POINTWISE CHAIN RECURRENT MAPS OF THE SPACE Y

WENJING GUO, FANPING ZENG AND QIYING HU

Let $Y = \{z \in C : z^3 \in [0,1]\}$ (equipped with subspace topology of the complex space C) and let $f : Y \to Y$ be a continuous map. We show that if f is pointwise chain recurrent (that is, every point of Y is chain recurrent under f), then either f^{12} is the identity map or f^{12} is turbulent. This result is a generalisation to Y of a result of Block and Coven for pointwise chain recurrent maps of the interval.

1. INTRODUCTION

In this paper we characterise the dynamics of maps of the space $Y = \{z \in C : z^3 \in [0,1]\}$ equipped with the subspace topology for with every point is chain recurrent. We prove the following.

MAIN THEOREM. Let f be a continuous map of Y to itself. If f is pointwise chain recurrent, then either f^{12} is the identity map or f^{12} is turbulent.

Block and Coven (see [4]) proved that a pointwise chain recurrent map h of the interval must satisfy that either h^2 is the identity map or h^2 is turbulent. So our theorem extends this result to maps of the space Y.

Firstly some notation and definitions are established. Let (X, d) be a compact metric space and $g: X \to X$ be a continuous map. If $g^n(x) = x \neq g^k(x), k = 1, 2, ..., n-1$, for some $x \in X$ and some positive integer n, then the point x is called a periodic point of period n, where $g^0 = id$, $g^i = g \circ (g^{i-1})(i \ge 1)$. In particular, if g(x) = x, then x is called a fixed point of g. Denoted by P(g) and F(g) the set of periodic points and fixed points set of g respectively. For $x, y \in X$ and $\varepsilon > 0$, an ε -chain from x to y is a finite sequence $x = x_0, x_1, \ldots, x_{n-1}, x_n = y$ with $d(g(x_i), x_{i+1}) < \varepsilon$ for $0 \le i \le n-1$. We say x is chain recurrent under g, if for each $\varepsilon > 0$, there is an ε -chain from x to x. The map g is said to be pointwise chain recurrent, if every point of X is chain recurrent under g. The following facts about chain recurrent are standard observations:

- (a) If g is pointwise chain recurrent, then g maps X onto X.
- (b) g is pointwise chain recurrent if and only if g^n is pointwise chain recurrent for every n > 0.

Received 8th May, 2002 Project supported by NNSF of China (19961001).

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

(c) [5, Theorem A] If X is connected and $g: X \to X$ is pointwise chain recurrent, then there is no nonempty open set $U \neq X$ such that $g(\overline{U}) \subseteq U$.

[2]

Being chain recurrent is an important dynamical property of a stystem and has been studied intensively in recent years. For more details see [1, 3, 5, 6, 9].

The space Y is obviously a tree (see [7]) in which there are exactly three ends, denoted by e_1 , e_2 , and e_3 , and exactly one vertex, denoted by o. For $a, b \in Y$, We shall use [a, b], called a closed subinterval of Y, to denote the smallest closed connected subset containing a and b. We define $(a, b) = [a, b] \setminus \{a, b\}$ and we can similarly define (a, b] and [a, b). For a subset A of Y, we use int(A), \overline{A} and ∂A to denote the interior, the closure and the boundary of A, respectively.

A map $g: Y \to Y$ is called turbulent if there are closed subintervals J and K with disjoint interiors such that $g(J) \cap g(K) \supseteq J \cup K$. Clearly, if f is turbulent then f^n is turbulent for any $n \ge 2$.

From the above definition of turbulence and the proof of [8, Theorem 1], the following result is clear.

THEOREM 1.1. Let f be a continuous map of space Y. If f is turbulent, then f has more than one fixed point.

Let $e \in \{e_1, e_2, e_3\}$. A partial order \leq_e on Y defined as follows, which will be useful in dealing with continuous maps of the space Y. For $x, y \in Y$, $x \leq_e y$ if $x \in [y, e]$ and $x \neq y$.

