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Abstract
Artificial barriers in Learning Automata (LA) is a powerful and yet under-explored concept although it was first pro-
posed in the 1980s. Introducing artificial non-absorbing barriers makes the LA schemes resilient to being trapped
in absorbing barriers, a phenomenon which is often referred to as lock in probability leading to an exclusive choice
of one action after convergence. Within the field of LA and reinforcement learning in general, there is a sacristy of
theoretical works and applications of schemes with artificial barriers. In this paper, we devise a LA with artificial
barriers for solving a general form of stochastic bimatrix game. Classical LA systems possess properties of absorb-
ing barriers and they are a powerful tool in game theory and were shown to converge to game’s of Nash equilibrium
under limited information. However, the stream of works in LA for solving game theoretical problems can merely
solve the case where the Saddle Point of the game exists in a pure strategy and fail to reach mixed Nash equilibrium
when no Saddle Point exists for a pure strategy.

Furthermore, we provide experimental results that are in line with our theoretical findings.

1. Introduction
Narendra and Thathachar (1974) first presented the term Learning Automata (LA) in their 1974 survey.
LA consists of an adaptive learning agent interacting with a stochastic environment with incomplete
information. Lacking prior knowledge, LA attempts to determine the optimal action to take by first
choosing an action randomly and then updating the action probabilities based on the reward/penalty
input that the LA receives from the environment. This process is repeated until the optimal action is,
finally, achieved. The LA update process can be described by the learning loop shown in Figure 1.

The feedback from the LA is a scalar that falls in the interval [0,1]. If the feedback is binary, meaning
0 or 1, then the Environment is called P-type. Whenever the feedback is a discrete values, we call the
environment Q−type. In the third case where the feedback is any real number in the interval [0,1], we
call the environment as S−type.

Depending on their Markovian properties, LA can be classified as either ergodic or equipped with
characteristics of absorbing barriers. In an ergodic LA system, the final steady state does not depend on
the initial state. In contrast, LA with absorbing barriers, the steady state depends on the initial state and
when the LA converges, it gets locked into an absorbing state.
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Figure 1. LA interacting with the environment.

Absorbing barrier LA are preferred in static environments, while ergodic LA are suitable for dynamic
environments.

LA with artificially absorbing barrier were introduced in the 1980s. In the context of LA, artificial
barriers refer to additional constraints or obstacles intentionally imposed on the agent’s learning envi-
ronment. These barriers can be designed to shape the agent’s behavior, steer its exploration, or promote
the discovery of optimal solutions that might not lie in the corners of the simplex.

John Oommen (1986), turned a discretized ergodic scheme into an absorbing one by introducing an
artificially absorbing barrier that forces the scheme to converge to one of the absorbing barriers. Such a
modification led to the advent of new LA families with previously unknown behavior.

In this paper, we devise a LA with artificial barriers for solving a general form of stochastic bimatrix
game. Our proposed algorithm addresses bimatrix games which is a more general version of the zero-
sum game treated in Lakshmivarahan and Narendra (1982).

Reward-εPenalty (LR−εP) scheme proposed by Lakshmivarahan and Narendra (1982) almost four
decades ago, is the only LA scheme that was shown to converge to the optimal mixed Nash equilibrium
when no Saddle Point exists in pure strategy, and the proofs were limited to only zero-sum games.

By resorting to the powerful concept of artificial barriers, we propose a LA that converges to an opti-
mal mixed Nash equilibrium even though there may be no Saddle Point when a pure strategy is invoked.
Our deployed scheme is of Linear Reward-Inaction (LR−I) flavor which is originally an absorbing LA
scheme, however, we render it non-absorbing by introducing artificial barriers in an elegant and natural
manner, in the sense that the well-known legacy LR−I scheme can be seen as an instance of our proposed
algorithm for a particular choice of the barrier. Furthermore, we present an S-Learning version of our
LA with absorbing barriers that is able to handle S-Learning environment in which the feedback is con-
tinuous and not binary as in the case of the LR−I . For a generalized analysis of reinforcement learning in
game theory, including the LR−I , we refer the reader to Bloembergen et al. (2015).

The contributions of this article can be summarized as follows:

• We introduce a stochastic game with binary outcomes, specifically a reward or a penalty. We
extend our consideration to a game where the probabilities of receiving a reward are determined
by the corresponding payoff matrix of each player. Furthermore, we propose a limited informa-
tion framework, a variant often examined in LA. In this game, each player only observes the
outcome of his action, either as a reward or penalty, without knowledge of the other player’s
choice. The player might not be even aware that he is playing against an opponent player.

• We introduce a design principle for our scheme, where players adapt their strategies upon
receiving a reward during each round of the repetitive game, yet retain their strategies when
faced with a penalty. This approach is in line with the Linear Reward-Inaction, LR−I paradigm.
We further extend our discussion by noting a stark contrast to the paradigm presented by
Lakshmivarahan and Narendra (1982). In their approach, players consistently revise their
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strategies every round, with the magnitude of probability adjustments solely based on the
receipt of a reward or penalty at each time instance.

• Furthermore, we provide an extension of our scheme to handle S-learning environment where
the feedback is not binary but rather continuous. The informed reader will notice that our main
focus is on the case of P-type environment, while we give enough exposure and attention related
to the S-type environment.

2. Related work
Studies on strategic games with LA were focused mainly on traditional LR−I which is desirable to use as it
can yield Nash equilibrium in pure strategies (Sastry et al., 1994). Although other ergodic schemes such
as LR−P were used in games (Viswanathan & Narendra, 1974) with limited information, they did not gain
popularity at least when it comes to applications due to their inability to converge to Nash equilibrium.
LA has found numerous applications in game theoretical applications such as sensor fusion without
knowledge of the ground truth (Yazidi et al., 2022), for distributed power control in wireless networks
and more particularly NOMA (Rauniyar et al., 2020), optimization of cooperative tasks (Zhang et al.,
2020), for content placement in cooperative caching (Yang et al., 2020), congestion control in Internet
of Things (Gheisari & Tahavori, 2019), reaching agreement in Ultimatum games utilizing a continuous
space strategy rather than working within a discrete actions space (De Jong et al., 2008), QoS satisfaction
in autonomous mobile edge computing (Apostolopoulos et al., 2018), opportunistic spectrum access
(Cao & Cai, 2018) scheduling domestic shiftable loads in smart grids (Thapa et al., 2017), anti-jamming
channel selection algorithm for interference mitigation (Jia et al., 2017), relay selection in vehicular ad-
hoc networks (Tian et al., 2017), load balancing by invoking the feedback from a purely local agent
(Schaerf et al., 1994) etc.

