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Abstract. We consider the propagation dynamics of a single species with a birth pulse and living

in a shifting environment driven by climate change. We describe how birth pulse and environment

shift jointly impact the propagation properties. We show that a moderate environment shifting

speed promotes the spatial-temporal propagation represented by a stable forced KPP wave, and

that the birth pulse shrinks the survival region.

1. Introduction

Reaction-diffusion equations have been used to describe mechanisms for spatiotemporal dynamics

in ecological systems where dispersal of individuals in the considered population follows random

diffusion [1–6]. Significant progress has been made for the propagation dynamics of biological

invasion since the pioneering work of Aronson and Weinberger [7, 8] on the Fisher-KPP equation

ut = uxx + f(u), ∀(t, x) ∈ (0,+∞) × R, where u(t, x) represents the density of the species at

time t and location x; function f is C1−smooth, f(0) = f(1) = 0, f(u) > 0 for u ∈ (0, 1) and

f(u) ≤ f ′(0)u for u ≥ 0. It is known that the asymptotic spreading speed cKPP = 2
√
f ′(0)

coincides with the minimal speed of traveling waves. Reproductive synchrony of some plant and

animal populations (e.g., fish, dandelions, or large mammals), where individuals give birth only at

the beginning of each period, motivates the study of the impulsive reaction-diffusion system:
u

(m)
t = u

(m)
xx + f(u(m)), t ∈ (0, T ], x ∈ Ω,

u(m)(0, x) = g(Nm(x)), x ∈ Ω,

Nm+1(x) = u(m)(T, x), x ∈ Ω,

where g(u) is the (continuous) birth function. Lewis and Li [11] showed that such a system has a

threshold, related to the domain size, that can be used to characterize the extinction or persistence

of the species for bounded domain Ω with u(m)(t, x) = 0 for x ∈ ∂Ω. They also showed that the

minimal speed cImp = 2
√
f ′(0) + 1

T ln g′(0) (see Lin and Wang [12] for a general response term

f(u)). See [13] for a non-local impulsive version of the model formulated to study the population

dynamics in a stream and to examine how advection affects population persistence. See also [9,10]

for impulsive models in higher dimensions, and recent studies in [14–22].
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Another relevant line of research has been driven by the impact of climate change on species

persistence [23–25]. Potapov and Lewis [26] developed a population dynamic model in a climate-

driven shifting environment ut = uxx + f(x− ct, u),∀(t, x) ∈ (0,+∞)×R, where c > 0 is the speed

caused by climate changes. For the scenario where a supportive environment is encircled by adverse

ones, they derived the minimum habitat size required for the persistence of the species. Subsequent

studies [27–32] motivated this pioneering work. In addition, Berestycki & Fang [33] considered the

situation where a favorable environment on the left half of a plane expands into an unfavorable

environment on the right at the shifting speed c > 0. Other developments include studies [27, 28]

linking the global dynamics, the forced waves (e.g., [28, Theorem 3.6]) and the study by Fang et

al. [34] on the propagation dynamics in time-periodic environment; as well as the paper [35] for

propagation dynamics involving nonlocal dispersal.

Consideration of the effects of habitat shifting on the propagation of species with birth pulse in

high-dimensional spaces leads to the following model
u

(m)
t = u

(m)
xx + f(x− cte, u(m)), t ∈ (0, 1], x ∈ Rn,

u(m)(0, x) = g(Nm(x)), x ∈ Rn,
Nm+1(x) = u(m)(1, x), x ∈ Rn.

(1.1)

The studies [36–38] established the threshold dynamics in bounded domains, analyzed the proper-

ties of positive steady states, and demonstrated how the shifting speed c along with the impulsive

reproduction rate g influences the persistence of the population. These studies ignore the depen-

dence of the growth rate r(t, x) in seasonal succession. Incorporating this T -periodic growth rate

r(t, x) and the occurrence of birth pulses at pionts kT (k = 0, 1, 2, . . .), naturally, it leads to the

following Fisher-KPP equation with a time-periodic environment and birth pulse:
ut = uxx + u(r(t, x− ct)− u), t ∈ (kT+, (k + 1)T ], x ∈ R,
u(kT+, x) = g(u(kT, x)), x ∈ R, k ∈ N,
u(0, x) = u0(x), x ∈ R,

(1.2)

where r(t, x − ct), with r(t + T, x) = r(t, x), denotes the growth rate of species in a time-periodic

shifting environment with speed c; the function g(·) describes a birth pulse occurring at the start of

each period; the initial function u0(x) is nonnegative, bounded, and continuous. For t ∈ (kT+, (k+

1)T ] in the first equation of (1.2), u satisfies the equation for t ∈ (kT, (k + 1)T ] with the initial

value u(kT+, x), which is the right-hand limit of u at t = kT . Hence, we provide a systematic

description of the dynamics of model (1.2).

Throughout the remainder of this paper, we assume that r(t, x) is continuous, bounded on R2,

nonincreasing in x, and has the following property to reflect that the environment is supportive at

local −∞ and adverse at local +∞:

(R): the limits r(t,+∞) and r(t,−∞) exist uniformly in t, and r(t,+∞) < 0 < r(t,−∞).