Throughout this paper, f denotes a pointwise chain recurrent map of Y into itself. This paper is organised as follows. In Section 2 and Section 3, the pointwise chain recurrent maps of Y with more than one fixed point are characterised, where the fixed points set is disconnected in Section 2 and connected in Section 3. In Section 4, the pointwise chain recurrent maps of Y with exactly one fixed point are discussed.

EXAMPLES. Clearly, $Y = I \cup \{xe^{(2/3)\pi i} \mid x \in I\} \cup \{xe^{(4/3)\pi i} \mid x \in I\}$, where I = [0, 1].

- (1) $f: Y \to Y$, $f(x) = xe^{(2/3)\pi i}$, $f(xe^{(2/3)\pi i}) = x$ and $f(xe^{(4/3)\pi i}) = xe^{(4/3)\pi i}$ for any $x \in [0, 1]$. Then f is pointwise chain recurrent such that $f^2 = id_Y$, but $f \neq id_Y$.
- (2) $f: Y \to Y$ is a rotation of period 3. Then f is pointwise chain recurrent such that f has exactly one fixed point.

2. Pointwise chain recurrent maps of Y with disconnected fixed points set

In this section, we assume that f has a disconnected fixed points set. Then there exist two fixed points a, b of f with $(a, b) \cap F(f) = \phi$

THEOREM 2.1 If the closure of some component of $Y \setminus \{o\}$ contains $\{a, b\}$, then f^2 is turbulent.

PROOF: Without loss of generality, we assume that $\{a, b\} \subseteq [o, e_1]$ and $b <_{e_1} a$.

CASE 1. $f(x) <_{e_1} x$ for all $x \in (a, b)$. Then $b \neq e_1$, for otherwise $U = [e_1, a']$ satisfies $f(\overline{U}) \subseteq U$ for any $a' \in (a, b)$. Let c be the largest point in $(b, e_1]$ relative to $<_{e_1}$ such that f(c) = a. (If no such c exists, then there exists $b' \in (a, b)$ such that $f(x) <_{e_1} b'$ for all $x \in (a, e_1]$. But then $U = (b', e_1]$ satisfies $f(\overline{U}) \subseteq U$.) Let $d \in (a, c)$ be the point with f(d) = c. (Again if no such d exists, then there exists $c' \in (b, c)$ such that $c' <_{e_1} f(x)$ for all $x \in (a, c]$. But then U = (d', c') satisfies $f(\overline{U}) \subseteq U$ for some $d' \in (a, b)$). Then J = [a, d] and K = [d, c] show that f is turbulent, and hence f^2 is turbulent.

CASE 2. $x <_{e_1} f(x)$ for all $x \in (a, b)$. There exists $c \in Y \setminus [a, e_1]$ such that f(c) = b, for otherwise, $U = Y \setminus [b', e_1]$ for some $b <_{e_1} b' <_{e_1} a$ satisfies $f(\overline{U}) \subseteq U$. The following three subcases are considered.

SUBCASE 2.1. There exists $c_i \in [e_i, a]$ such that $f(c_i) = b, i = 2, 3$, and there exists $d_2 \in [c_2, b]$ such that $f(d_2) = c_2$. (or there exists $c_i \in [e_i, a]$ such that $f(c_i) = b, i = 2, 3$, and there exists $d_3 \in [c_3, b]$ such that $f(d_3) = c_3$, the proof of this case is similar and omitted.) Taking $J = [c_2, d_2]$ and $K = [d_2, b]$, one gets that $f(J) \cap f(K) \supseteq J \cup K$ and then f is turbulent. Thus f^2 is turbulent.

