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P O I N T W I S E CHAIN R E C U R R E N T M A P S OF T H E SPACE Y

WENJING G U O , FANPING ZENG AND QIYING HU

Let Y = {z € C : z3 £ [0,1]} (equipped with subspace topology of the complex space
C ) and let / : Y —• Y be a continuous map. We show that if / is pointwise chain
recurrent (that is, every point of Y is chain recurrent under / ) , then either f12 is the
identity map or f12 is turbulent. This result is a generalisation to Y of a result of
Block and Coven for pointwise chain recurrent maps of the interval.

1. INTRODUCTION

In this paper we characterise the dynamics of maps of the space Y ={z
€ C : z3 € [0,1]} equipped with the subspace topology for with every point is chain
recurrent. We prove the following.

MAIN THEOREM. Let f be a continuous map ofY to itself. If f is pointwise chain
recurrent, then either f12 is the identity map or f12 is turbulent.

Block and Coven (see [4]) proved that a pointwise chain recurrent map h of the
interval must satisfy that either h2 is the identity map or h2 is turbulent. So our theorem
extends this result to maps of the space Y.

Firstly some notation and definitions are established. Let (X, d) be a compact metric
space and g : X -> X be a continuous map. If gn(x) = x ^ gk{x), k = 1,2,..., n - 1,
for some x € X and some positive integer n, then the point x is called a periodic point
of period n, where g° = id, g' = g o (ff'"1)^ ^ 1). In particular, if g(x) - x, then x is
called a fixed point of g. Denoted by P(g) and F(g) the set of periodic points and fixed
points set of g respectively. For x,y € X and e > 0, an e-chain from x to y is a finite
sequence x = xo,xu.. .,xn-i,xn = y with d(g(xi),xi+i) < e for 0 ^ i ^ n - 1. We say
x is chain recurrent under g, if for each e > 0, there is an e-chain from x to x. The map
g is said to be pointwise chain recurrent, if every point of X is chain recurrent under g.
The following facts about chain recurrent are standard observations:

(a) If g is pointwise chain recurrent, then g maps X onto X.

(b) g is pointwise chain recurrent if and only if gn is pointwise chain recurrent
for every n > 0.
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(c) [5, Theorem A] If X is connected and g : X -> X is pointwise chain
recurrent, then there is no nonempty open set U ̂  X such that g(U) C U.

Being chain recurrent is an important dynamical property of a stystem and has been
studied intensively in recent years. For more details see [1, 3 , 5, 6, 9].

The space Y is obviously a tree (see [7]) in which there are exactly three ends,
denoted by e\, e2, and e3, and exactly one vertex, denoted by o. For a, b e Y, We shall
use [a, b], called a closed subinterval of Y, to denote the smallest closed connected subset
containing a and b. We define (a, b) — [a, b] \ {a, b} and we can similarly define (a, b] and
[a, b). For a subset A of Y, we use int(A), A and dA to denote the interior, the closure
and the boundary of A, respectively.

A map g : Y —> Y is called turbulent if there are closed subintervals J and K with
disjoint interiors such that g(J) n g(K) D J U K. Clearly, if / is turbulent then / " is
turbulent for any n ^ 2.

From the above definition of turbulence and the proof of [8, Theorem 1], the following
result is clear.

THEOREM 1 . 1 . Let f be a continuous map of space Y. If f is turbulent, then f
has more than one fixed point.

Let e e {ei, e2, e3}. A partial order <e on Y defined as follows, which will be useful
in dealing with continuous maps of the space Y. For x, y £ Y, x <e y if x € [y, e] and
x^y.

Throughout this paper, / denotes a pointwise chain recurrent map of Y into itself.
This paper is organised as follows. In Section 2 and Section 3, the pointwise chain
recurrent maps of Y with more than one fixed point are characterised, where the fixed
points set is disconnected in Section 2 and connected in Section 3. In Section 4, the
pointwise chain recurrent maps of Y with exactly one fixed point are discussed.
EXAMPLES. Clearly, Y = IU {xeWni | x € 1} U {xeW>ni \ x € / } , where / = [0,1].

(1) f:Y-*Y, f(x) = xeW™, /(iC(2/s)«i) = x and f ^ l ^ = xeW™ for

any x € [0,1]. Then / is pointwise chain recurrent such that f2 = idY, but

/ # idy

(2) / : Y —>• Y is a rotation of period 3. Then / is pointwise chain recurrent

such that / has exactly one fixed point.

