable then
(i) $H=K$,
and
ii) there exists a one-to-one correspondence between I and J such that it i, j correspond then either A_{i} and B_{j} are conjugate in G or each is a (splitting) extension of H by an infinite cycle. (We assume that for each $i \in I$ and each $j \in J, H<A_{i}$ and $K<B_{j}$.)

Of course it is easy to construct groups with two different free decompositions which do not satisfy the conclusions of the theorem. For example if $X=A * B$ and if $\lambda: A \rightarrow A^{\prime}, \mu: B \rightarrow B^{\prime}$ are epimorphisms, at least one of which is proper, then λ, μ can be extended simultaneously to an epimorphism $\alpha: A * B \rightarrow A^{\prime} * B^{\prime}$ and, by (2.5)

$$
X=\Pi^{*}(\{A \cdot \operatorname{ker} \alpha, B \cdot \operatorname{ker} \alpha\} ; \operatorname{ker} \alpha) .
$$

[^0]The hypotheses of the theorem are not satisfied here since $A<A \cdot \operatorname{ker} \alpha$ and a simple application of the Kurosh subgroup theorem and (2.1) yields that $A \cdot \operatorname{ker} \alpha$ is properly decomposable. So far as I am aware, it is unknown whether a free product can have a proper factor group decomposable in an essentially different way to that just described.

2. Preliminary results

First we state the well-known Schreier theorem for free products with a single amalgamation.
(2.0) Theorem (cf. (2.4) and (3.3) on pp. 510-1 in [2]). A group P which embeds the amalgam $\mathfrak{A}=\left(\left\{X_{i}: i \in I\right\} ; L\right)$ is the genexalized free product of \mathfrak{A} if and only it every element $p \in P$ can be written uniquely in the form

$$
p=s_{1} s_{2} \cdots s_{n} l
$$

where each s_{j} is not the identity and belongs to some arbitrary but fixed left transversal S_{k} of L in X_{k} (chosen so that $1 \in S_{i}, i \in I$), where $l \in L$ and where s_{j} and s_{j+1} belong to different S_{k} for $\mathrm{l} \leqq j \leqq n-1$. The number n is, as usual, the length $\lambda(p)$ of p; elements of L have zero length.

The following lemmas are more or less trivial modifications of wellknown results in the literature.
(2.1) Lemma (cf. Theorem 5.1 on p. 514 of [2]). If $P=\Pi^{*}\left(\left\{X_{i}: i \in I\right\} ; L\right)$ and $p \in P$ has finite order u modulo some X_{i} then p is conjugate to an element of some X_{k}. It $p^{u} \neq 1$ and L is normal in P then p is conjugate to an element of X_{i}.

Proof. Suppose that p has normal form

$$
p=s_{1} s_{2} \cdots s_{n} l
$$

where we may assume $n>1$. By hypothesis $p^{u} \in X_{i}$. If $s_{n} l_{1} \notin L$ then for all non-zero integers $m, \lambda\left(p^{m}\right)>\mathbf{l}$; and hence $s_{n} l_{1}=l_{1} \in L$. Similarly we deduce that

$$
s_{n-t} l_{t} s_{t+1}=l_{t+1} \in L, \quad t=0,1, \cdots,[n / 2]-1 .
$$

If n is even, say $n=2 r$, then $s_{r+1} l_{r-1} s_{r} \in L$ which implies that s_{r}, s_{r+1} belong to the same X_{k}; hence n is odd, say $n=2 m+1$ and we have

$$
s_{m}^{-1} s_{m-1}^{-1} \cdots s_{1}^{-1} p s_{1} s_{2} \cdots s_{m}=s_{m+1} l_{m}
$$

that is, p is conjugate to an element of some X_{k}. When L is normal in P elements of different X_{k} cannot be conjugate unless they belong to L; the last part of the Lemma follows from this.
(2.2) Lemma. If $P=\Pi^{*}\left(\left\{X_{i}: i \in I\right\} ; L\right)$ and N is a normal subgroup of P contained in some X_{i} then $N \leqq L$.