In addition, we assume

(G1): g(u) is continuous and non-decreasing, locally Lipschitz continuous uniformly in u ≥ 0;

(G2): g(0) = 0; g′(0) exists; g(u)/u is non-increasing and g(u) > 0 in u > 0;

(G3): There is N > 0 such that g(N)
N ≤ 1;

(G4): There exist D, ρ > 1 and small δ > 0 satisfying g(u) ≥ g′(0)u−Duρ for u ∈ [0, δ].

We will show the existence and exponential stability of forced KPP waves, and investigate the

global dynamical behaviors of (1.2). Herein, the term “forced” signifies that the propagation speed
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c of the KPP wave is externally prescribed by the drift speed of the heterogeneous environment,

rather than being an intrinsic wave speed selected by the system. We first define a forced KPP

wave by considering u(t, x) = U(t, x− ct). Let ξ = x− ct. Note that U(t, ξ) satisfies

Ut = Uξξ + cUξ + U(r(t, ξ)− U), t ∈ (kT+, (k + 1)T ], ξ ∈ R; (1.3)

U(kT+, ξ) = g(U(kT, ξ)), k ∈ N, ξ ∈ R; (1.4)

U(t+ T, ξ) = U(t, ξ), t ∈ (kT+, (k + 1)T ], ξ ∈ R. (1.5)

Then, U(t, ξ) is a forced KPP wave of (1.2) when

U(t,+∞) = 0 and U(t,−∞) = p(t). (1.6)

Here, p(t) satisfies (2.2) when er̄(−∞)[g′(0)]
1
T > 1.

Note that (1.2) is discontinuous at t = kT due to the birth pulse. Unlike the continuous time-

periodic system considered in [34], the corresponding Poincaré map of (1.2) has different properties.

Constraints must be imposed on the birth pulse g to ensure that the Poincaré map remains bounded.

Moreover, we establish a comparison principle and construct appropriate upper and lower solutions.

In studying the propagation dynamics, we apply the principal eigen-pair of the eigenvalue problem

for the corresponding linearized equation, along with iteration methods, to prove the results when

c ≤ −c∗. This approach differs from that in [34] as we will have to consider the birth pulse.

The paper continues with the following structure. In section 2, we provide some preliminaries

about the limit systems and some a-priori estimates for possible forced waves. In section 3, we

consider the forced KPP waves and analyze the spreading properties of solutions to (1.2) with

different speeds c. In section 4, we present some numerical simulations, and in the final section we

present some discussions.

2. Preliminaries

2.1. Two periodic problems. In this subsection, we summarize some preliminary results which

will be used in subsequent analysis. We first consider the limiting equation
ut = u(r(t,−∞)− u), t ∈ (kT+, (k + 1)T ],

u(kT+) = g(u(kT )), k ∈ N,
u(0) = u0 > 0.

(2.1)

By the classical theory of ODEs, (2.1) admits a unique classical solution. We establish a threshold

result for system (2.1):

Lemma 2.1. Let α(t;u0) be the unique solution of (2.1) with initial value u0 > 0 and define

r̄(−∞) = 1
T

∫ T
0 r(t,−∞)dt.

(1) If er̄(−∞)[g′(0)]
1
T ≤ 1, then (2.1) has only the zero solution.

(2) If er̄(−∞)[g′(0)]
1
T > 1, then α(t;u0) > 0 satisfies lim

t→+∞
|α(t;u0) − p(t)| = 0. Here, p(t) > 0

is the unique solution of
ut = u(r(t,−∞)− u), t ∈ (0+, T ],

u(0+) = g(u(0)),

u(0) = u(T ).

(2.2)
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Proof. By [39, Theorem 2.3.4], we only show lim
t→+∞

|α(t;u0)− p(t)| = 0. The proof of [40, Theorem

3.4] implies that (2.2) has a unique solution p(t). For given u0 > 0, there are ε > 0 and C >

max{N,max[0,T ] r(t,−∞)} such that ε < u0 < C. Choose a large enough K > 0 such that

u(r(t,−∞)− u) +Ku is increasing in u. Define {w(m)}m≥0 satisfying
w

(m)
t +Kw(m) = Kw(m−1) + w(m−1)(r(t,−∞)− w(m−1)), t ∈ (0+, T ],

w(m)(0+) = g(w(m−1)(0)),

w(m)(0) = w(m−1)(T ),

with w(0) ≡ C. Obviously, 0 < w(m+1) ≤ w(m) ≤ ... ≤ w(1) ≤ w(0) ≡ C. Then there is w∗(t)

satisfying (2.2) such that lim
m→+∞

w(m)(t) = w∗(t), ∀t ∈ [0, T ]. By the uniqueness, w∗(t) = p(t).