The application of game theory in cybersecurity is also a promising research area attracting lots of
attention (Do et al., 2017; Fielder, 2020; Sokri, 2020). Our LA-based solution is well suited for that
purpose. In cybersecurity, algorithms that can converge to mixed equilibria are preferred over those
that get locked into pure ones since randomization reduces an attacker’s predictive capability to guess
the implemented strategy of the defender. For example, let us consider a repetitive two-person security
game comprising of a hacker and network administrator. The hacker intends to disrupt the network by
launching a Distributed Denial of Service attack (DDOS) of varying magnitudes that could be classified
as high or low. The administrator can use varying levels of security measures to protect the assets. We can
assume that the adoption of a strong defense strategy by the defender has an extra cost compared to a low
one. Similarly, the usage of a high magnitude attack strategy by the attacker has a higher cost compared to
a low magnitude attack strategy. Another example of a security game is the jammer and transmitter game
(Vadori et al., 2015) where a jammer is trying to guess the communication channel of the transmitter to
interfere and block the communication. The transmitter chooses probabilistically a channel to transmit
over and the jammer chooses probabilistically a channel to attack. Clearly converging to pure strategies
is neither desirable by the jammer nor by the transmitter as it will give a predictive advantage to the
opponent. A pertinent example of an application of our proposed scheme is distributed discrete power
control problem (Xing & Chandramouli, 2008). Indeed, in Xing and Chandramouli (2008), these authors
used the counter-part scheme due to Lakshmivarahan and Narendra (1982) in order to decide the power
level of each terminal in a non-cooperative game setting. The latter authors adopt a utility function
due to Saraydar et al. which is expressed as ‘the number of information bits received successfully per
Joule of energy expended’ (Saraydar et al., 2002). This utility function depends on a certain number of
parameters, such as the interference exercised by the other terminals. More specifically, each terminal is
only able to observe local information, namely its utility, without having a knowledge of the power level
used by the other terminals. The authors of Xing and Chandramouli (2008) proved that whenever the
power levels of the terminals are discrete, there might be cases where there are multiple Nash equilibria
or there may also be mixed ones. However, for continuous power level choices, Saraydar et al. (2002)
have shown that the Nash equilibrium is unique.
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3. The game model
In this section, we begin by presenting the formal definition of LA in detail, ensuring a clear understand-
ing of its foundational concepts. Following that, we delve into formalizing the game model that is being
investigated.

Formally, a LA is defined by the mean of a quintuple 〈A, B, Q, F(., .), G(.)〉, where the elements of
the quintuple are defined term by term as:

1. A = {α1, α2, . . . , αr} gives the set of actions available to the LA, while α(t) is the action selected
at time instant t by the LA. Note that the LA selects one action at a time, and the selection is
sequential.

2. B = {β1, β2, . . . , βm} denotes the set of possible input values that the LA can receive. β(t)
denotes the input at time instant t which is a form of feedback.

3. Q = {q1, q2, . . . , qs} represents the states of the LA where Q(t) is the state at time instant t.
4. F(., .) : Q × B �→ Q is the transition function at time t, such that, q(t + 1) = F[q(t), β(t)]. In

simple terms, F(., .) returns the next state of the LA at time instant t + 1 given the current state
and the input from the environment both at time t using either a deterministic or a stochastic
mapping.

5. G(.) defines output function, it represents a mapping G:Q �→ A which determines the action of
the LA as a function of the state.

The Environment, E is characterized by :

• C = {c1, c2, . . . , cr} is a set of penalty probabilities, where ci ∈ C corresponds to the penalty of
action αi.

Let P(t) = [
p1(t) p2(t)

]ᵀ denote the mixed strategy of player A at time instant t, where p1(t) accounts
for the probability of adopting strategy 1 and, conversely, p2(t) stands for the probability of adopting
strategy 2. Thus, P(t) describes the distribution over the strategies of player A. Similarly, we can define
the mixed strategy of player B at time t as Q(t) = [

q1(t) q2(t)
]ᵀ. The extension to more than two actions

per player is straightforward following the method analogous to what was used by Papavassilopoulos
(1989), which extended the work of Lakshmivarahan and Narendra (1982).

Let αA(t) ∈ {1, 2} be the action chosen by player A at time instant t and αB(t) ∈ {1, 2} be the one chosen
by player B, following the probability distributions P(t) and Q(t), respectively. The pair (αA(t), αB(t))
constitutes the joint action at time t, and are pure strategies. Specifically, if (αA(t), αB(t)) = (i, j), the
probability of reward for player A is determined by rij while that of player B is determined by cij. Player
A is in this case the row player while player B is the column player.

When we are operating in the P-type mode, the game is defined by two payoff matrices, R and C
describing the reward probabilities of player A and player B respectively:

R =
(

r11 r12

r21 r22

)
, (3.1)

and the matrix C

C =
(

c11 c12

c21 c22

)
, (3.2)

where, as aforementioned, all the entries of both matrices are probabilities.
In the case where the environment is a S-model type, the latter two matrices are deterministic and

describe the feedback as a scalar in the interval [0,1]. For instance, if we operate in the S-type environ-
ment, the feedback when both players choose their respective first actions will be the scalar c11 for player
A and not Bernoulli feedback such in the case of P-type environment. It is possible also to consider c11 as
stochastic continuous variable with mean c11 and which realization in c11, however, for the sake of sim-
plicity we consider c11, and consequently C and R as deterministic. The asymptotic convergence proofs
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for the S−type environment will remain valid independently of whether C and R are deterministic or
whether they are obtained from a distribution with support in the interval [0,1] and with their means
defined by the matrices.

Independently of the environment type, whether it is P−type or S−type environments, we have three
cases to be distinguished for equilibria:

• Case 1: if (r11 − r21)(r12 − r22) < 0, (c11 − c12)(c21 − c22) < 0 and (r11 − r21)(c11 − c12) < 0, there
is just one mixed equilibrium. The first case depicts the situation where no Saddle Point
exists in pure strategies. In other words, the only Nash equilibrium is a mixed one. Based
on the fundamentals of Game Theory, the optimal mixed strategies can be shown to be the
following:

popt = c22 − c21

L′ , qopt = r22 − r12

L
,

where L = (r11 + r22) − (r12 + r21) and L′ = (c11 + c22) − (c12 + c21).
• Case 2: if (r11 − r21)(r12 − r22) > 0 or (c11 − c12)(c21 − c22) > 0, then there is just one pure

equilibrium since there is one player at least who has a dominant strategy.
• Case 3: if (r11 − r21)(r12 − r22) < 0, (c11 − c12)(c21 − c22) < 0 and (r11 − r21)(c11 − c12) > 0, there

are two pure equilibria and one mixed equilibrium.