2. POINTWISE CHAIN RECURRENT MAPS OF Y WITH DISCONNECTED FIXED POINTS

SET

In this section, we assume that / has a disconnected fixed points set. Then there
exist two fixed points o, b of / with (a, b) f~l F(f) = 0

THEOREM 2 . 1 If the closure of some component ofY\{o} contains {a, b}, then f2

is turbulent.

https://doi.org/10.1017/S0004972700033530 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033530


[3] Pointwise chain recurrent maps 81

PROOF: Without loss of generality, we assume tha t {a, 6} C [o, ex] and b < e i a.

C A S E 1. f(x) <ei x for all x G (a,b). Then b / e\, for otherwise U — [ei,a') satisfies

f(U) C U for any a' G (a, 6). Let c be the largest point in (b, e j relative to < e i such

that / (c ) = a. (If no such c exists, then there exists b' G (a,b) such that f(x) < e i 6' for

all x G (a, ei]. But then U — (&', ei] satisfies / ( [ / ) C £/.) Let d G (a, c) be the point with

f(d) = c. (Again if no such d exists, then there exists d G (b, c) such that d < e i f(x)

for all x € (a,c]. But then U = {d',d) satisfies f(U) C [/ for some d' G (a,6)). Then

J — [a, d] and K = [d, c] show tha t / is turbulent, and hence f2 is turbulent.

C A S E 2. x < e i / ( z ) for all x G (a, 6). There exists c G K\[a,e!] such that / ( c ) = 6, for

otherwise, U — Y\[b',ei] for some b <ei b' < e , a satisfies f(U) C U. The following three

subcases are considered.

S U B C A S E 2 . 1 . There exists c* G [e,-,o] such that /(c*) = 6, i = 2 ,3 , and there exists

^2 € [c2,6] such that / (^2) — Q- (or there exists Cj G [ei,a] such that / ( C J ) = 6, i = 2,3,

and there exists d3 G [c3,6] such that f{d3) = c3, the proof of this case is similar and

omitted.) Taking J = [c2, d2] and K = [d2, b], one gets that / ( J ) D f(K) 2 J U K and

then / is turbulent. Thus / 2 is turbulent.

S U B C A S E 2.2. b < e i f(x) for all a; G [e3, a] and there exists c G [e2, o) such that f(c) - b.

(or b <Cl /(a;) for all x G [e2,a] and there exists c G [e3,o) such that f(c) = b, the proof

of this case is similar and omitted.) Assume that such point c is the largest one in [e2,o)

relative to <e 2 . Then there exists d G [e3,6]u[c,o) such that f(d) = c. (If no such d exists,

then U - [e3,6') U (o, d) for some If G (a, b) and some c* G (o, c) satisfies /(f7) C U.) If

d G (c,6), then, taking J = [c,d] and if = [d,b], one gets that f(J) D /(AT) D J u A "

and thus / 2 is turbulent. Now, assume [c,b] n f~l(c) = (j> and such d G [e3,o) is the

largest one in [e3, o) relative to < e 3 . Then there exists t G [c, 6] U [o, d] such that f(t) = d.

(If no such t exists, then U — {d,b') (~l (d',o) for some d G {o,c), some 6' G (a, b) and

some d' G (o,d) satisfies f(U) C [/.) If t e (6,c), then, taking J = [c,t],K = [t,b],

one gets / 2 ( J ) D f2(K) D J ("1 A" and thus / 2 is turbulent. If t G (o,d), then taking

J = [d , t ] , / r = [«,&], one gets / 2 ( J ) D f2(K) D [c,b] U [d,o] D Jl)K and thus / 2 is

turbulent.

S U B C A S E 2 .3 . b < e i f(x) for all a; G [o, a] and there exists c* G [e^, o) such that / ( C J ) = 6

and / ( [ C J , 6]) n {CJ} = <j>,i — 2 ,3 . Assume that such Cj is the largest one in [e*, o) relative

to < e i , i = 2 ,3 . Then there exists d2 G [c2, o) such that / ( d 2 ) = c3 or d3 G [c3, o) such that

/ (d 3 ) = c2. (If none of such d2, d3 exists, then U = (c^, b1) U (d3, o) for some c^ G (c2, o),

some </3 G (c3 )o), and some b' G (a, b) satisfies f(U) C [/.) Furthermore, assume that

such di is the largest one in \ci,o) relative to <ei,i G {2,3}. Now a similar argument as

that in Subcase 2.2 yields that f2 is turbulent. The proof is complete. D

THEOREM 2 . 2 . If a, b lie in two distinct components ofY\ {o}, f2 is turbulent.

PROOF: Without loss of generality, assume that 6 G (o, e j , a G (o, e2].
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C A S E 1. x <e i f(x) for all x € (o, b) (or x <e2 f(x) for all x 6 (o,a), the proof of this
case is similar and omitted.) A similar proof as that of case 2 in Theorem 2.1 implies
that f2 is turbulent.