Proof. Suppose $N \cap L=M$. Choose a left transversal of M in N, say T, with $\mathrm{l} \in T$. The elements of T are left coset representatives of L in X_{i}, since $t_{1}, t_{2} \in T$ and $t_{1}^{-1} t_{2} \in L$ implies $t_{1}^{-1} t_{2} \in L \cap N=M$ so that $t_{1}=t_{2}$. A system of left coset representatives of L in X_{i} can now be chosen, S_{i} say, with $T \subseteq S_{i}$. If $j \neq i, \mathbf{l} \neq s_{j} \in S_{j}$ and $\mathbf{l} \neq t \in T$ then since N is normal in P

$$
s_{j}^{-1} t s_{j}=t^{\prime} m, \quad t^{\prime} \in T, \quad m \in M
$$

But the left-side has length three and the right-side length one at most. Hence $N \leqq L$.
(2.3) Lemma (cf. IV on p. 16 of [l]). If $P=\Pi^{*}\left(\left\{X_{i}: i \in I\right\} ; L\right)$ and $J \subseteq I$, write N_{J} for the normal closure of the set $\left\{X_{j}: j \in J\right\}$ in P. If P_{0} is the subgroup generated by $\left\{X_{i}: i \in I-J\right\}$ and N_{0} the normal closure of L in P_{0} then

$$
P / N_{J} \cong P_{0} / N_{0}
$$

Proof. The passage from P to P / N_{J} involves putting equal to 1 all the elements of $X_{j}, j \in J$. Hence P / N_{J} is generated by $X_{i}, i \in I-J$ with defining relations those of $X_{i}, i \in I-J$ together with the relations $l=1$, $l \in L$. In other words $P / N_{J} \cong P_{0} / N_{0}$.
(2.4) Theorem. (Theorem 13.4 in [3]; also provable direct from the Kurosh subgroup theorem). If $P=\Pi^{*}\left(\left\{X_{i}: i \in I\right\} ; L\right)$, if L is normal in P and if $U \nless L$ is a subgroup of P, then U contains subgroups $F, U_{i j}$ ($i \in I, j \in J_{i}$) such that

$$
U=I^{*}\left(\left\{F, U_{i j}: i \in I, j \in J_{i}\right\} ; M\right)
$$

where $M=L \cap U, F \mid M$ is free and $U_{i j}$ is conjugate to a subgroup of X_{i}. Any or all of $F, U_{i j}$ may be M.
(2.5) Lemma. Let P be a group, L a normal subgroup of P and X_{i}, $i \in I$, subgroups of P containing L. Then $P=\Pi^{*}\left(\left\{X_{i}: i \in I\right\} ; L\right)$ if and only if $P / L=\Pi^{*}\left\{X_{i} / L ; i \in I\right\}$.

Proof. See, for example, [4].

3. Proof of Theorem (1.1)

Using (2.4), (2.5) and the fact that $A_{i} / A_{i} \cap K$ is indecomposable for all $i \in I$ we deduce that either
(3.1) $A_{i}=g p\left(f_{i}\right) K_{i}$ or A_{i} is conjugate to a subgroup of some B_{j}
where $K_{i}=K \cap A_{i}, f_{i} \in A_{i}$ has infinite order and $g p\left(f_{i}\right) \cap K_{i}=1$. Similarly
(3.1) $B_{j}=g p\left(g_{j}\right) H_{j}$ or B_{j} is conjugate to a subgroup of some A_{i} where $H_{j}=H \cap B_{j}, g_{j} \in B_{j}$ has infinite order and $g p\left(g_{j}\right) \cap H_{j}=\mathbf{1}$.

$$
\begin{equation*}
A_{i} \nsubseteq K \text { and } B_{j} \Phi H \text { for } i \in I, j \in J . \tag{3.2}
\end{equation*}
$$

For if for some $i, j, A_{i} \leqq K$ and $B_{j} \leqq H$, we would have at once $H=A_{i}$, which we have ruled out. Hence if $A_{i} \leqq K, B_{j}$ 杰 H for any $j \in J$. If B_{j} is conjugate to a subgroup of some $A_{t}, t \in I$, then A_{i} is conjugate to a subgroup of A_{t} which implies $t=i$, and then $B_{j} \leqq K$ since K is normal; if $B_{j}=g p\left(g_{i}\right) H_{j}$ then since $H_{j}<A_{i}<B_{j}, A_{i}=g p\left(g_{j}^{\alpha}\right) H_{j}$ for some integer $\alpha \neq 0$. Lemma 2.1 then shows that g_{j} is conjugate to an element of A_{i} and hence B_{j} is conjugate to a subgroup of A_{i}, giving a contradiction in either case.
(3.3) If A_{i} is conjugate to a subgroup of B_{j}, then A_{i} is conjugate to B_{j}.