In strategic games, Nash equilibria are equivalently called the ‘Saddle Points’ for the game. Since the
outcome for a given joint action is stochastic, the game is of stochastic genre.

4. Game theoretical LA algorithm based on the LR−I with artificial barriers
In this section, we shall present our LR−I with artificial barriers that is devised specially for the P-type
environments.

4.1. Non-absorbing artificial barriers
As we have seen above from surveying the literature, an originally ergodic LA can be rendered absorb-
ing by operating a change in its end states. However, what is unknown in the literature is a scheme
which is originally absorbing can be rendered ergodic. In many cases, this can be achieved by making
the scheme behave according to the absorbing scheme rule over the probability simplex and pushing
the probability back inside the simplex whenever the scheme approaches absorbing barriers. Such a
scheme is novel in the field of LA and its advantage is that the strategies avoid being absorbed in non-
desirable absorbing barriers. Further, and interestingly, by countering the absorbing barriers, the scheme
can migrate stochastically towards a desirable mixed strategy. Interestingly, as we will see later in the
paper, even if the optimal strategy corresponds to an absorbing barrier the scheme will approach it.
Thus, the scheme converges to mixed strategies whenever they correspond to optimal strategies while
approaching the absorbing states whenever they are the optimal strategies. We shall give the details of
our devised scheme in the next section which enjoys the above mentioned properties.

4.2. Non-absorbing Gagme playing
At this juncture, we shall present the design of our proposed LA scheme together with some theoretical
results demonstrating that it can converge to the Saddle Points of the game even if the Saddle Point is a
mixed Nash equilibrium. Our solution presents a new variant of the LR−I scheme, which is made rather
ergodic by modifying the update rule in a general form which makes the original LR−I with absorb-
ing barriers corresponding to the corners of the simplex an instance of the latter general scheme for a
particular choice of parameters of the scheme. The proof of convergence is based on Norman’s theory
for learning processes characterized by small learning steps (Norman, 1972; Narendra & Thathachar,
2012).

https://doi.org/10.1017/S0269888923000103 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000103


6 I. Hassan, B. J. Oommen and A. Yazidi

We introduce pmax as the artificial barrier which is a real value close to 1. Similarly, we introduce
pmin = 1 − pmax which corresponds to the lowest value any action probability can take. In order to enforce
the constraint that the probability of any action for both players remains within the interval [pmin, pmax]
one should start by choosing initial values of p1(0) and q1(0) in the same interval, and further resorting
to updates rules that ensure that each update keeps the probabilities within the same interval.

If the outcome from the environment is a reward at a time t for action i ∈ {1, 2}, the update rule is
given by:

pi(t + 1) = pi(t) + θ (pmax − pi(t))

ps(t + 1) = ps(t) + θ (pmin − ps(t)) for s 	= i.
(4.1)

where θ is a learning parameter. The informed reader observes that the update rules coincide with the
classical LR−I except that pmax replaces unity for updating pi(t + 1) and that pmin replaces zero for updating
ps(t + 1).

Following the Inaction principle of the LR−I , whenever the player receives a penalty, its action
probabilities are kept unchanged which is formally given by:

pi(t + 1) = pi(t)

ps(t + 1) = ps(t) for s 	= i.
(4.2)

The update rules for the mixed strategy q(t + 1) are defined in a similar fashion. We shall now move
to a theoretical analysis of the convergence properties of our proposed algorithm for solving a strategic
game. In order to denote the optimal Nash equilibrium of the game we use the pair (popt, qopt).

Let the vector X(t) = [
p1(t) q1(t)

]ᵀ. We resort to the notation �X(t) = X(t + 1) − X(t). For denot-
ing the conditional expected value operator we use the nomenclature E[·|·]. Using those notations, we
introduce the next theorem of the article.

Theorem 1. Consider a two-player game with a payoff matrices as in –Equations (3.1) and (3.2), and a
learning algorithm defined by Equations (4.1) and (4.2) for both players A and B, with learning rate θ .
Then, E[�X(t)|X(t)] = θW(x) and for every ε > 0, there exists a unique stationary point X∗ = [

p∗
1 q∗

1

]ᵀ
satisfying:

1. W(X∗) = 0;
2. |X∗ − Xopt| < ε.

Proof We start by first computing the conditional expected value of the increment �X(t):

E[�X(t)|X(t)] = E[X(t + 1) − X(t)|X(t)]

=
[

E[p1(t + 1) − p1(t)|X(t)]

E[q1(t + 1) − q1(t)|X(t)])

]

= θ

[
W1(X(t))

W2(X(t))

]

= θW(X(t)),

where the above format is possible since all possible updates share the form �X(t) = θW(t), for some
W (t), as given in Equation (4.1). For ease of notation, we drop the dependence on t with the implicit
assumption that all occurrences of X, p1 and q1 represent X(t), p1(t) and q1(t) respectively. W1(x) is then:
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W1(X) = p1q1r11(pmax − p1) + p1(1 − q1)r12(pmax − p1)

+ (1 − p1)q1r21(pmin − p1)

+ (1 − p1)(1 − q1)r22(pmin − p1)

= p1

[
q1r11 + (1 − q1)r12

]
(pmax − p1) (4.3)

+ (1 − p1)
[
q1r21 + (1 − q1)r22

]
(pmin − p1)

= p1(pmax − p1)DA
1 (q1) + (1 − p1)(pmin − p1)DA

2 (q1),

where,

DA
1 (q1) = q1r11 + (1 − q1)r12 (4.4)

DA
2 (q1) = q1r21 + (1 − q1)r22. (4.5)

By replacing pmax = 1 − pmin and rearranging the expression we get:

W1(X) = p1(1 − p1)DA
1 (q1) − p1pminD

A
1 (q1)

+ (1 − p1)pminD
A
2 (q1) − p1(1 − p1)DA

2 (q1)

= p1(1 − p1)
[
DA

1 (q1) − DA
2 (q1)

]
− pmin

[
p1DA

1 (q1) − (1 − p1)DA
2 (q1)

]
.