Observed that α(t;u0) ≤ max{N,max[0,T ] r(t,−∞)} < C = w(0), then α(T ;u0) ≤ w(0)(T ) =

w(1)(0), so α(T+;u0) = g(α(T ;u0)) ≤ g(w(0)(T )) = w(1)(0+). By comparison principle, we fol-

lows from the iteration methods that α(t + mT ;u0) ≤ w(m)(t), ∀t ∈ [0, T ], for m = 0, 1, 2, ....

Then lim
m→+∞

α(t + mT ;u0) ≤ lim
m→+∞

w(m)(t) = p(t). Similarly, we can find an increasing sequence

{v(m)}m≥0 satisfying
v

(m)
t +Kv(m) = Kv(m−1) + v(m−1)(r(t,−∞)− v(m−1)), t ∈ (0+, T ],

v(m)(0+) = g(v(m−1)(0)),

v(m)(0) = v(m−1)(T ),

with v(0) ≡ ε, such that lim
m→+∞

α(t+mT ;u0) ≥ lim
m→+∞

v(m)(t) = p(t). This completes the proof. �

We now consider the eigenvalue problem in bounded domain [l1, l2]:
φt = φxx + r(t,−∞)φ+ λφ, t ∈ (0+, T ], x ∈ (l1, l2),

φ(0+, x) = g′(0)φ(0, x), x ∈ (l1, l2),

φ(t, l1) = φ(t, l2) = 0, t ∈ [0, T ],

φ(0, x) = φ(T, x) x ∈ (l1, l2).

(2.3)

By [40, Lemma 2.3], the generalized principal eigenvalue of (2.3) can be written as

λ([l1, l2]) := (
π

l2 − l1
)2 − r̄(−∞)− 1

T
ln g′(0). (2.4)

We apply the eigenvalue problem (2.3) to discuss the following problem in bounded domain:
ut = uxx + u(r(t,−∞)− u), t ∈ (kT+, (k + 1)T ], x ∈ (l1, l2),

u(kT+, x) = g(u(kT, x)), k ∈ N, x ∈ (l1, l2),

u(t, l1) = u(t, l2) = 0, t > 0,

u(0, x) = u0(x), x ∈ (l1, l2).

(2.5)

Similar to the proof of [40, Lemma 2.5], we obtain the following threshold dynamics:

Lemma 2.2. Denote by u(t, x;u0(x)) the unique solution of (2.5) with u0(x) ≥ and 6≡ 0.

(1) lim
t→+∞

u(t, x;u0(x)) = 0 uniformly in [l1, l2] if λ([l1, l2]) ≥ 0.
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(2) For any (t, x) ∈ (0+, T ]× [l1, l2], lim
m→+∞

u(t+mT, x;u0(x)) = u∗(t, x) if λ([l1, l2]) < 0. Here

u∗(t, x) satisfies
ut = uxx + u(r(t,−∞)− u), t ∈ (0+, T ], x ∈ (l1, l2),

u(0+, x) = g(u(0, x)), x ∈ (l1, l2),

u(t, l1) = u(t, l2) = 0, t ∈ (0+, T ],

u(0, x) = u(T, x), x ∈ (l1, l2).

2.2. Spreading properties of some time-periodic-parabolic problems. At begin, we give

some definitions for the following equation:
ut = uxx + u(r(t,−∞)− u), t ∈ (kT+, (k + 1)T ], x ∈ R,
u(kT+, x) = g(u(kT, x)), x ∈ R, k ∈ N,
u(0, x) = u0(x) ≥ 0, x ∈ R.

(2.6)

Definition 2.3. A T -periodic traveling wave solution of (2.6) is a special solution of the form

u(t, x) = W (t, x− ct), where c ∈ R is the wave speed if W (t, x− ct) satisfies

Wt = Wξξ + cWξ +W (r(t,−∞)−W ), t ∈ (kT+, (k + 1)T ], ξ ∈ R

W (kT+, ξ) = g(W (kT, ξ)), k ∈ N, ξ ∈ R;

W (t+ T, ξ) = W (t, ξ), t ∈ (kT+, (k + 1)T ], ξ ∈ R

with boundary conditions U(t,+∞) = 0 and U(t,−∞) = p(t). Moreover, we denote by the down-

stream spreading speed c∗, which coincides with the minimal wave speed for which traveling wave

solutions exist.

Remark 2.1. It is crucial to distinguish the concept of a forced KPP wave from that of a traveling

wave. A traveling wave is any solution of the form u(t, x) = W (x − ct), where the speed c is a

parameter. In contrast, a forced KPP wave is a very specific type of traveling wave, where the wave

speed c is not a free parameter but is externally prescribed by the drift speed. Namely, a forced

wave is a traveling wave that is locked to this environmental speed, rather than being a member of

a continuum of waves.

According to [41, Theorems 2.2 and 2.3], we can obtain the existence of T -periodic traveling

wave and the downstream spreading speed:

Lemma 2.4. If er̄(−∞)[g′(0)]
1
T > 1, then there exists a downstream spreading speed

c∗ := 2

√
r̄(−∞) +

1

T
ln g′(0)

such that, system (2.6) has a T-periodic traveling wave solution W (t, x− ct) with W (t,−∞) = p(t)

and W (t,+∞) = 0 if and only if c ≥ c∗.

