CONVOLUTION WITH MEASURES ON CURVES IN \mathbb{R}^3

DANIEL M. OBERLIN

ABSTRACT. We study convolution properties of measures on the curves $(t^{a_1}, t^{a_2}, t^{a_3})$ in \mathbb{R}^3 .

For $0 < a_1 < a_2 < a_3$ let Γ be the curve in \mathbb{R}^3 defined by

$$\Gamma(t) = (t^{a_1}, t^{a_2}, t^{a_3}), \quad t > 0.$$

Let σ be the measure on Γ defined by $d\sigma = t^{|a|/6-1} dt$ where $|a| = a_1 + a_2 + a_3$. A natural conjecture is that

(1)
$$\sigma * L^{\frac{3}{2}}(\mathbb{R}^3) \subseteq L^2(\mathbb{R}^3)$$

whenever $0 < a_1 < a_2 < a_3$. The earliest result here is the theorem in [O1] which shows that (1) holds when $(a_1, a_2, a_3) = (1, 2, 3)$. This is the limiting case $\delta = 1$ of the Theorem below. The affine arclength measures $d\sigma = t^{|a|/6-1} dt$ were introduced into the study of this problem (and another) by Drury [D], where (1) is established for $(a_1, a_2, a_3) =$ (1, 2, k) with $k \ge 4$. The best result so far is due to Pan [P3] (see also [P1] and [P2]): a change of variable shows that it is enough to establish (1) when |a| = 6 and then Pan shows that (1) holds whenever $a_1 \le 1$. It seems impossible to push the argument in [P3]—the method of "cut curves"—any farther. It is the purpose of this note to support the conjecture by showing that (1) holds in certain cases not covered by [P3].

THEOREM. Suppose $0 < \delta < 1$. Then (1) holds if $a_1 = 2 - \delta$, $a_2 = 2$, $a_3 = 2 + \delta$.

The method we will employ is an adaptation of the method in [O2]. We begin with a lemma that will lead to a favorable estimate for the Fourier transform of the measure σ .

LEMMA. Fix $\delta \in (0, 1)$ and, for $b_1, b_2, b_3 \in \mathbb{R}$, let $p(t) = p(b_1, b_2, b_3; t)$ be defined by $p(t) = b_1 t^{2-\delta} + b_2 t^2 + b_3 t^{2+\delta}$, t > 0. There is a constant $C = C(\delta)$ such that

(2)
$$\left| b_1 b_3 - \frac{b_2^2}{4 - \delta^2} \right|^{\frac{1}{4}} \le C \cdot \inf_{t>0} \sum_{j=1}^4 |p^{(j)}(t)|^{\frac{1}{j}}.$$

PROOF. First observe that it is enough to show that

$$\left|b_1b_3 - \frac{b_2^2}{4 - \delta^2}\right|^{\frac{1}{4}} \le C \sum_{j=1}^4 |p^{(j)}(1)|^{\frac{1}{j}}$$

Received by the editors February 26, 1997.

The author was partially supported by a grant from the National Science Foundation.

AMS subject classification: 42B15, 42B20.

© Canadian Mathematical Society 1998.

478

for any b_1 , b_2 , b_3 . For if s > 0 and q(t) = p(st), then (3) for q is just

(3)
$$\left| b_1 s^{2-\varepsilon} b_3 s^{2+\varepsilon} - \frac{(b_2 s^2)^2}{4-\delta^2} \right|^{\frac{1}{4}} \le C \sum_{j=1}^4 |s^j p^{(j)}(s)|^{\frac{1}{j}}.$$

The proof of (3) is facilitated by a change of variable: for j = 1, ..., 4 let $B_j = p^{(j)}(1)$. Solving for b_1, b_2, b_3 in terms of B_1, B_2, B_3 and then substituting into $b_1b_3 - b_2^2/(4 - \delta^2)$ gives

$$\frac{B_2^2 - 2B_1B_3 - (1 - \delta^2)B_1^2}{4\delta^2(-2 + \delta)(2 + \delta)}.$$

Thus (3) will follow from the inequalities

$$|B_2|^{\frac{1}{2}}, |B_1B_3|^{\frac{1}{4}}, |B_1|^{\frac{1}{2}} \le C \sum_{j=1}^4 |B_j|^{\frac{1}{j}}.$$

The first of these is clear and the second follows from Jensen's inequality:

$$|B_1B_3|^{\frac{1}{4}} \leq \frac{|B_1|}{4} + \frac{3|B_3|^{\frac{1}{3}}}{4}.$$

The third inequality could fail only if $|B_j| \leq 1$ for $1 \leq j \leq 4$, so we examine this possibility. Allowing *C* to vary from line to line and remembering that $|B_j| \leq 1$, we observe that

$$|b_1|, |b_3| \le C(|B_3| + |B_4|)$$

and so

$$|b_1|^{\frac{1}{2}}, |b_3|^{\frac{1}{2}} \le C(|B_3|^{\frac{1}{2}} + |B_4|^{\frac{1}{2}}) \le C(|B_3|^{\frac{1}{3}} + |B_4|^{\frac{1}{4}}).$$