Similarly, we can get

W2(X) = q1p1c11(pmax − q1) + q1(1 − p1)c21(pmax − q1)

+ (1 − q1)p1c12(pmin − q1) + (1 − q1)(1 − p1)c22(pmin − q1) (4.6)

= q1

[
p1c11 + (1 − p1)c21

]
(pmax − q1)

+ (1 − q1)
[
p1c12 + (1 − p1)c22

]
(pmin − q1)

= q1(pmax − q1)DB
1 (p1) + (1 − q1)(pmin − q1)DB

2 (p1)

where

DB
1 (p1) = p1c11 + (1 − p1)c21 (4.7)

DB
2 (p1) = p1c12 + (1 − p1)c22. (4.8)

By replacing pmax = 1 − pmin and rearranging the expression we get:

W2(X) = q1(1 − q1)(1 − DB
1 (p1)) − q1pminD

B
1 (p1)

+ (1 − q1)pminD
B
2 (p1) − q1(1 − q1)DB

2 (p1)

= q1(1 − q1)
[
DB

1 (p1) − DB
2 (p1)

]
(4.9)

− pmin

[
q1DB

1 (p1) − (1 − q1)DB
2 (p1)

]
.

We need to address the three identified cases.
Consider Case 1: Only One Mixed Equilibrium Case, where there is only a single mixed equilibrium.

We get

DA
12(q1) = DA

1 (q1) − DA
2 (q1)

= (r12 − r22) + Lq1.
(4.10)
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We also should distinguish details of the equilibrium according to the entries in the payoff matrices
R and C for Case 1. This case can be divided into two sub-cases. The first sub-case is given by:

r11 > r21, r12 < r22; c11 < c12, c21 > c22, (4.11)

The second sub-case is given by:

r11 < r21, r12 > r22; c11 > c12, c21 < c22, (4.12)

For the sake of brevity, we consider the first sub-case given by condition Equation 4.11. We have
L > 0, since r11 > r12 and r22 > r21. Therefore DA

12(q1) is an increasing function of q1 and
⎧⎪⎪⎨
⎪⎪⎩

DA
12(q1) < 0, if q1 < qopt,

DA
12(q1) = 0, if q1 = qopt,

DA
12(q1) > 0, if q1 > qopt.

(4.13)

For a given q1, W1(X) is quadratic in p1. Also, we have:

W1

([
0

q1

])
= pminD

A
2 (q1) > 0

W1

([
1

q1

])
= −pminD

A
1 (q1) < 0.

(4.14)

Since W1(X) is quadratic with a negative second derivative with respect to p1, and since the inequalities
in Equation (4.14) are strict, it admits a single root p1 for p1 ∈ [0, 1]. Moreover, we have W1(X) = 0 for
some p1 such that:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p1 <
1

2
, if q1 < qopt,

p1 = 1

2
, if q1 = qopt,

p1 >
1

2
, if q1 > qopt.

(4.15)

Using a similar argument, we can see that there exists a single solution for each p1, and as pmin → 0, we
conclude that W1(X) = 0 whenever p1 ∈ {0, popt, 1}. Arguing in a similar manner we see that W2(X) = 0
when:

X ∈
{[

0

0

]
,

[
0

1

]
,

[
1

0

]
,

[
1

1

]
,

[
popt

qopt

]}
.

Thus, there exists a small enough value for pmin such that X∗ = [p∗, q∗]ᵀ satisfies W2(X∗) = 0, proving
Case 1).

In the proof of Case 1), we take advantage of the fact that for small enough pmin, the learning algorithm
enters a stationary point, and also identified the corresponding possible values for this point. It is thus
always possible to select a small enough pmin > 0 such that X∗ approaches Xopt, concluding the proof for
Case 1).

Case 2) and Case 3) can be derived in a similar manner, and the details are omitted to avoid
repetition. �

In the next theorem, we show that the expected value of �X(t) has a negative definite gradient.
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Theorem 2. The matrix of partial derivatives,
∂W(X∗)

∂x
is negative definite.

Proof. We start the proof by writing the explicit format for
∂W(X)

∂X
=

⎡
⎢⎢⎣

∂W1(X)

∂p1

∂W1(X)

∂q1

∂W2(X)

∂p1

∂W2(X)

∂q1

,

⎤
⎥⎥⎦ and

then computing each of the entries as below:

∂W1(X)

∂p1

= (1 − 2p1)
(
DA

1 (q1) − DA
2 (q1)

)
− pmin

(
DA

1 (q1) + DA
2 (q1)

)
= (1 − 2p1)DA

12(q1) − pmin

(
DA

1 (q1) + DA
2 (q1)

)
.

∂W1(X)

∂q1

= p1(1 − p1)L − pmin(p1(r11 − r12) + (1 − p1)(r22 − r21)).

∂W2(X)

∂p1

= q1(1 − q1)L′ − pmin(q1(c11 − c12) + (1 − q1)(c22 − c21)).

∂W2(X)

∂q1

= (1 − 2q1)DB
12(p1) − pmin

(
DB

1 (p1) + DB
2 (p1)

)
.

As seen in Theorem 1, for a small enough value for pmin, we can ignore the terms that are weighted

by pmin, and we will thus have
∂W(X∗)

∂X
≈ ∂W(Xopt)

∂X
. We now subdivide the analysis into the three cases.

Case 1: No Saddle Point in pure strategies. In this case, we have:

DA
1 (qopt) = DA

2 (qopt) and DB
1 (popt) = DB

2 (popt)

which makes
∂W1(Xopt)

∂p1

= −2pminDA
1 (qopt). (4.16)

Similarly, we can compute

∂W1(Xopt)

∂q1

= (1 − 2pmin)popt(1 − popt)L. (4.17)

The entry
∂W2(Xopt)

∂p1

can be simplified to:

∂W2(Xopt)

∂p1

= (1 − 2pmin)qopt(1 − qopt)L
′ (4.18)

and
∂W2(Xopt)

∂q1

= 2pminD
B
1 (popt) (4.19)

resulting in:

∂W(Xopt)

∂X
=
[ −2pminDA

1 (qopt) (1 − 2pmin)popt(1 − popt)L

(1 − 2pmin)qopt(1 − qopt)L′ −2pminDB
1 (popt)

]
. (4.20)
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We know that this case can be divided into two sub-cases. Let us consider the first sub-case
given by:

r11 > r21, r12 < r22; c11 < c12, c21 > c22, (4.21)

Thus, L > 0 and L′ < 0 as a consequence of Equation (4.21)
Thus, the matrix given in Equation (4.20) satisfies:

det

(
∂W(Xopt)

∂x

)
> 0 , trace

(
∂W(Xopt)

∂x

)
< 0, (4.22)

which implies the 2 × 2 matrix is negative definite.