Remark 2.2. If er̄(+∞)[g′(0)]
1
T ≤ 1, then the comparison argument and Lemma 2.1 deduce that,

as t → ∞, every nonnegative solution of (2.6) with r(t,−∞) replaced by r(t,+∞) converges to 0

uniformly for x ∈ R.

In our study here, we consider the following case:

(H): g′(0) < 1 < er̄(−∞)[g′(0)]
1
T .
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It is easy to see that er̄(+∞)[g′(0)]
1
T < 1 < er̄(−∞)[g′(0)]

1
T . Using standard Lp theory, together with

the upper and lower solution methods, monotone iteration, and the comparison principle, it can be

shown that (1.2) has a unique classical solution u(t, x;u0).

For any given y ∈ R ∪ {±∞}, consider
Ut = Uξξ + cUξ + U(r(t, ξ + y)− U), t ∈ (kT+, (k + 1)T ], ξ ∈ R,
U(kT+, ξ) = g(U(kT, ξ)), k ∈ N, ξ ∈ R,
U(0, ξ) = φ(ξ), ξ ∈ R,

(2.7)

where φ(ξ) ∈ C(R,R) is nonnegative and not identically zero. We first define the generalized upper

and lower solutions of (2.7).

Definition 2.5. If there are {xi}mi=1 ⊂ R and function Ū ∈ C1,2([0,∞)× R \ {xi}mi=1) satisfying
Ūt ≥ Ūξξ + cŪξ + Ū(r(t, ξ + y)− Ū), t ∈ (kT+, (k + 1)T ], ξ ∈ R,
Ūx(t, ξ+) ≤ Ūx(t, ξ−), t > 0, ξ = xi, 1 ≤ i ≤ m,
Ū(kT+, ξ) ≥ g(Ū(kT, ξ)), k ∈ N, ξ ∈ R,

then Ū(t, ξ) is called a generalized upper solution of (2.7). A generalized lower solution of (2.7)

can be defined by reversing the above inequalities.

When y = 0, the first equation of (2.7) reduces to (1.3). As y → ±∞, the first equation of (2.7)

approaches the corresponding limiting equation:

Ut = Uξξ + cUξ + U(r(t,±∞)− U), t ∈ (kT+, (k + 1)T ], ξ ∈ R.

Denote by Uy(t, ξ;φ(·)) the unique solution of (2.7). Since U0(t, ξ + y;φ(·)) and Uy(t, ξ;φ(· + y))

are solutions of
Ut = Uξξ + cUξ + U(r(t, ξ + y)− U), t ∈ (kT+, (k + 1)T ], ξ ∈ R,
U(kT+, ξ) = g(U(kT, ξ)), k ∈ N, ξ ∈ R,
U(0, ξ) = φ(ξ + y), ξ ∈ R,

the uniqueness implies that

U0(t, ξ + y;φ(·)) = Uy(t, ξ;φ(·+ y)), ∀t ≥ 0, ξ, y ∈ R. (2.8)

Denote by Py : C(R,R+)→ C(R,R+) the time-T solution map of Ut = Uξξ + cUξ +U(r(t, ξ+ y)−
U), t > 0, ξ ∈ R. Then Qy = Py ◦ g is the poincaré map of (2.7) and Uy(kT, ξ;φ(·)) = Qky(φ), where

Qky is the kth iteration of Qy. Note that Py meets the properties of [35, Lemma 3.3] or [34, Lemma

2.1]. We first define the local uniform convergence: a sequence of functions {φn} ⊂ C(R,R+)

converges to φ if for any compact set K ⊂ R, supx∈K |φn(x)− φ(x)| → 0.

Lemma 2.6. Qy satisfies the following conclusions:

(1) (Compactness Property) If an(ξ) is uniformly bounded, then Qy[an], up to a subsequence,

converges locally uniformly.

(2) If Ū(t, ξ) and U(t, ξ) are a pair of upper-lower solution of (2.7) for t > 0 and satisfy

Ū(t, ξ) ≥ U(t, ξ), then

U(0+, ξ) ≤ Qy(U(0, ξ)) ≤ Qy(Ū(0, ξ)) ≤ Ū(0+, ξ).

(3) Qy[φ(·)](ξ + y) = Qy[φ(·+ y)](ξ),∀ξ, y ∈ R.
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Proof. (1)It follows from the third property of [34, Lemma 2.1] that if an(ξ) is uniformly bounded,

then Py[an], up to a subsequence, converges locally uniformly. The hypothesis (G1) ensures that

Qy[an] also converges locally uniformly.

(2) By (G1), g(a1(ξ)) ≤ g(a2(ξ)) for given a1(ξ) ≤ a2(ξ). It then follows from the first property

of [34, Lemma 2.1] that Py ◦g(a1(ξ)) ≤ Py ◦g(a2(ξ)), namely, Qy(a1(ξ)) ≤ Qy(a2(ξ)). Moreover, we

choose a pair of upper and lower solutions of (2.7), Ū(t, ξ) and U(t, ξ), satisfying U(t, ξ) ≤ Ū(t, ξ)

for t ∈ (kT, (k + 1)T ]. Since U(kT+, ξ) ≤ g(U(kT, ξ)), it follows that

Py(U(kT+, ξ)) ≤ Py ◦ g(U(kT, ξ)) = Qy(U(kT, ξ)).

