CONVOLUTION WITH MEASURES ON CURVES IN \mathbb{R}^{3}

DANIEL M. OBERLIN

Abstract

We study convolution properties of measures on the curves $\left(t^{a_{1}}, t^{a_{2}}, t^{a_{3}}\right)$ in \mathbb{R}^{3}.

For $0<a_{1}<a_{2}<a_{3}$ let Γ be the curve in \mathbb{R}^{3} defined by

$$
\Gamma(t)=\left(t^{a_{1}}, t^{a_{2}}, t^{a_{3}}\right), \quad t>0
$$

Let σ be the measure on Γ defined by $d \sigma=t^{|a| / 6-1} d t$ where $|a|=a_{1}+a_{2}+a_{3}$. A natural conjecture is that

$$
\begin{equation*}
\sigma * L^{\frac{3}{2}}\left(\mathbb{R}^{3}\right) \subseteq L^{2}\left(\mathbb{R}^{3}\right) \tag{1}
\end{equation*}
$$

whenever $0<a_{1}<a_{2}<a_{3}$. The earliest result here is the theorem in [O1] which shows that (1) holds when $\left(a_{1}, a_{2}, a_{3}\right)=(1,2,3)$. This is the limiting case $\delta=1$ of the Theorem below. The affine arclength measures $d \sigma=t^{|a| / 6-1} d t$ were introduced into the study of this problem (and another) by Drury [D], where (1) is established for $\left(a_{1}, a_{2}, a_{3}\right)=$ $(1,2, k)$ with $k \geq 4$. The best result so far is due to Pan [P3] (see also [P1] and [P2]): a change of variable shows that it is enough to establish (1) when $|a|=6$ and then Pan shows that (1) holds whenever $a_{1} \leq 1$. It seems impossible to push the argument in [P3]-the method of "cut curves"-any farther. It is the purpose of this note to support the conjecture by showing that (1) holds in certain cases not covered by [P3].

ThEOREM. Suppose $0<\delta<1$. Then (1) holds if $a_{1}=2-\delta, a_{2}=2, a_{3}=2+\delta$.
The method we will employ is an adaptation of the method in [O2]. We begin with a lemma that will lead to a favorable estimate for the Fourier transform of the measure σ.

LEMMA. Fix $\delta \in(0,1)$ and, for $b_{1}, b_{2}, b_{3} \in \mathbb{R}$, let $p(t)=p\left(b_{1}, b_{2}, b_{3} ; t\right)$ be defined by $p(t)=b_{1} t^{2-\delta}+b_{2} t^{2}+b_{3} t^{2+\delta}, t>0$. There is a constant $C=C(\delta)$ such that

$$
\begin{equation*}
\left|b_{1} b_{3}-\frac{b_{2}^{2}}{4-\delta^{2}}\right|^{\frac{1}{4}} \leq C \cdot \inf _{t>0} \sum_{j=1}^{4}\left|p^{(j)}(t)\right|^{\frac{1}{j}} \tag{2}
\end{equation*}
$$

Proof. First observe that it is enough to show that

$$
\left|b_{1} b_{3}-\frac{b_{2}^{2}}{4-\delta^{2}}\right|^{\frac{1}{4}} \leq C \sum_{j=1}^{4}\left|p^{(j)}(1)\right|^{\frac{1}{j}}
$$

for any b_{1}, b_{2}, b_{3}. For if $s>0$ and $q(t)=p(s t)$, then (3) for q is just

$$
\begin{equation*}
\left|b_{1} s^{2-\varepsilon} b_{3} s^{2+\varepsilon}-\frac{\left(b_{2} s^{2}\right)^{2}}{4-\delta^{2}}\right|^{\frac{1}{4}} \leq C \sum_{j=1}^{4}\left|s^{j} p^{(j)}(s)\right|^{\frac{1}{j}} \tag{3}
\end{equation*}
$$

The proof of (3) is facilitated by a change of variable: for $j=1, \ldots, 4$ let $B_{j}=p^{(j)}(1)$. Solving for b_{1}, b_{2}, b_{3} in terms of B_{1}, B_{2}, B_{3} and then substituting into $b_{1} b_{3}-b_{2}^{2} /\left(4-\delta^{2}\right)$ gives

$$
\frac{B_{2}^{2}-2 B_{1} B_{3}-\left(1-\delta^{2}\right) B_{1}^{2}}{4 \delta^{2}(-2+\delta)(2+\delta)}
$$

Thus (3) will follow from the inequalities

$$
\left|B_{2}\right|^{\frac{1}{2}},\left|B_{1} B_{3}\right|^{\frac{1}{4}},\left|B_{1}\right|^{\frac{1}{2}} \leq C \sum_{j=1}^{4}\left|B_{j}\right|^{\frac{1}{j}} .
$$

The first of these is clear and the second follows from Jensen's inequality:

$$
\left|B_{1} B_{3}\right|^{\frac{1}{4}} \leq \frac{\left|B_{1}\right|}{4}+\frac{3\left|B_{3}\right|^{\frac{1}{3}}}{4}
$$

The third inequality could fail only if $\left|B_{j}\right| \leq 1$ for $1 \leq j \leq 4$, so we examine this possibility. Allowing C to vary from line to line and remembering that $\left|B_{j}\right| \leq 1$, we observe that

$$
\left|b_{1}\right|,\left|b_{3}\right| \leq C\left(\left|B_{3}\right|+\left|B_{4}\right|\right)
$$

and so

$$
\left|b_{1}\right|^{\frac{1}{2}},\left|b_{3}\right|^{\frac{1}{2}} \leq C\left(\left|B_{3}\right|^{\frac{1}{2}}+\left|B_{4}\right|^{\frac{1}{2}}\right) \leq C\left(\left|B_{3}\right|^{\frac{1}{3}}+\left|B_{4}\right|^{\frac{1}{4}}\right)
$$