Case 2: Only one single pure equilibrium. According to this case: (r11 − r21)(r12 − r22) > 0 or (c11 −
c12)(c21 − c22) > 0.

The condition for only one pure equilibrium can be divided into four different sub-cases.
Without loss of generality, we can consider a particular sub-case where qopt = 1 and popt = 1. This

reduces to r11 − r21 > 0 and c11 − c12 > 0.
Computing the entries of the matrix for this case yields:

∂W1(Xopt)

∂p1

= −(r11 − r21) − pmin(r11 + r21), (4.23)

and
∂W1(Xopt)

∂q1

= −pmin(r11 − r12). (4.24)

The entry
∂W2(Xopt)

∂p1

can be simplified to:

∂W2(Xopt)

∂p1

= −pmin(c11 − c12) (4.25)

and
∂W2(Xopt)

∂q1

= −(c11 − c12) − pmin(c11 + c12) (4.26)

resulting in:
∂W(Xopt)

∂X
(4.27)

=
[
−(r11 − r21) − pmin(r11 + r21) −pmin(r11 − r12)

−pmin(c11 − c12) −(c11 − c12) − pmin(c11 + c12)

]
.

The matrix in (4.34) satisfies:

det

(
∂W(Xopt)

∂X

)
> 0 , trace

(
∂W(Xopt)

∂X

)
< 0 (4.28)

for a sufficiently small value of pmin, which again implies that the 2 × 2 matrix is negative definite.

Case 3: Two pure equilibrium and one mixed equilibrium. In this case, (r11 − r21)(r12 − r22) < 0,
(c11 − c12)(c21 − c22) < 0 and (r11 − r21)(c11 − c12) > 0.

Without loss of generality, we suppose that (popt, qopt) = (1, 1) and (popt, qopt) = (0, 0) are the two pure
Nash equilibria. This corresponds to a sub-case where:

r11 − r21 > 0, c11 − c12 > 0, r22 − r12 > 0, c22 − c21 > 0, (4.29)

r11 − r21 > 0 and c11 − c12 > 0 because of the Nash equilibrium (popt, qopt) = (1, 1). Similarly, r22 − r12 >

0 and c22 − c21 > 0 because of the Nash equilibrium (popt, qopt) = (1, 1).
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Whenever (popt, qopt) = (1, 1), we obtain stability of the fixed point as demonstrated in the previous
case, case 2.

Now, let us consider the stability for (popt, qopt) = (0, 0).
Computing the entries of the matrix for this case yields:

∂W1(Xopt)

∂p1

= (r12 − r22) − pmin(r12 + r22), (4.30)

and
∂W1(Xopt)

∂q1

= −pmin(r22 − r21). (4.31)

The entry
∂W2(Xopt)

∂p1

can be simplified to:

∂W2(Xopt)

∂p1

= −pmin(c22 − c12) (4.32)

and
∂W2(Xopt)

∂q1

= (c21 − c22) − pmin(c21 + c22) (4.33)

resulting in:
∂W(Xopt)

∂X
(4.34)

=
[

(r12 − r22) − pmin(r12 + r22) −pmin(r22 − r21)

−pmin(c22 − c12) (c21 − c22) − pmin(c21 + c22)

]
.

The matrix in (4.34) satisfies:

det

(
∂W(Xopt)

∂X

)
> 0 , trace

(
∂W(Xopt)

∂X

)
< 0 (4.35)

for a sufficiently small value of pmin, which again implies that the 2 × 2 matrix is negative definite.
Now, what remains to be shown is that the mixed Nash equilibrium in this case is unstable.

∂W(Xopt)

∂X
=
⎡
⎣ −2pminDA

1 (qopt) (1 − 2pmin)popt(1 − popt)L

(1 − 2pmin)qopt(1 − qopt)L′ −2pminDB
1 (popt)

⎤
⎦ . (4.36)

Using Equation 4.29, we can see that L > 0 and L′ > 0 and thus:

det

(
∂W(Xopt)

∂X

)
< 0 (4.37)

�
Theorem 3. We consider the update equations given by the LR−I scheme. For a sufficiently small pmin

approaching 0, and as θ → 0 and as time goes to infinity:[
E(p1(t)) E(q1(t))

]→ [
p∗

opt q∗
opt

]
where

[
p∗

opt q∗
opt

]
corresponds to a Nash equilibrium of the game.

Proof The proof of the result is obtained by virtue of applying a classical result due to Norman
(1972), given in the Appendix A, in the interest of completeness.

Norman theorem has been traditionally used to prove considerable amount of the results in the
field of LA. In the context of game theoretical LA schemes, Norman theorem has been adapted by
Lakshmivarahan and Narendra to derive similar convergence properties of the LR−εP (Lakshmivarahan
& Narendra, 1982) for the zero-sum game. It is straightforward to verify that Assumptions (1)-(6) as
required for Norman’s result in the appendix are satisfied.
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Thus, by further invoking Theorem 1 and Theorem 2, the result follows.
Indeed, the convergence proof follows the same line as the proofs in Lakshmivarahan and Narendra

(1982) and Xing and Chndramouli (2008) which builds upon the Norman theorem.
We can write

E{[�X(t) − X(t)]ᵀ[�X(t) − X(t)]|X(t)} = θ 2s(X(t)),

where s(X(t)) = a(X(t)) − W(X(t))ᵀW(X(t)) and a(X(t)) = E[�X(t)ᵀ�X(t)|X(t)].
The elements of the matrix a(X(t)) can be easily computed. All the states are non-absorbing, it follows

that s(X(t)) is positive definite.
Furthermore,

E[ |�X(t)| |3X(t)] = O(θ 3),

where |.| is the norm function. W (X(t)) has a bounded Lipschitz derivative. In addition, s(X(t)) is
Lipschitz.

It follows that the process X(t) satisfies all conditions of the Norman theorem.
Hence,

E[�X(t)|X(0) = X] = θy(tθ ) + O(θ ), (4.38)

where

y′(t) = W(y(t))

where y(0) = X(0) = X,
For properties of y′(t) it follows that Equation (4.38) is uniformly asymptotically stable, that is y(t)

converges to X∗ as t → ∞.

This implies that
X(t) − y(tθ )√

θ
converges in distribution, which implies that E[X(t)] converges.

That is:
limt→∞ E[X(t)] exists.
For small enough pmin, X∗ approximates Xopt.
It follows that for any δ > 0 there exits 0 < θ ∗ < 1, such that limt→∞

∣∣E[X(t)) − Xopt

∣∣< δ �

5. Game theoretical LA algorithm based on the S-learning with artificial barriers
In this section, we give the update equations for the LA when the environment is of S− type.