By (3.1), if B_{j} / H_{j} is not free, then B_{j} is conjugate to a subgroup of $A_{t}, t \in I$, say
(*) $\quad A_{i}^{g} \leqq B_{j}$ and $B_{j}^{h} \leqq A_{t}$.
Then

$$
\begin{equation*}
A_{i}^{g h} \leqq A_{t} \tag{**}
\end{equation*}
$$

which implies $t=i$; and strict inequality in (**) would imply $g h \notin A_{i}$ contradicting Schreier's theorem; whilst strict inequality in either place in (*) would mean strict inequality in (**). Hence A_{i} and B_{j} are conjugate.

If B_{j} / H_{j} is free then $B_{j}=g p\left(g_{j}\right) H_{j}$ as in (3.1). Since here $H<B_{j}$, $H=H_{j}$. If $A_{i}^{g} \leqq B_{j}$ then since $H<A_{i}^{g}$,

$$
A_{i}^{q}=g p\left(g_{j}^{\alpha}\right) H
$$

for some integer $\alpha \neq 0$. Therefore B_{j} is conjugate to a subgroup of A_{i} by (2.1) and the preceding part gives A_{i} and B_{j} conjugate.
(3.4) If $S_{1}=\left\{A_{i}: A_{i}\right.$ conjugate to some $\left.B_{j}\right\}$ and $S_{2}=\left\{B_{j}: B_{j}\right.$ conjugate to some $\left.A_{i}\right\}$, then S_{1} and S_{2} can be placed in one-to-one correspondence; and if $A_{i} \notin S_{1}$ then $A_{i}=g p\left(f_{i}\right) K_{i}$ and if $B_{j} \notin S_{2}, B_{j}=g p\left(g_{j}\right) H_{j}$.

This is just (3.1) and (3.2) and the fact that no two different factors of a free product can be conjugate, by Schreier's theorem.
(3.5) If S_{1} is not empty then the theorem is true.

For if $A_{i} \in S_{1}, A_{i}$ is conjugate to some B_{j} and therefore $H \leqq B_{j}$ and $K \leqq A_{i}$ which by (2.2) gives $H \leqq K \leqq H$; that is $H=K$. Next put N
for the normal closure in G of $S_{1} ; N$ is then also the normal closure in G of S_{2}. Put $G_{1}=g \phi\left\{A_{i}: A_{i} \notin S_{1}\right\}, G_{2}=g \phi\left\{B_{j}: B_{j} \notin S_{2}\right\}$. By (2.3)

$$
G / N \cong G_{1} / H \text { and } G / N \cong G_{2} / H .
$$

G_{1} / H and G_{2} / H are free groups by (2.5) and therefore have the same rank.
(3.6) If S_{1} is empty, then $A_{i} \cap B_{j}=H \cap K=L, i \in I, j \in J$.

Since $K_{i}=K \cap A_{i} \leqq A_{i} \cap B_{j}$ and $H_{j}=H \cap B_{j} \leqq A_{i} \cap B_{i}$,

$$
A_{i} \cap B_{j}=g p\left(f_{i}^{u_{i}}\right) K_{i}=g p\left(g_{j}^{v_{j}}\right) H_{j}
$$

for integers u_{i}, v_{j}. If $u_{i} \neq 0$ for some i, then $1 \neq f_{i}^{u_{i} \in B_{j}}$. Using (2.1) we deduce that A_{i} is conjugate to a subgroup of B_{j} contradicting (3.3) and the hypothesis that S_{1} is empty. Hence $u_{i}=0$, all $i \in I$; similarly $\boldsymbol{v}_{\boldsymbol{i}}=\mathbf{0}$, all $j \in J$. Finally

$$
L=H \cap K \leqq K_{i}=H_{j} \leqq L,
$$

so that $A_{i} \cap B_{j}=L$.
(3.7) If S_{1} is empty then the theorem is true.