C A S E 2. f{x) <e i x for all a; € (o,6) and / (z ) <e2 x for all x 6 (o,o). Then [a', 6']
D F ( / ) / 0 for any a' € (o, a) and any tf € (o, 6) (according to the proof of [8, Theorem
1], in fact, we have o € F{f)). There is a contradiction. Therefore case 2 is impossible
and proof is complete. D

3. POINTWISE CHAIN RECURRENT MAPS OF Y WITH CONNECTED FIXED POINTS SET

In this section, we assume that / has connected fixed points set. Then F(f) is
a connected closed subset of Y. If F(f) is degenerated, then / has exactly one fixed
point.This case will be discussed in section 4. Now assume that F(f) is nondegenerated.

THEOREM 3 . 1 If F(f) is contained in the closure of a component ofY\ {o}, then
f2 = idY but f ^ idy or f2 is turbulent.

PROOF: Without loss of generality, assume that F(f) = [p, q] C [o, ex\ and p <ei q.
We first claim that q = o. Suppose not. Then f(x) <ei x for all x € [o, q]. Note

that p, q are fixed points of / . There exists q' € (o,q) such that f([q',p']) Q (q',p') for
some p' € (p, ei) (if p ^ ex) or f([q't ex]) C (q',ei] (if p - e{). There is a contradiction.
By the claim, the following two cases will be considered.

CASE 1. p ^ ex. Clearly, we have x <e, f(x) for all x € (p, ej]; x <e2 f(x) for all
x £ (o, e2] and x <e3 f(x) for all x € (o, e3). Since / is onto, there exists x0 € [e2, e3] \ {o}
such that /(x0) = e\. Without loss of generality, we assume that x0 € [e2lo). Then, by
the continuity of / , there exists r € (o, xo) such that f(r) = p. Furthermore, we may
assume that such r is the largest one in [e2,o) relative to <e2.

SUBCASE 1.1. p <ei f(x) for all x e (o,e3]. Then there exists s £ (o,r) U (o,e3] such
that /(s) = r. (If no such s exists, then [/ = (r\ e3] U (o,p') for some r' € (o, r) and
some p' e (p, e^ satisfies f(U) C {/.) Furthermore, we have s e (o, e3] (for otherwise
(o, r)nF(f) 7̂  <̂>) and assume that such s is the largest one in (o, e3] relative to <e3. There
exists t € (o, r)u(o, s) such that f(t) — s. (If no such t exists, then {/ — (r1, s')U(o,p') for
some r' G (o, r), some s' € (o, s) and some p' € (p,ei) satisfies f(U) C £/.) Furthermore,
we have t € (o, r) (for otherwise, (o, s) (1 F(f) / 0).Taking J = [o, <], i^ = [<, r], one gets
/2(J) n f2{K) DJUK and thus / 2 is turbulent.

SUBCASE 1.2 There exists rx € (o, e3] such that /(ri) = p. Without loss of generality,
assume that such rt is the largest one in [e3, o) relative to <e3. Then there exists s 6 (o, r^
such that f(s) — r or Sx € (o, r) such that /(si) = r^ (If none of such s, sx exists, then
U = (r',r'j) U (o,p') for some r' € (o,r),r'j £ (o, n) and some p' € (p, e j satisfies
/({/) C [/.) Without loss of generality, we assume that there exists s € {o,ri) such
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f(s) = r. (If there exists sx € (o, r) such that / ( s i ) = r\, the proof of this case is similar
and omitted.) A similar argument as that in subcase 1.1 yields that f2 is turbulent.

C A S E 2. p — ex. Clearly, we have x <e2 f(x) for all x € (o, e2] and x <e3 f(x) for all
x e (o,e3].

If there exists a € [e2,e3] \ {o} such that f(a) € (o, e j , then we can get 6 € (o,a)
U (o, e3] (without loss of generality, assume that a € (o, e2]. For a € (o, e3], a similar
argument will be done.) such that f(b) — a. (If no such b exists, then there exists
a' € (o,a) such that a' <62 f{x) for all x € (o,a] U (o,e3]. But then U = [ei,e3] U {o,a')
satisfies f(U) C [/)•) In fact, we have 6 e (o, e3]. (For otherwise, F ( / ) n (o, a) ^ 0.)
Without loss of generality, assume that such b is the largest one in (o, e3] relative to <e3

such that f(b) = a. Furthermore, let c be any point in (a, b) such that / (c) = b. (Again if
no such c exists, then there exists b' € (o, 6) such that b' <63 /(a;) for all x £ [a, b] U (o, ei].
But then U = (a',b') U (o,e{\ satisfies f(U) C £/ for some a' 6 (o, a).) In fact, we
have c € (o, a) (for otherwise, F(f) n (o, e3] ^ 0) Taking J = [o, c], if = [a, c], one gets
/ 2 ( J ) n / 2 ( i f ) D J U ̂  and thus f2 is turbulent.