In the case of S− type, the game is defined by two payoff matrices, R and C describing a deterministic
feedback of player A and player B respectively.

All the entries of both matrices are deterministic numbers like in classical game theory settings.
The environment returns uA

i (t): the payoff defined by the matrix R for player A at time t whenever
player A question chooses an action i ∈ {1, 2}.

The update rule for the player A that takes into account uA
i (t) is given by:

pi(t + 1) = pi(t) + θuA
i (pmax − pi(t))

ps(t + 1) = ps(t) + θuA
i (pmin − ps(t)) for s 	= i.

(5.1)

where θ is a learning parameter.
Note uA

i is the feedback for action i of the player A which is one entry in the ith row of the matrix R,
depending on the action of the player B.

Similarly we can define uB
i (t) the payoff defined by the matrix C for player B at time t whenever player

B question chooses an action i ∈ {1, 2}.
For instance, if at time t, player A takes action 1 and player B takes action 2, then uA

1 (t) = r12 and
uB

2 (t) = c21.
The update rules for player B can be obtained by analogy to those given for player A.
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Table 1. Error for different values of θ and pmax, when popt = 0.6667
and qopt = 0.3333 for the game specified by the R matrix given by
Equation (6.1) and the C matrix given by Equation (6.2)

pmax θ = 0.001 θ = 0.0001
0.990 1.77 × 10−2 2.03 × 10−2

0.991 1.71 × 10−2 1.69 × 10−2

0.992 1.33 × 10−2 1.54 × 10−2

0.993 1.32 × 10−2 1.52 × 10−2

0.994 1.18 × 10−2 1.02 × 10−2

0.995 1.17 × 10−2 7.86 × 10−3

0.996 8.50 × 10−3 6.37 × 10−3

0.997 5.57 × 10−3 4.43 × 10−3

0.998 5.27 × 10−3 3.34 × 10−3

Theorem 4. We consider the update equations given by the S− Learning scheme given above in this
Section. For a sufficiently small pmin approaching 0, and as θ → 0 and as time goes to infinity:[

E(p1(t)) E(q1(t))
]→ [

p∗
opt q∗

opt

]
where

[
p∗

opt q∗
opt

]
corresponds to a Nash equilibrium of the game.

Proof The proofs of this theorem follows the same lines as the proofs given in Section 4 and are
omitted here for the sake of brevity. �

6. Experimental results
In this Section, we focus on providing thorough experiments for LR−I scheme. Some experiments of
S− LA for handling S− type environments are given in the Appendix 7 that mainly aim to verify our
theoretical findings.

To verify the theoretical properties of the proposed learning algorithm, we conducted several simu-
lations that will be presented in this section. By using different instances of the payoff matrices R and
C, we can experimentally cover the three cases referred to in Section 4.

6.1. Convergence in Case 1
We examine a case of the game where only one mixed Nash equilibrium exists meaning that there is no
Saddle Point in pure strategies. The game matrices R and C are given by:

R =
(

0.2 0.6

0.4 0.5

)
, (6.1)

C =
(

0.4 0.25

0.3 0.6

)
, (6.2)

which admits popt = 0.6667 and qopt = 0.3333.
We ran our simulation for 5 × 106 iterations, and present the error in Table 1 for different values of

pmax and θ as the difference between Xopt and the mean over time of X(t) after convergence2. The high
value for the number of iterations was chosen in order to eliminate the Monte Carlo error. A significant
observation is that the error monotonically decreases as pmax goes towards 1 (i.e. when pmin → 0). For

2The mean is taken over the last 10% of the total number of iterations.
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Figure 2. Trajectory of [p1(t), q1(t)]ᵀ for the case of the R matrix given by Equation (6.1) and the C
matrix given by Equation (6.2) with popt = 0.6667 and qopt = 0.3333, and using pmax = 0.99 and θ = 0.01.

instance, for pmax = 0.998 and θ = 0.001, the proposed scheme yields an error of 5.27 × 10−3, and further
reducing θ = 0.0001 leads to an error of 3.34 × 10−3.

The behavior scheme is illustrated in Figure 2 showing the trajectory of the mixed strategies for both
players (given by X(t)) for an ensemble of 1000 runs using θ = 0.01 and pmax = 0.99.

The trajectory of the ensemble enables us to notice the mean evolution of the mixed strategies. The
spiral pattern results from one of the players adjusting to the strategy used by the other before the former
learns by readjusting its strategy. The process is repeated, thus leading to more minor corrections until
the players reach the Nash equilibrium.

The process can be visualized in Figure 3 presenting the time evolution of the strategies of both
players for a single experiment with pmax = 0.99 and θ = 0.00001 over 3 × 107 steps. We observe an
oscillatory behavior which vanishes as the players play for more iterations. It is worth noting that a larger
value of θ will cause more steady state error (as specified in Theorem 1), but it will also disrupt this
behavior as the players take larger updates whenever they receive a reward. Furthermore, decreasing
θ results in a smaller convergence error, but also affects negatively the convergence speed as more
iterations are required to achieve convergence. Figure 4 depicts the trajectories of the probabilities p1

and q1 for the same settings as those in Figure 3.
Now, we turn our attention to the analysis of the deterministic Ordinary Differential Equation (ODE)

corresponding to our LA with barriers and plot it in Figure 5. The trajectory of the ODE is conform with
our intuition and the results of the LA run in Figure 4. The two ODE are given by:

dp1

dt
= W1(X) = p1(pmax − p1)DA

1 (q1) + (1 − p1)(pmin − p1)DA
2 (q1), (6.3)

and,
dq1

dt
= W1(X) = p1(pmax − p1)DA

1 (q1) + (1 − p1)(pmin − p1)DA
2 (q1), (6.4)

To obtain the ODE for a particular example, we need just to replace the entries of R and C in the
ODE by their values. In this sense to plot the ODE trajectories we only need to know R and C and of
course pmax.
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Figure 3. Time Evolution X(t) for the case of the R matrix given by Equation (6.1) and the C matrix
given by Equation (6.2) with popt = 0.6667 and qopt = 0.3333, and using pmax = 0.99 and θ = 0.00001.

Figure 4. Trajectory of X(t) where popt = 0.6667 and qopt = 0.3333, using pmax = 0.99 and θ = 0.00001.