Suppose $H \neq K$; then H say, contains L properly, and there are integers $u_{i} \neq 0$ with

$$
H=g p\left(f_{i}^{u_{i}}\right) L, \quad i \in I
$$

We have $f_{i}^{u_{i}}=f_{t}^{ \pm u_{t}}(\bmod L)$; for there exist integers α, β such that

$$
f_{t}^{u_{i}}=f_{t}^{\alpha u_{t}}(\bmod L) \text { and } f_{t}^{u_{t}}=f_{i}^{\beta u_{i}}(\bmod L)
$$

and therefore

$$
f_{t}^{u_{t}}=f_{t}^{\alpha \beta u_{t}}(\bmod L)
$$

so that $u_{t}(1-\alpha \beta)=0$ and $\alpha \beta=1$.
It follows that $f_{i}^{u_{i}}$ commutes, modulo L, with $f_{t}, t \in I$, and therefore with every element of G. In particular

$$
f_{i}^{u_{i}} g_{j}=g_{j} f_{i}^{u_{i}}(\bmod L)
$$

which, if i, j are chosen so that $f_{i}^{u_{i}}$ as a normal word with respect to the B-amalgam does not begin with g_{j}, provides a contradiction. Hence $H=K$ and mapping onto G / H we have two sets of free generators for it, giving $|I|=|J|$.
(3.8) Corollary. The hypothesis of the theorem that $A_{i} / A_{i} \cap K$ and $B_{j} / B_{j} \cap H$ are indecomposable is realized if A_{i} and B_{j} are all completely indecomposable (that is, no factor group of A_{i} or B_{i} is decomposable). In this case H is a characteristic subgroup of G.

4. An example

That any attempt to generalize this theorem to the case of non-normal amalgamation will fail is almost obvious. In fact we will show that there exists a group with two decompositions satisfying the conditions of (3.8), except that one amalgamation is not normal, but not the conclusions.

Let

$$
G=\Pi^{*}(\{A, B, C\} ; H)
$$

where A is non-abelian of order $6, B$ and C are non-cyclic of order 4 and H is of order 2 . Write $N=A^{G}$, the normal closure of A in G. Then by (2.3) and (2.5)

$$
G=\Pi^{*}(\{B N, C N\} ; N)=\Pi^{*}(\{A, B, C\} ; H)
$$

Clearly A, B, C are all completely indecomposable and we have to show that the same is true of $B N$ and $C N$. To this end note first that

$$
N=H^{B N}=H^{C N}
$$

This is true since $A=H^{A}$ and therefore $A^{N}=H^{N}$ which in turn means that H^{N} is normalized by A, B, C and is therefore normal in G. That is

$$
N=A^{G} \leqq A^{N}=H^{N} \leqq N
$$

which gives $N=H^{N}=H^{B N}=H^{C N}$ as required.
Finally suppose that $B N$, say, has a decomposition

$$
B N=\Pi^{*}(\{X, Y\} ; M)
$$

where M is normal in $B N$. Applying Theorem 2.4 we deduce that A is conjugate in $B N$ to a subgroup of X, say; and therefore without loss of generality we may suppose $A \leqq X$. Two cases arise; first, if $H \leqq M$ then $N=H^{B N} \leqq M$ and since $B N / N \cong B / B \cap N=B / H$, a group of order 2, $B N / M$ cannot be decomposable. Hence $H \cap M=1$ and applying Schreier's Theorem we deduce that $B \leqq X$, which yields

$$
B N=B \cdot H^{B N} \leqq B \cdot X^{B N}=X^{B N}
$$

and hence $Y=M$. We have thus shown that $B N$ (and in a similar fashion $C N$) is completely indecomposable.

References

[1] A. G. Kurosh, The theory of groups, vol. II (Chelsea, New York, 1956).
[2] B. H. Neumann, 'An essay on free products of groups with amalgamations', Phil. Trans. Roy. Soc. (A) 246 (1954), 503-554.
[3] Hanna Neumann, 'Generalized free products with amalgamated subgroups II', Amer. J. Math. 71 (1949), 491-540.
[4] I. M. S. Dey, 'Schreier systems in free products', Proc. Glasgow Math. Assoc. 7 (1965), 61-79.

Department of Mathematics
Institute of Advanced Studies
Australian National University
Canberra, A.C.T.

[^0]: ${ }^{1}$ This work formed part of an M.Sc. thesis presented to the University of Queensland in 1964. My thanks are due to my supervisor, Mr M. P. O'Donnell and to Professor Hanna Neumann who suggested this problem to me.