Similarly, Qy(Ū(kT, ξ)) = Py ◦g(Ū(kT, ξ)) ≤ Py(Ū(kT+, ξ)). By the fourth property of [34, Lemma

2.1] and the monotonicity of Qy, we obtain

U(kT+, ξ) ≤ Qy(U(kT, ξ)) ≤ Qy(Ū(kT, ξ)) ≤ Ū(kT+, ξ).

(3) It follows from (2.8) that Qy[φ(·)](ξ + y) = Qy[φ(·+ y)](ξ), ∀ξ, y ∈ R. �

Lemma 2.7. If (1.3)-(1.6) admits a T -periodic bounded solution U(t, ξ) ≥ 0 but 6≡ 0, then U(t, ξ) ∈
(0, p(t)) for (t, ξ) ∈ (0,+∞)× R, and U(t,+∞) = 0 uniformly in [0, T ].

Proof. Firstly, we show U(t, ξ) > 0. Otherwise, we can find (t0, x0) such that U(t0, x0) = 0, where

t0 ∈ (0+, T ]. If t0 = T , then U(T, x0) = 0. In terms of U(0+, ξ) = g(U(0, ξ)) ≥ 0 and 6≡ 0,

the strong maximum principle deduces that U(T, ξ) > 0 for any ξ ∈ R, a contradiction with our

assumption. If t0 ∈ (0+, T ), then the strong maximum principle also implies that U(t, ξ) ≡ 0 in

[0, T ], which contradicts U(T, ξ) > 0.

Next, we shall show U(t, ξ) < p(t). Observe that α(t;M) is an upper solution of (1.3)-(1.5) for any

M > 0, the comparison principle deduces that α(t;M) ≥ U(t, ξ) for M ≥ max{maxξ∈R U(0, ξ), N}.
Define operator Hy,k+1 := Qk+1

y . By Lemma 2.6(1), we regard U(t, ξ) as a lower solution of (1.3)-

(1.6). Then

U(0+, ξ) ≤ Hm+1
0,k+1[M ] ≤ Hm

0,k+1[M ] ≤ g(M) ≤M,∀k ∈ N.
Note that, if a(ξ) is non-increasing in ξ ∈ R, then g(a(ξ)) is also non-increasing, and thusQy(a(ξ)) =

Py[g(a(ξ))] is non-increasing in ξ by the second property of [34, Lemma 2.1]. Thus there exists

a non-increasing function φ(ξ) such that Hm
0,k+1[M ] converges locally uniformly to φ(ξ). Hence

H0,k+1(φ) = φ. It follows from Lemma 2.6(2) that

φ(+∞) = lim
y→+∞

φ(y) = lim
y→+∞

H0,k+1(φ)(y) = lim
y→+∞

Hy,k+1[φ(·+ y)](0).

Notice that

lim
y→+∞

Hy,k+1[φ(·+ y)](0) = lim
y→+∞

Uy((k + 1)T, 0;φ(·+ y))

= U+∞((k + 1)T, 0;φ(+∞)) = H+∞,k+1(φ(+∞)).

So, φ(+∞) = H+∞,k+1(φ(+∞)), similarly, φ(−∞) = H−∞,k+1(φ(−∞)). Observe that, (2.7) has

only zero solution when y = +∞, and (2.7) has a zero solution or a T -periodic solution p(t) when

y = −∞ (similar to the proof of [40, Theorem 3.4]), namely, φ(−∞) = p(0) or 0, φ(+∞) = 0. By

φ(ξ) ≥ U(0+, ξ), we have φ(−∞) = p(0). By the comparison principle and φ(ξ) ≤ p(0), we conclude

that U(t, ξ) ≤ p(t). Furthermore, the strong maximum principle implies that U(t, ξ) < p(t).

Moreover, due to φ(+∞) = 0, Lemma 2.6(2) implies

U(t,+∞) = lim
y→+∞

U(t, y;φ(·)) = lim
y→+∞

Uy(t, 0;φ(·+ y)) = U+∞(t, 0;φ(+∞)) = 0.

Then U(t,+∞) = 0 uniformly in [0, T ]. �
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3. Propagation dynamics

Note that the analysis in this section is based on the assumptions (R),(G1)-(G4) and (H).

3.1. Forced KPP waves. We first use the monotonicity of g(u), combining with [40, Lemma 3.1],

to derive the maximum principle and the comparison principle:

Lemma 3.1 (Maximum principle). For any given φ(ξ) ≥ 0, assume that, for some c(t, ξ) ∈
L∞([0,∞)× R), function U(t, ξ) ∈ C1,2([0,∞)× R) satisfies

Ut ≥ Uξξ + cUξ + c(t, ξ)U, t ∈ (kT+, (k + 1)T ], ξ ∈ R,
U(kT+, ξ) ≥ g(U(kT, ξ)), k ∈ N, ξ ∈ R,
U(0, ξ) = φ(ξ) ≥ 0, ξ ∈ R.