Also $\left|b_{2}\right| \leq C\left(\left|B_{2}\right|+\left|b_{1}\right|+\left|b_{3}\right|\right)$, which gives

$$
\left|b_{2}\right|^{\frac{1}{2}} \leq C\left(\left|B_{2}\right|^{\frac{1}{2}}+\left|b_{1}\right|^{\frac{1}{2}}+\left|b_{3}\right|^{\frac{1}{2}}\right) \leq C\left(\left|B_{2}\right|^{\frac{1}{2}}+\left|B_{3}\right|^{\frac{1}{3}}+\left|B_{4}\right|^{\frac{1}{4}}\right)
$$

Thus

$$
\left|B_{1}\right|^{\frac{1}{2}} \leq C\left(\left|b_{1}\right|^{\frac{1}{2}}+\left|b_{2}\right|^{\frac{1}{2}}+\left|b_{3}\right|^{\frac{1}{2}}\right) \leq C\left(\left|B_{2}\right|^{\frac{1}{2}}+\left|B_{3}\right|^{\frac{1}{3}}+\left|B_{4}\right|^{\frac{1}{4}}\right)
$$

as desired.
The next step in the proof is the estimate

$$
\begin{equation*}
\left|\int_{I} e^{i p(t)} d t\right| \leq \frac{C}{\left|b_{1} b_{3}-\frac{b_{2}^{2}}{4-\delta^{2}}\right|^{\frac{1}{4}}} \tag{4}
\end{equation*}
$$

to hold with $C=C(\delta)$ for any b_{1}, b_{2}, b_{3}. We first observe that
given b_{1}, b_{2}, b_{3}, there exists a partition of \mathbb{R} into at most 1000 disjoint intervals I_{ℓ} such that for each ℓ there is $j^{\prime}=j^{\prime}(\ell) \in\{1,2,3,4\}$ satisfying $\left|p^{\left(j^{\prime}\right)}(t)\right|^{\frac{1}{j}}=\sup _{1 \leq j \leq 4}\left|p^{(j)}(t)\right|^{\frac{1}{j}}, t \in I_{\ell}$.
(To check (5) just count solutions to the equations

$$
\left(p^{\left(j_{1}\right)}(t)\right)^{j_{2}}= \pm\left(p^{\left(j_{2}\right)}(t)\right)^{j_{1}}, \quad 1 \leq j_{1}<j_{2} \leq 4
$$

using the fact that if $c_{1}<c_{2}<\cdots<c_{k}$, then any nontrivial equation

$$
\sum_{j=1}^{k} a_{j} t^{c_{j}}=a_{0}, \quad a_{j} \in \mathbb{R}
$$

has at most k nonnegative solutions in t.) Now

$$
\left|\int_{I} e^{i p(t)} d t\right| \leq \sum_{\ell}\left|\int_{I \cap I_{\ell}} e^{i p(t)} d t\right|
$$

and, for each ℓ,

$$
\left|\int_{I \cap_{\ell}} e^{i p(t)} d t\right| \leq \frac{C}{\left|b_{1} b_{3}-\frac{b_{2}^{2}}{4-\delta^{2}}\right|^{\frac{1}{4}}}
$$

by (5), (2), and van der Corput's Lemma. Thus (4) is established. It follows that the measure σ satisfies

$$
\left|\hat{\sigma}\left(b_{1}, b_{2}, b_{3}\right)\right| \leq \frac{C}{\left|b_{1} b_{3}-\frac{b_{2}^{2}}{4-\delta^{2}}\right|^{\frac{1}{4}}}
$$

Since (1) is a convolution estimate with L^{2} as range, (1) will follow from the fact that

$$
\left|b_{1} b_{3}-\frac{b_{2}^{2}}{4-\delta^{2}}\right|^{-\frac{1}{4}}
$$

is a Fourier multiplier from $L^{\frac{3}{2}}\left(\mathbb{R}^{3}\right)$ to $L^{2}\left(\mathbb{R}^{3}\right)$. But a linear change of variables transforms $b_{1} b_{3}-b_{2}^{2} /\left(4-\delta^{2}\right)$ into $c_{1}^{2}-c_{2}^{2}-c_{3}^{2}$. And it is easy to show by standard arguments (see [O2]) that

$$
\left|c_{1}^{2}-c_{2}^{2}-c_{3}^{2}\right|^{-\frac{1}{4}}
$$

is a Fourier multiplier from $L^{\frac{3}{2}}\left(\mathbb{R}^{3}\right)$ to $L^{2}\left(\mathbb{R}^{3}\right)$.
ADDED IN PROOF. S. Secco has recently proved the conjecture (1) with no restriction on $a_{1}<a_{2}<a_{3}$. Her result will appear in Mathematica Scandinavia.

References

[D] S. W. Drury, Degenerate curves and harmonic analysis. Math. Proc. Cambridge Philos. Soc. 108(1990), 89-96.
[O1] D. Oberlin, Convolution estimates for some measures on curves. Proc. Amer. Math. Soc. 99(1987), 56-60. [O2] _, A convolution estimate for a measure on a curve in \mathbb{R}^{4}. Proc. Amer. Math. Soc., to appear.
[P1] Y. Pan, A remark on convolution with measures supported on curves. Canad. Math. Bull. 36(1993), 245250.
[P2] Convolution estimates for some degenerate curves. Math. Proc. Cambridge Philos. Soc. 116 (1994), 143-146.
[P3] _, L^{p}-improving properties for some measures supported on curves. Math. Scand. 78(1996), 121-
132.