SUBCASE 2.2. $b <_{e_1} f(x)$ for all $x \in [e_3, a]$ and there exists $c \in [e_2, o)$ such that f(c) = b. (or $b <_{e_1} f(x)$ for all $x \in [e_2, a]$ and there exists $c \in [e_3, o)$ such that f(c) = b, the proof of this case is similar and omitted.) Assume that such point c is the largest one in $[e_2, o)$ relative to $<_{e_2}$. Then there exists $d \in [e_3, b] \cup [c, o)$ such that f(d) = c. (If no such d exists, then $U = [e_3, b') \cup (o, c')$ for some $b' \in (a, b)$ and some $c' \in (o, c)$ satisfies $f(\overline{U}) \subseteq U$.) If $d \in (c, b)$, then, taking J = [c, d] and K = [d, b], one gets that $f(J) \cap f(K) \supseteq J \cup K$ and thus f^2 is turbulent. Now, assume $[c, b] \cap f^{-1}(c) = \phi$ and such $d \in [e_3, o)$ is the largest one in $[e_3, o)$ relative to $<_{e_3}$. Then there exists $t \in [c, b] \cup [o, d]$ such that f(t) = d. (If no such t exists, then $U = (c', b') \cap (d', o)$ for some $c' \in (o, c)$, some $b' \in (a, b)$ and some $d' \in (o, d)$ satisfies $f(\overline{U}) \subseteq U$.) If $t \in (b, c)$, then, taking J = [c, t], K = [t, b], one gets $f^2(J) \cap f^2(K) \supseteq J \cap K$ and thus f^2 is turbulent. If $t \in (o, d)$, then taking J = [d, t], K = [t, b], one gets $f^2(J) \cap f^2(K) \supseteq J \cap K$ and thus f^2 is turbulent. If $t \in (o, d)$, then taking J = [d, t], K = [t, b], one gets $f^2(J) \cap f^2(K) \supseteq J \cap K$ and thus f^2 is turbulent.

SUBCASE 2.3. $b <_{e_1} f(x)$ for all $x \in [o, a]$ and there exists $c_i \in [e_i, o)$ such that $f(c_i) = b$ and $f([c_i, b]) \cap \{c_i\} = \phi, i = 2, 3$. Assume that such c_i is the largest one in $[e_i, o)$ relative to $<_{e_i}, i = 2, 3$. Then there exists $d_2 \in [c_2, o)$ such that $f(d_2) = c_3$ or $d_3 \in [c_3, o)$ such that $f(d_3) = c_2$. (If none of such d_2, d_3 exists, then $U = (c'_2, b') \cup (c'_3, o)$ for some $c'_2 \in (c_2, o)$, some $c'_3 \in (c_3, o)$, and some $b' \in (a, b)$ satisfies $f(\overline{U}) \subseteq U$.) Furthermore, assume that such d_i is the largest one in $[c_i, o)$ relative to $<_{e_i}, i \in \{2, 3\}$. Now a similar argument as that in Subcase 2.2 yields that f^2 is turbulent. The proof is complete.

THEOREM 2.2. If a, b lie in two distinct components of $Y \setminus \{o\}$, f^2 is turbulent. PROOF: Without loss of generality, assume that $b \in (o, e_1]$, $a \in (o, e_2]$.

[4]

CASE 1. $x <_{e_1} f(x)$ for all $x \in (o, b)$ (or $x <_{e_2} f(x)$ for all $x \in (o, a)$, the proof of this case is similar and omitted.) A similar proof as that of case 2 in Theorem 2.1 implies that f^2 is turbulent.

CASE 2. $f(x) <_{e_1} x$ for all $x \in (o, b)$ and $f(x) <_{e_2} x$ for all $x \in (o, a)$. Then $[a', b'] \cap F(f) \neq \phi$ for any $a' \in (o, a)$ and any $b' \in (o, b)$ (according to the proof of [8, Theorem 1], in fact, we have $o \in F(f)$). There is a contradiction. Therefore case 2 is impossible and proof is complete.

3. Pointwise chain recurrent maps of Y with connected fixed points set

In this section, we assume that f has connected fixed points set. Then F(f) is a connected closed subset of Y. If F(f) is degenerated, then f has exactly one fixed point. This case will be discussed in section 4. Now assume that F(f) is nondegenerated.

THEOREM 3.1 If F(f) is contained in the closure of a component of $Y \setminus \{o\}$, then $f^2 = id_Y$ but $f \neq id_Y$ or f^2 is turbulent.