Then U(t, ξ) ≥ 0 in [0,∞)× R. Moreover, U(t, ξ) > 0 in (0,∞)× R if φ(ξ) 6≡ 0 in R.

Lemma 3.2 (Comparison principle). Let U(t, ξ) be the unique solution of (1.3)-(1.4). Assume

that there exists a function Ū(t, ξ) ∈ C1,2([0,∞)× R) satisfying
Ūt ≥ Ūξξ + cŪξ + Ū(r(t, ξ)− Ū), t ∈ (kT+, (k + 1)T ], ξ ∈ R,
Ū(kT+, ξ) ≥ g(Ū(kT, ξ)), k ∈ N, ξ ∈ R,
Ū(0, ξ) ≥ U(0, ξ), ξ ∈ R.

Then Ū(t, ξ) ≥ U(t, ξ) in [0,∞)× R.

Recall that c∗ := 2
√
r̄(−∞) + 1

T ln g′(0) and r̄(±∞) = 1
T

∫ T
0 r(t,±∞)dt, and er̄(+∞)[g′(0)]

1
T <

1 < er̄(−∞)[g′(0)]
1
T . By a simple analysis, the equation µ2+cµ+r̄(+∞)+ 1

T ln g′(0) = 0 has a unique

negative root µ1 < 0 for any given c ∈ R. If c ≥ c∗, then equation λ2 + cλ+ r̄(−∞) + 1
T ln g′(0) = 0

admits two negative roots λ1 ≤ λ2 < 0. Noting λ2
1+cλ1+r̄(+∞)+ 1

T ln g′(0) = r̄(+∞)−r̄(−∞) < 0,

we have λ1 > µ1.

In this subsection, we discuss the existence/nonexistence of forced KPP waves for (1.2), which

is equivalent to consider the properties of the solution to (1.3)-(1.6).

Theorem 3.3. The forced KPP wave of (1.2) exists only in the case that c < c∗. Moreover, if it

exists, denoted by U(t, ξ), then it is unique and nonincreasing in ξ ∈ R.

Proof. We divide the proof into three steps.

Step 1. We show that, if c ≥ c∗, no forced wave is present for (1.2).

If system (1.3)-(1.6) has a positive T-periodic solution U(t, ξ) for c ≥ c∗, then it follows from

Lemma 2.7 that U(t, ξ) < p(t). We prove U(t,−∞) > p(t) to get a contradiction.

Claim: U(t, ξ) = o(e(µ1+η)ξ) for some η > 0 as ξ → +∞. Letting ε0 = −r̄(+∞) > 0, for any given

ε ∈ (0, ε0), there exists η > 0 such that µ1 + η < 0, λ1 ≥ µ1 + η and

(µ1 + η)2 + c(µ1 + η) + r̄(+∞) +
1

T
ln g′(0) + ε = 0.

Choose ξε > 0 satisfying r(t, ξ) ≤ r(t,+∞) + ε,∀ξ ≥ ξε. Define

ϕε(t) = e
∫ t
0 [(µ1+η)2+c(µ1+η)+r(s,+∞)+ 1

T
ln g′(0)+ε]ds, t ∈ (kT+, (k + 1)T ], with ϕε(kT ) = [g′(0)]−1.

Obviously, ϕε(t+kT ) = ϕε(t), ∀t ∈ (0+, T ] and ϕε(kT
+) = g′(0)ϕε(kT ). Then, by the boundedness

of p(t) and ϕε(t), there is Mε > 0 such that

Mεe
(µ1+η)ξϕε(t) ≥ max

[0,T ]
p(t),∀ξ ≤ ξε, t > 0.
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By (G2), g(u) ≤ g′(0)u for u > 0. When ξ > ξε, function wε(t, ξ) := Mεe
(µ1+η)ξϕε(t) satisfies

(wε)t − (wε)ξξ − c(wε)ξ − wε(r(t, ξ)− wε) = [r(t,+∞) + ε− r(t, ξ)]wε + (wε)
2 ≥ 0,

wε(kT
+, ξ) = g′(0)wε(kT, ξ) ≥ g(wε(kT, ξ)), k ∈ N,

which means that w(t, ξ) := min{wε(t, ξ), p(t)} is a generalized upper solution of system (1.3)-

(1.6). The Claim holds if w(t, ξ) ≥ U(t, ξ) for ξ ∈ R, t > 0. Indeed, w(t, ξ) ≥ U(t, ξ) holds in

D := {(t, ξ)|w(t, ξ) ≥ p(t)}. If (t, ξ) 6∈ D, then ξ > ξε. Define

ψ(t) = e
∫ t
0 [r(s,+∞)+ε0]ds for t ∈ (kT+, (k + 1)T ] with ψ(kT ) = [g′(0)]−1.