If f~l((o,ei]) n [e2le3] = cj>, then /|[e2,e3] : [e2le3] -» [e2>e3] is pointwise chain
recurrent and has exactly one fixed point. It follows from [4, Theorem] that /2|[e2,e3]
= id\lei,e3] or /2|(e2,e3]is turbulent. If /2|[e2,e3] = *rf|[e2le3] then f2 = idY but / / idY\ if
/2|[e2,e3] is turbulent, then f2 is certainly turbulent.

The proof is complete. D

THEOREM 3 . 2 . There does not exist f such that o € intF(f) except the identity
map idy.

PROOF:Assume that such / exists and / is not the identity. Let F(f) D [o, e*]
= [o,Pi],i £ {1,2,3}. Note that each pt is the smallest fixed point in [o,e^ relative to
<e,. Then there exists p\ € (pi.e*) (if pi ^ et) such that x <Cj f(x) <ei pj {i € {1,2,3},
and j ^ i) for all x £ (pup'i). Thus, taking

U = Ux U U2 U U»,

where each Ut = [o,p|) if pt / e<; [o, e<] if p» = e<, one gets that f(U) C [/. There is a
contradiction. The proof is complete. D

4. POINTWISE CHAIN RECURRENT OF Y WITH EXACT ONE FIXED POINT

In this section, we assume that / has exactly one fixed point, written by p.

LEMMA 4 . 1 .

(1) If p = o, then f2 has exactly one fixed point too, but then f3 has more

than one fixed point.

(2) Ifp ^ o, then f2 has more than one fixed point.
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PROOF: (1) Assume that f2 has a fixed point p' different from o. Without loss of
generality, we assume that p' G (o, e j , then f(p') € (o, e3] U (o, e2] (for otherwise, there
exists at least one fixed point of / in (o, ei].) Without loss generality, we assume that
f(p') G (o, e2]. Since / is onto, there exist ai G (o,e2] U (o,e3] such that / (ai) = e\,
a2 G (o, ei] U (o,e3] such that / (a2) = e2 and a3 € (o,ej U (o, e2] such that /(a3) = e3.
If ai 6 (o, e2], then we claim that a2 € (o, e3] and a3 € (o, ei] (If oi 6 (o, e3], we
must have a2 G (o, ei] and a3 G (o, e2]. A similar argument will be done.) In fact, if
a2 G (o, ei], then a3 € (o, e2] or a3 G (o, ei]. Without loss of generality, we assume that
a3 G (o, e2] (If a3 € (o, ei], the proof of this case is similar and omitted.) Furthermore,
we assume that ai <e2 a3 (If a3 <e2 ax, the proof of this case is similar and omitted.),
then by the continuity of / , f(a3) G [o, ei], which contradicts / (a3) = e3. Thus, we
have p',a3 6 (o,ei]. By the continuity of/, if p' <e i a3, then /(a3) G [o, f{p')], which
contradicts /(o3) = e3; If a3 <e i p', then /(p') € [o,e3], which contradict f(p') € (o, e2].

From the above discussion, we see that either there exist a\ G (o, e2], a2

G (o,e3],o3 G (o,ei], or Oi G (o,e3],a2 G (o,ei],a3 G (o,e2] such that /(ax) = euf(a2)
= e2, / (a3 ) = e3. Since the proofs of the above two cases are similar. We only prove the
former. Clearly, [o,a,i] C /3([o,ai]) , hence there exists a G [o,ai] such that / 3(a) = a.\.
Then f3 has a fixed point in [o, e2].

(2) In fact, if p ^ o, then we must have p is in one component of 5^\{o} and
p 0 {ei,e2le3}(For otherwise, there exist more than one fixed point of / . ) . The proof of
this case is similar to that of [4, Lemma 3] and omitted. D

THEOREM 4 . 1 .

(1) Ifp = o, then f2 can not be turbulent. But f6 is turbulent or identity map.

(2) If p / o, then / 4 is turbulent or identity map.

P R O O F : By the previous results, the theorem is clear. Now to prove the main
theorem, by Theorems 2.1, 2.2, 3.1, 3.2 and Lemma 4.1, either f12 is the identity map or
f12 is turbulent. D
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