PROOF: Without loss of generality, assume that $F(f) = [p,q] \subseteq [o,e_1]$ and $p <_{e_1} q$.

We first claim that q = o. Suppose not. Then $f(x) <_{e_1} x$ for all $x \in [o, q]$. Note that p, q are fixed points of f. There exists $q' \in (o, q)$ such that $f([q', p']) \subseteq (q', p')$ for some $p' \in (p, e_1)$ (if $p \neq e_1$) or $f([q', e_1]) \subseteq (q', e_1]$ (if $p = e_1$). There is a contradiction. By the claim, the following two cases will be considered.

CASE 1. $p \neq e_1$. Clearly, we have $x <_{e_1} f(x)$ for all $x \in (p, e_1]$; $x <_{e_2} f(x)$ for all $x \in (o, e_2]$ and $x <_{e_3} f(x)$ for all $x \in (o, e_3)$. Since f is onto, there exists $x_0 \in [e_2, e_3] \setminus \{o\}$ such that $f(x_0) = e_1$. Without loss of generality, we assume that $x_0 \in [e_2, o)$. Then, by the continuity of f, there exists $r \in (o, x_0)$ such that f(r) = p. Furthermore, we may assume that such r is the largest one in $[e_2, o)$ relative to $<_{e_2}$.

SUBCASE 1.1. $p <_{e_1} f(x)$ for all $x \in (o, e_3]$. Then there exists $s \in (o, r) \cup (o, e_3]$ such that f(s) = r. (If no such s exists, then $U = (r', e_3] \cup (o, p')$ for some $r' \in (o, r)$ and some $p' \in (p, e_1)$ satisfies $f(\overline{U}) \subseteq U$.) Furthermore, we have $s \in (o, e_3]$ (for otherwise $(o, r) \cap F(f) \neq \phi$) and assume that such s is the largest one in $(o, e_3]$ relative to $<_{e_3}$. There exists $t \in (o, r) \cup (o, s)$ such that f(t) = s. (If no such t exists, then $U = (r', s') \cup (o, p')$ for some $r' \in (o, r)$, some $s' \in (o, s)$ and some $p' \in (p, e_1)$ satisfies $f(\overline{U}) \subseteq U$.) Furthermore, we have $t \in (o, r)$ (for otherwise, $(o, s) \cap F(f) \neq \phi$). Taking J = [o, t], K = [t, r], one gets $f^2(J) \cap f^2(K) \supseteq J \cup K$ and thus f^2 is turbulent.

SUBCASE 1.2 There exists $r_1 \in (o, e_3]$ such that $f(r_1) = p$. Without loss of generality, assume that such r_1 is the largest one in $[e_3, o)$ relative to $<_{e_3}$. Then there exists $s \in (o, r_1)$ such that f(s) = r or $s_1 \in (o, r)$ such that $f(s_1) = r_1$. (If none of such s, s_1 exists, then $U = (r', r'_1) \cup (o, p')$ for some $r' \in (o, r), r'_1 \in (o, r_1)$ and some $p' \in (p, e_1]$ satisfies $f(\overline{U}) \subseteq U$.) Without loss of generality, we assume that there exists $s \in (o, r_1)$ such

f(s) = r. (If there exists $s_1 \in (o, r)$ such that $f(s_1) = r_1$, the proof of this case is similar and omitted.) A similar argument as that in subcase 1.1 yields that f^2 is turbulent.

CASE 2. $p = e_1$. Clearly, we have $x <_{e_2} f(x)$ for all $x \in (o, e_2]$ and $x <_{e_3} f(x)$ for all $x \in (o, e_3]$.