6.2. Case 2: One pure equilibrium
At this juncture, we shall experimentally show that the scheme possess still plausible convergence prop-
erties even in case where there is a single saddle point in pure strategies and that our proposed LA will
approach the optimal pure equilibria. For this sake, we consider a case of the game where there is a sin-
gle pure equilibrium which falls in the category of Case 2 with popt = 1 and qopt = 0. The payoff matrices
R and C for the games are given by:
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Table 2. Error for different values of θ and pmax for the game
specified by the R matrix and the C matrix given by Equations
(6.5) and (6.6)

pmax θ = 0.0001 θ = 0.00001
0.990 6.57 × 10−2 6.51 × 10−2

0.991 5.88 × 10−2 5.82 × 10−2

0.992 5.30 × 10−2 5.21 × 10−2

0.993 4.67 × 10−2 4.64 × 10−2

0.994 4.00 × 10−2 4.02 × 10−2

0.995 3.36 × 10−2 3.38 × 10−2

0.996 2.68 × 10−2 2.64 × 10−2

0.997 2.04 × 10−2 2.08 × 10−2

0.998 1.40 × 10−2 1.37 × 10−2

Figure 5. Trajectory of ODE using pmax = 0.99 for case 1.

R =
(

0.7 0.9

0.6 0.8

)
, (6.5)

C =
(

0.6 0.8

0.8 0.9

)
, (6.6)

We first show the convergence errors of our method in Table 2. As in the previous simulation for
Case 1, the errors are on the order to 10−2 for larger values of pmax. We also observe that steady state
error is slightly higher compared to the previous case of mixed Nash described by Equations (6.1) and
(6.2) which is treated in the previous section.

We then plot the ODE for pmax = 0.99 as shown in Figure 6. According to the ODE in Figure 6,
we are expecting that the LA will converge towards the attractor of the ODE which corresponds to
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Figure 6. Trajectory of the deterministic ODE using pmax = 0.99 for case 2.

(p∗, q∗) = 0.917, 0.040) as θ goes to zero. We see that (p∗, q∗) = (0.917, 0.040) approaches (popt, qopt) =
(1, 0) but there is still a gap between them. This is also illustrated in Figure 7 where we also consis-
tently observe that the LA converges towards (p∗, q∗) = (0.916, 0.041) after running our LA for 30 000
iterations with an ensemble of 1000 experiments. The main limitation of introducing artificial barriers
whenever the optimal equilibrium is pure is choosing pmax even slightly away from 1 (such as 0.99),
gives a large deviation in the convergence (p∗, q∗) = (0.916, 0.041) which is somehow far from the opti-
mal value (popt, qopt) = (1, 0). It appears as if, in the case of pure equilibrium, for slightly large pmin, we
can get a large deviation from (popt, qopt). In order to mitigate this issue, one can introduce an extra mech-
anism that would detect that convergence should take place into the corners of the simplex, implying a
pure Nash equilibrium, and reducing pmin over time to ensure such convergence.

Observing the small dispersancy between (p∗, q∗) = (0.917, 0.040) and (popt, qopt) = (1, 0) from the
ODE and from the LA trajectory as shown in Figures 6 and 7 motivates us to choose even a larger
value of pmax. Thus, we increase pmax from 0.99 to 0.999 and observe the expected convergence results
from the ODE in Figure 8. We observe a single attraction point close of the ODE close to the pure
Nash equilibrium. We can read from the ODE trajectory that (p∗, q∗) = (0.991, 0.004) which is closer
(popt, qopt) = (1, 0) than the previous case with a smaller pmax.

In Figure 9a, we depict the time evolution of the two components of the vector X(t) using the pro-
posed algorithm for an ensemble of 1000 runs. In the case of having a Pure Nash equilibrium, there is
no oscillatory behavior as when a player assigns more probability to an action, since the other player
reinforces the strategy. However, Figure 9a could mislead the reader to believe that the LA method has
converged to a pure strategy for both players. In order to clarify that we are not converging to an absorb-
ing state for the player A, we provide Figure 9b which zooms on Figure 9a around the region where
the strategy of player A has converged in order to visualize that its maximum first action probability is
limited by pmax, as per the design of our updating rule. Similarly, we zoom on the evolution of the first
action probability of player B in Figure 9c. We observe that the first action instead to converging to zero
as it would be if we did not have absorbing barriers, its rather converges to a small probability limited by
pmin which approaches zero. Such propriety of evading lock in probability even for pure optimal strate-
gies and which emanates from the ergodicity of our LR−I scheme with absorbing barriers is a desirable
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Figure 7. Time evolution over time of X(t) for θ = 0.01 and pmax = 0.99 for the case of the R matrix
given Equation (6.5) and for the C matrix given by Equation (6.6).

Figure 8. Trajectory of ODE using pmax = 0.999 for case 2.

property specially when the payoff matrices are time-varying and thus the optimal equilibrium point
might change over time. Such a case deserves a separate study to better understand the behavior of the
scheme and to also understand the effect of the tuning parameters and how to control and vary them in
this case to yield a compromise between learning and forgetting stale information.

Figure 9 depicts the time evolution of the probabilities for each player, with θ = 0.01, pmax = 0.999
and for an ensemble with 1000 runs.
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Evolution over time of X (t). Zoomed version for player A strategy.

Zoomed version for player B strategy.

(a) (b)

(c)

Figure 9. The figure shows (a) the evolution over time of X(t) for θ = 0.01 and pmax = 0.999 when
applied to game with payoffs specified by the R matrix and the C matrix given by Equation (6.5) and
Equation (6.6), and (b) is a zoomed version around player A strategy c) and is a zoomed version around
player B strategy.

6.3. Case 3: 2 Pure equilibria and 1 mixed
Now, we shall consider the last case 3.

As an instance of case 3, we consider the payoff matrices R and C given by:

R =
(

0.3 0.1

0.2 0.3

)
, (6.7)

C =
(

0.3 0.2

0.1 0.2

)
, (6.8)

In Figure 10, we plot 9 trajectories for the LA for a number of iterations is 1 000 000. We observe
that depending on the initial conditions, our LA converges to one of the two pure equilibria which is
usually the closest to the starting point. We have also performed extensive simulations with initial values
(0.5, 0.5) of the probabilities and we found that almost 50% of the time the LA converges to the Nash
equilibrium close to (1,1) and 50% close to (0,0). As a future work, we would like to explore how to
push the LA to favor one of the two equilibria as there is usually an equilibrium that is superior to the
other, and thus it is more desirable for both players to converge to the superior Nash equilibrium.