There is δ > 0 such that w(t, ξ)+δψ(t) is also a generalized upper solution of system (1.3)-(1.6) for

(t, ξ) 6∈ D. Due to U(0,+∞) = 0, we can choose τ > 0 small enough such that w(0, ξ) + δψ(0) ≥
τ ≥ U(0, ξ),∀ξ > ξε. Combining with w(t,+∞) + δψ(t) = δψ(t) > 0 = U(t,+∞), it deduces from

the comparison principle that w(t, ξ) + δψ(t) ≥ U(t, ξ), and the strong maximum principle implies

that w(t, ξ) + δψ(t) > U(t, ξ). Letting δ → 0, we have w(t, ξ) ≥ U(t, ξ) for (t, ξ) 6∈ D. Define

vM (t, ξ) := Meλ1ξχ(t), where

χ(t) = e
∫ t
0 [λ21+cλ1+r(t,−∞)+ 1

T
ln g′(0)]ds for t ∈ (kT+, (k + 1)T ] and χ(kT ) = [g′(0)]−1.

Similarly, vM (t, ξ) is also an upper solution of system (1.3)-(1.6) for some M > 0. By λ1 ≥ µ1 + η

and the Claim,

vM (t, ξ) = Meλ1ξχ(t) ≥Me(µ1+η)ξχ(t) = o(e(µ1+η)ξ) = U(t, ξ), as ξ →∞.

So we can find M∗ > 0 and ξ(t) ∈ R satisfying vM
∗
(t, ξ) ≥ U(t, ξ),∀t > 0, ξ ∈ R and vM

∗
(t, ξ(t)) =

U(t, ξ(t)). Thus, W (t, ξ) := vM
∗
(t, ξ) − U(t, ξ) satisfies W (t, ξ) ≥ 0 and W (t, ξ(t)) = 0 for any

t > 0, ξ ∈ R. Observing that

Wt −Wξξ − cWξ − r(t,−∞)W = [r(t,−∞)− r(t, ξ)]W +W 2 ≥ 0,

the strong maximum principle implies that vM
∗
(t, ξ) ≡ U(t, ξ), then vM

∗
(t,−∞) = +∞. This is a

contradiction with U(t, ξ) < p(t). Then Step 1 is compete.

Step 2. We show that, if there is a forced KPP wave for (1.2), then it is unique.

Assume that system (1.3)-(1.6) has two different positive solutions Ui(t, ξ)(i = 1, 2). Clearly,

0 < Ui(t, ξ) < p(t), Ui(t,+∞) = 0 and Ui(t,−∞) = p(t). For any ε > 0, define

Kε := {k ≥ 1|kU1(t, ξ) ≥ U2(t, ξ)− εq(t, ξ)},

where q(t, ξ) is a positive, continuous and bounded T-periodic function satisfying q(t,±∞) > δ > 0

for some δ > 0. Notice that

lim
ξ→−∞

U2(t, ξ)− εq(t, ξ)
U1(t, ξ)

=
p(t)− εq(t,−∞)

p(t)
, lim
ξ→+∞

U2(t, ξ)− εq(t, ξ)
U1(t, ξ)

= −∞ uniformly in [0, T ].

Thus there is Lε > 0 such that
U2(t, ξ)− εq(t, ξ)

U1(t, ξ)
≤ Lε on [0, T ] × R, namely, Kε 6= ∅. Denote

kε := inf Kε and k∗ := lim
ε→0

kε. So, kεU1(t, ξ) ≥ U2(t, ξ) − εq(t, ξ) and kε is non-increasing in ε > 0

and k∗ ≥ 1. In the following, we shall show k∗ = 1. By way of contradiction, if k∗ > 1, then there

exists ε0 > 0 such that kε0 > 1 and kε ≥ kε0 > 1 for any 0 < ε < ε0. Define

wε(t, ξ) := kεU1(t, ξ)− U2(t, ξ) + εq(t, ξ) ≥ 0;

w(t, ξ) := lim
ε→0

wε(t, ξ) = k∗U1(t, ξ)− U2(t, ξ).
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There exists (tε, ξε) such that wε(tε, ξε) = 0 and wε(t, ξ) > 0 in any neighborhood of (tε, ξε). Indeed,

if wε(t, ξ) > 0 for t > 0 and ξ ∈ R, then for such ε, we can find η > 0 small enough such that

kε−η > 1 and wε(t,ξ)
U1(t,ξ) ≥ η, which means (kε−η)U1(t, ξ)−U2(t, ξ)+εq(t, ξ) ≥ 0. This contradicts the

definition of kε. We consider three different possibilities for {ξε}:(i) {ξε} is bounded; (ii) {ξε} ↗ +∞
as ε→ 0;(iii) {ξε} ↘ −∞ as ε→ 0.

For case (i), if {ξε} is bounded, then k∗ < +∞ and there is (t∗, ξ∗) ∈ R+ × R such that

{(tε, ξε)} → (t∗, ξ∗) as ε→ 0 and w(t∗, ξ∗) = 0. Note that

wt − wξξ − cwξ ≥ r(t, ξ)w + U2
2 − (k∗U1)2 = [r(t, ξ)− k∗U1 − U2]w;

w(kT+, ξ) = k∗g(U1(kT, ξ))− g(U2(kT, ξ)) ≥ g(k∗U1(kT, ξ))− g(U2(kT, ξ)) ≥ 0.