If there exists $a \in [e_2, e_3] \setminus \{o\}$ such that $f(a) \in (o, e_1]$, then we can get $b \in (o, a) \cup (o, e_3]$ (without loss of generality, assume that $a \in (o, e_2]$. For $a \in (o, e_3]$, a similar argument will be done.) such that f(b) = a. (If no such b exists, then there exists $a' \in (o, a)$ such that $a' <_{e_2} f(x)$ for all $x \in (o, a] \cup (o, e_3]$. But then $U = [e_1, e_3] \cup (o, a')$ satisfies $f(\overline{U}) \subseteq U$.) In fact, we have $b \in (o, e_3]$. (For otherwise, $F(f) \cap (o, a) \neq \phi$.) Without loss of generality, assume that such b is the largest one in $(o, e_3]$ relative to $<_{e_3}$ such that f(b) = a. Furthermore, let c be any point in (a, b) such that f(c) = b. (Again if no such c exists, then there exists $b' \in (o, b)$ such that $b' <_{e_3} f(x)$ for all $x \in [a, b] \cup (o, e_1]$. But then $U = (a', b') \cup (o, e_1]$ satisfies $f(\overline{U}) \subseteq U$ for some $a' \in (o, a)$.) In fact, we have $c \in (o, a)$ (for otherwise, $F(f) \cap (o, e_3] \neq \phi$) Taking J = [o, c], K = [a, c], one gets $f^2(J) \cap f^2(K) \supseteq J \cup K$ and thus f^2 is turbulent.

If $f^{-1}((o, e_1]) \cap [e_2, e_3] = \phi$, then $f|_{[e_2, e_3]} : [e_2, e_3] \to [e_2, e_3]$ is pointwise chain recurrent and has exactly one fixed point. It follows from [4, Theorem] that $f^2|_{[e_2, e_3]}$ $= id|_{[e_2, e_3]}$ or $f^2|_{[e_2, e_3]}$ is turbulent. If $f^2|_{[e_2, e_3]} = id|_{[e_2, e_3]}$ then $f^2 = id_Y$ but $f \neq id_Y$; if $f^2|_{[e_2, e_3]}$ is turbulent, then f^2 is certainly turbulent.

The proof is complete.

[5]

THEOREM 3.2. There does not exist f such that $o \in intF(f)$ except the identity map id_Y .

PROOF: Assume that such f exists and f is not the identity. Let $F(f) \cap [o, e_i] = [o, p_i], i \in \{1, 2, 3\}$. Note that each p_i is the smallest fixed point in $[o, e_i]$ relative to $\langle e_i \rangle$. Then there exists $p'_i \in (p_i, e_i)$ (if $p_i \neq e_i$) such that $x \langle e_i f(x) \rangle \langle e_i p_j (i \in \{1, 2, 3\}, and j \neq i)$ for all $x \in (p_i, p'_i)$. Thus, taking

$$U = U_1 \cup U_2 \cup U_3,$$

where each $U_i = [o, p'_i)$ if $p_i \neq e_i$; $[o, e_i]$ if $p_i = e_i$, one gets that $f(\overline{U}) \subseteq U$. There is a contradiction. The proof is complete.

4. Pointwise chain recurrent of Y with exact one fixed point

In this section, we assume that f has exactly one fixed point, written by p.

LEMMA 4.1.

- (1) If p = o, then f^2 has exactly one fixed point too, but then f^3 has more than one fixed point.
- (2) If $p \neq o$, then f^2 has more than one fixed point.

[6]

PROOF: (1) Assume that f^2 has a fixed point p' different from o. Without loss of generality, we assume that $p' \in (o, e_1]$, then $f(p') \in (o, e_3] \cup (o, e_2]$ (for otherwise, there exists at least one fixed point of f in $(o, e_1]$.) Without loss generality, we assume that $f(p') \in (o, e_2]$. Since f is onto, there exist $a_1 \in (o, e_2] \cup (o, e_3]$ such that $f(a_1) = e_1$, $a_2 \in (o, e_1] \cup (o, e_3]$ such that $f(a_2) = e_2$ and $a_3 \in (o, e_1] \cup (o, e_2]$ such that $f(a_3) = e_3$. If $a_1 \in (o, e_2]$, then we claim that $a_2 \in (o, e_3]$ and $a_3 \in (o, e_1]$ (If $a_1 \in (o, e_3]$, we must have $a_2 \in (o, e_1]$ and $a_3 \in (o, e_2]$. A similar argument will be done.) In fact, if $a_2 \in (o, e_1]$, then $a_3 \in (o, e_2]$ or $a_3 \in (o, e_1]$. Without loss of generality, we assume that $a_3 \in (o, e_2]$ (If $a_3 \in (o, e_1]$, the proof of this case is similar and omitted.) Furthermore, we assume that $a_1 <_{e_2} a_3$ (If $a_3 <_{e_2} a_1$, the proof of this case is similar and omitted.), then by the continuity of f, $f(a_3) \in [o, e_1]$, which contradicts $f(a_3) = e_3$. Thus, we have $p', a_3 \in (o, e_1]$. By the continuity of f, if $p' <_{e_1} a_3$, then $f(a_3) \in [o, f(p')]$, which contradicts $f(a_3) = e_3$; If $a_3 <_{e_1} p'$, then $f(p') \in [o, e_3]$, which contradict $f(p') \in (o, e_2]$.