We plot the ODE corresponding to our LA for case 3 in Figure 11. We can see two attractions points
which approach the two Nash equilibria.
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Figure 10. 9 Trajectories of the LA with barriers starting from random initial point with pmax = 0.99
and θ = 0.0001.

Figure 11. Trajectory of ODE using pmax = 0.99 for case 3.

Although for pmax 	= 1, w our scheme is in theory ergodic and not absorbing, this is not the case in
practice as shown in the simulation reported in Table 3. In fact for θ = 0.0001 and as pmax becomes
larger or equal to 0.995, we observe that the error is zero meaning that the LA has converged already to
an absorbing state! This lock in probability phenomenon is due to the limited accuracy of the machine
and limitations of the random number generator. For smaller θ = 0.00001, we expect that the LA will
approximate better the ODE. Indeed, this is the case the absorption this time does not happen for
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Table 3. Error for different values of θ and pmax for the game
specified by the R matrix and the C matrix given by Equations
(6.7) and (6.8)

pmax θ = 0.0001 θ = 0.00001
0.990 3.08 × 10−2 2.06 × 10−2

0.991 2, 76 × 10−2 2.76 × 10−2

0.992 1.64 × 10−2 2.43 × 10−2

0.993 1.42 × 10−2 2.12 × 10−2

0.994 1.85 × 10−2 1.21 × 10−2

0.995 0.0 1.53 × 10−2

0.996 0.0 1.21 × 10−2

0.997 0.0 0.0
0.998 0.0 0.0
0.999 0.0 0.0

pmax = 0.995 and pmax = 0.996 as in the previous case, but happen for only pmax larger or equal to
pmax = 0.997.

Solving the ODE for pmax = 0.999, gives two solutions, namely, (p∗, q∗) = (0.99699397, 0.99699397)
and (0.00200603, 0.00200603) which approach (popt, qopt) = (1, 1) and (popt, qopt) = (0, 0) respectively.

Solving the ODE for pmax = 0.998, gives two solutions (p∗, q∗) = (0.99397576, 0.99397576) and
(0.00402424, 0.00402424).

While solving the ODE for pmax = 0.997, gives (p∗, q∗) = (0.99094517, 0.99094517) and
(0.00605483, 0.00605483).

7. Experimental results for S-type environments
In this section, we present the results of the experiments for the S-type learning game. We conducted
several simulations similar to those presented in Section 6. The same instances of the payoff matrices R
and C were used, covering the cases referred to in Section 4.

For all the experiments conducted for the S-LA, 9 trajectories were plotted for 2 000 000 iteration,
with pmax = 0.99 and θ = 0.0001. A general observation that we noticed when performing that the exper-
iments is that the S-LA converges slower than the LR−I . Therefore, we have doubled the number of
iterations to allow the S-LA to converge in our experiments.

7.1. Case 1: Only one mixed Nash equilibrium exists
Figure 12 depicts the situation where the only Nash equilibrium that exists is a mixed one. We can easily
observe that the S-LA approaches the trajectories of the ODE given in Figure 5. Please note that the ODE
regardless of the LA type, whether it is LR−I or S−LA.

7.2. Case 2: One pure equilibrium
We also examined the case where the game has a single pure equilibrium. The exhibited behavior is
comparable to those reported in Section 6. The trajectory of the LA depicted in Figure 13 tightly follows
the trajectories of the ODE depicted in Figure 6. As θ goes to zero, the trajectories of the LA and those
of the ODE will be indistinguishable (Sastry et al., 1994).
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Figure 12. Trajectory of S-LA using pmax = 0.99 and θ = 0.0001 for case 1.

Figure 13. Trajectory of S-LA using pmax = 0.99 and θ = 0.0001 for case 2.

7.3. Case 3: Two pure equilibria and one mixed
Figure 14 shows the situation where there are two pure equilibria and one mixed.

We observe that the LA converges to one of the two pure equilibria that is closest to the starting point.
The S-LA behaves much similar to the LR−I LA as shown in Figure 10. We also observe that the S-LA
respectively converged to the Nash equilibrium close to (1, 1) and close to (0,0) approximately 50% of
the time.

https://doi.org/10.1017/S0269888923000103 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000103


The Knowledge Engineering Review 23

Figure 14. Trajectory of S-LA using pmax = 0.99 and θ = 0.0001 for case 3.
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Appendices
Appendix A. Norman theorem

Theorem 5. Let X(t) be a stationary Markov process dependent on a constant parameter θ ∈ [0, 1]. Each
X(t) ∈ I, where I is a subset of the real line. Let �X(t) = X(t + 1) − X(t). The following are assumed to
hold:

1. I is compact.
2. E[�X(t)|X(t) = y] = θw(y) + O(θ 2)
3. Var[�X(t)|X(t) = y] = θ 2s(y) + o(θ 2)
4. E[�X(t)3|X(t) = y] = O(θ 3) where supy∈I

O(θk)
θk < ∞ for K = 2, 3 and supy∈I

o(θ2)
θ2 → 0 as θ → 0.

5. w(y) has a Lipschitz derivative in I.
6. s(y) is Lipschitz I.

If Assumptions (1)-(6) hold, w(y) has a unique root y∗ in I and dw
dy

∣∣∣∣
y=y∗

≤ 0 then

1. var[�X(t)|X(0) = x] = 0(θ ) uniformly for all x ∈ I and t ≥ 0. For any x ∈ I, the differential
equation dy(τ )

dτ
= w(y(t)) has a unique solution y(τ ) = y(τ , x) with y(0) = x and E[δX(t)|X(0) =

x] = y(tθ ) + O(θ ) uniformly for all x ∈ I and t ≥ 0.
2. X(t)−y(tθ)√

θ
has a normal distribution with zero mean and finite variance as θ → 0 and tθ → ∞.

https://doi.org/10.1017/S0269888923000103 Published online by Cambridge University Press

https://doi.org/10.1109/TSMC.1974.5408539
https://doi.org/10.1109/TCYB.2019.2958627
https://doi.org/10.1017/S0269888923000103

	Introduction
	Related work
	The game model
	Game theoretical LA algorithm based on the L_R-I with artificial barriers

	Non-absorbing artificial barriers
	Non-absorbing Gagme playing
	Game theoretical LA algorithm based on the S-learning with artificial barriers

	Experimental results
	Convergence in Case 1
	Case 2: One pure equilibrium
	Case 3: 2 Pure equilibria and 1 mixed
	Experimental results for S-type environments
	Case 1: Only one mixed Nash equilibrium exists
	Case 2: One pure equilibrium
	Case 3: Two pure equilibria and one mixed


	Appendices
	Norman theorem