Also $|b_2| \le C(|B_2| + |b_1| + |b_3|)$, which gives

$$|b_2|^{rac{1}{2}} \leq C(|B_2|^{rac{1}{2}} + |b_1|^{rac{1}{2}} + |b_3|^{rac{1}{2}}) \leq C(|B_2|^{rac{1}{2}} + |B_3|^{rac{1}{3}} + |B_4|^{rac{1}{4}}).$$

Thus

$$|B_1|^{\frac{1}{2}} \le C(|b_1|^{\frac{1}{2}} + |b_2|^{\frac{1}{2}} + |b_3|^{\frac{1}{2}}) \le C(|B_2|^{\frac{1}{2}} + |B_3|^{\frac{1}{3}} + |B_4|^{\frac{1}{4}})$$

as desired.

The next step in the proof is the estimate

(4)
$$\left| \int_{I} e^{ip(t)} dt \right| \leq \frac{C}{|b_1 b_3 - \frac{b_2^2}{4 - \delta^2}|^{\frac{1}{4}}}$$

to hold with $C = C(\delta)$ for any b_1, b_2, b_3 . We first observe that

(5) given
$$b_1, b_2, b_3$$
, there exists a partition of \mathbb{R} into at most 1000 disjoint
intervals I_ℓ such that for each ℓ there is $j' = j'(\ell) \in \{1, 2, 3, 4\}$ satisfying
 $|p^{(j')}(t)|^{\frac{1}{r}} = \sup_{1 \le i \le 4} |p^{(j)}(t)|^{\frac{1}{r}}, t \in I_\ell.$

(To check (5) just count solutions to the equations

$$(p^{(j_1)}(t))^{j_2} = \pm (p^{(j_2)}(t))^{j_1}, \quad 1 \le j_1 < j_2 \le 4$$

using the fact that if $c_1 < c_2 < \cdots < c_k$, then any nontrivial equation

$$\sum_{j=1}^k a_j t^{c_j} = a_0, \quad a_j \in \mathbb{R}$$

has at most k nonnegative solutions in t.) Now

$$\left|\int_{I} e^{ip(t)} dt\right| \leq \sum_{\ell} \left|\int_{I \cap I_{\ell}} e^{ip(t)} dt\right|$$

and, for each ℓ ,

$$\left| \int_{I \cap I_{\ell}} e^{ip(t)} dt \right| \le \frac{C}{|b_1 b_3 - \frac{b_2^2}{4 - \delta^2}|^{\frac{1}{4}}}$$

by (5), (2), and van der Corput's Lemma. Thus (4) is established. It follows that the measure σ satisfies

$$|\hat{\sigma}(b_1, b_2, b_3)| \le rac{C}{|b_1 b_3 - rac{b_2^2}{4 - \delta^2}|^{rac{1}{4}}}.$$

Since (1) is a convolution estimate with L^2 as range, (1) will follow from the fact that

$$\left|b_1b_3 - \frac{b_2^2}{4-\delta^2}\right|^{-\frac{1}{4}}$$

is a Fourier multiplier from $L^{\frac{3}{2}}(\mathbb{R}^3)$ to $L^2(\mathbb{R}^3)$. But a linear change of variables transforms $b_1b_3 - b_2^2/(4-\delta^2)$ into $c_1^2 - c_2^2 - c_3^2$. And it is easy to show by standard arguments (see [O2]) that

$$|c_1^2 - c_2^2 - c_3^2|^{-\frac{1}{4}}$$

is a Fourier multiplier from $L^{\frac{3}{2}}(\mathbb{R}^3)$ to $L^2(\mathbb{R}^3)$.

ADDED IN PROOF. S. Secco has recently proved the conjecture (1) with no restriction on $a_1 < a_2 < a_3$. Her result will appear in Mathematica Scandinavia.

References

[D] S. W. Drury, Degenerate curves and harmonic analysis. Math. Proc. Cambridge Philos. Soc. 108(1990), 89–96.

[01] D. Oberlin, Convolution estimates for some measures on curves. Proc. Amer. Math. Soc. 99(1987), 56-60.

[02] _____, A convolution estimate for a measure on a curve in \mathbb{R}^4 . Proc. Amer. Math. Soc., to appear.

[P1] Y. Pan, A remark on convolution with measures supported on curves. Canad. Math. Bull. 36(1993), 245–250.

[P2] _____, Convolution estimates for some degenerate curves. Math. Proc. Cambridge Philos. Soc. 116 (1994), 143–146.

[P3] _____, L^p-improving properties for some measures supported on curves. Math. Scand. 78(1996), 121–132.

480