From the above discussion, we see that either there exist $a_1 \in (o, e_2]$, $a_2 \in (o, e_3]$, $a_3 \in (o, e_1]$, or $a_1 \in (o, e_3]$, $a_2 \in (o, e_1]$, $a_3 \in (o, e_2]$ such that $f(a_1) = e_1$, $f(a_2) = e_2$, $f(a_3) = e_3$. Since the proofs of the above two cases are similar. We only prove the former. Clearly, $[o, a_1] \subseteq f^3([o, a_1])$, hence there exists $a \in [o, a_1]$ such that $f^3(a) = a_1$. Then f^3 has a fixed point in $[a, e_2]$.

(2) In fact, if $p \neq o$, then we must have p is in one component of $Y \setminus \{o\}$ and $p \notin \{e_1, e_2, e_3\}$ (For otherwise, there exist more than one fixed point of f.). The proof of this case is similar to that of [4, Lemma 3] and omitted.

THEOREM 4.1.

- (1) If p = o, then f^2 can not be turbulent. But f^6 is turbulent or identity map.
- (2) If $p \neq o$, then f^4 is turbulent or identity map.

PROOF: By the previous results, the theorem is clear. Now to prove the main theorem, by Theorems 2.1, 2.2, 3.1, 3.2 and Lemma 4.1, either f^{12} is the identity map or f^{12} is turbulent.

References

- M. Barge and J. Martin, 'Dense periodicity on the interval', Proc. Amer. Math. Soc. 94 (1985), 731-735.
- [2] L. Block and W.A. Coppel, 'Stratification of continuous maps of an interval', Trans. Amer. Math. Soc. 297 (1986), 587-604.
- [3] L. Block and W.A. Coppel, Dynamics in one dimension, Lecture Notes in Math. 1513 (Springer-Verlag, Berlin, Heidelberg, New York, 1991).
- [4] L. Block and E.M. Coven, 'Maps of the interval with every point chain recurrent', Proc. Amer. Math. Soc. 98 (1986), 513-515.
- [5] L. Block and J. Franke, 'The chain recurrent set, attractors, and explosions', Ergodic Theory Dynamical Systems 5 (1985), 321-327.

- [6] T. Li and X.D. Ye, 'Chain recurrent point of a tree map', Bull. Austral. Math. Soc. 59 (1999), 181-186.
- [7] S.B. Nadler, Jr., Continum theory. An introduction (Marcel Dekker, Inc., New York, Basel. Hong Kong, 1992).
- [8] F.P. Zeng, H. Mo and W.J. Guo, 'ω-limit points of a tree map', in International Conference on Foundations of Computational Mathematics in Honor of Professor Steve Smale's 70th Birthday, July 13-17 (City University, Hong Kong, 2000).
- J. Zhang and J. Xiong, Interations of function and one-dimension dynamics, (in Chinese) (Sichuan Education Press,, 1992).

School of Economics Management Xidian University Xi'an Shanxi 710071 People's Republic of China

[7]

Institute of Mathematics Guangxi University Nanning Gangxi 530004 People's Republic of China

School of Economics Management Xidian University Xi'an Shanxi 710071 People's Republic of China