By the strong maximum principle, it follows from w(t, ξ) ≥ 0 and w(t∗, ξ∗) = 0 that w(t, ξ) ≡ 0 on

[0, T ] × R, which contradicts w(t,−∞) = (k∗ − 1)p(t) > 0. For case (ii), if {ξε} ↗ +∞ as ε → 0,

then k∗ ∈ (1,+∞]. Choose δε > 0 such that

(wε)t = kε(U1)t − (U2)t + εqt

= (wε)ξξ + c(wε)ξ + kεU1[r(t, ξ)− U1]− U2[r(t, ξ)− U2] + ε[qt − qxx − cqx]

≥ [r(t, ξ)− kεU1 − U2](kεU1 − U2) + ε[qt − qxx − cqx]

= [r(t, ξ)− kεU1 − U2]wε + ε[qt − qξξ − cqξ − (r(t, ξ)− kεU1 − U2)q]

in domain Qε = [0, T ]× (ξε − δε, ξε + δε). We find that, if

qt − qξξ − cqξ − (r(t, ξ)− kεU1 − U2)q ≥ 0, (t, ξ) ∈ Qε, (3.1)

then it follows from wε ≥ 0 and the strong maximum principle that wε ≡ 0 in Qε, a contradiction

with the definition of (tε, xε). For case (iii), if {ξε} ↘ −∞ as ε → 0, then k∗ ∈ (1,+∞] and

(wε)t− (wε)ξξ− c(wε)ξ− [r(t, ξ)−kεU1−U2]wε ≥ 0 in domain Qε if (3.1) holds in Qε. Similarly, the

strong maximum principle deduces a contradiction. In what follows, we construct q(t, ξ) satisfying

(3.1) in Qε. For any t > 0,

lim
ξ→+∞

[r(t, ξ)− kεU1 − U2] = r(t,+∞); lim
ξ→−∞

[r(t, ξ)− kεU1 − U2] = r(t,−∞)− (kε + 1)p(t).

Then there is x+ > 0 satisfying r(t, ξ)− kεU1−U2 ≤ r(t,+∞)− r̄(+∞) := α1(t), ξ ≥ x+ and there

is x− < 0 satisfying

r(t, ξ)− kεU1 − U2 ≤ r(t,−∞)− (kε + 1)p(t) +
1

kε

1

T

∫ T

0
p(t)dt := α2(t), ξ ≤ x−.

Noting that α1(t), α2(t) are T-periodic function, we choose q(t, ξ) ∈ C1,1([0, T ],R) such that

q(t, ξ) = e
∫ t
0 α1(s)ds for ξ ≥ x+, q(t, ξ) = e

∫ t
0 α2(s)ds for ξ ≤ x−, and 0 ≤ q(t, ξ) ≤ e

∫ t
0 α1(s)ds for

0 ≤ ξ ≤ x+, 0 ≤ q(t, ξ) ≤ e
∫ t
0 α2(s)ds for x− ≤ ξ ≤ 0. Then, (3.1) holds for ξ ≤ x− and ξ ≥ x+,

completing the proof of Step 2.

Step 3. We show that, for c < c∗, system (1.2) has a forced KPP wave U(t, ξ) nonincreasing in

ξ ∈ R.

To establish the existence of solutions to the system (1.3)-(1.6), we show that there exists a function

φ(ξ) ∈ C(R) satisfying (1.3)-(1.5) and the boundary conditions

U(0,+∞) = φ(+∞) = 0, U(0,−∞) = φ(−∞) = p(0).

From Lemma 2.7, there exists a non-increasing function φ(ξ) such that Hm
0,k+1[M ] converges locally

uniformly to φ(ξ) and satisfies H0,k+1(φ) = φ, where φ(+∞) equals 0 and φ(−∞) equals either
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p(0) or 0. Notably, if φ(−∞) = p(0), then φ(ξ) ∈ C(R) satisfies (1.3)-(1.5) and the boundary

conditions (1.6) for t = 0. Furthermore, U(t, ξ) is non-increasing in ξ ∈ R since the initial value

φ(ξ) is non-increasing in ξ ∈ R. If system (1.3)-(1.6) admits a solution U ≥ and 6≡ 0, then it follows

that φ(−∞) = p(0). It suffices to show that U is nonnegative and not identically zero. Namely, we

need to construct a nonnegative, nonzero lower solution for system (1.3)-(1.6).

We consider (i) c ∈ (−c∗, c∗); (ii) c ≤ −c∗. For case (i), for given M,L > 0, let (ν1, ψ(ξ) be the

principal eigen-pair of

ψ′′(ξ)− 1

T
ln g′(0)ψ(ξ) = νψ(ξ), ξ ∈ [−M − L,−M ] with ψ(−M − L) = ψ(−M) = 0.

Clearly, ν1 = − 1
T ln g′(0)− ( πL)2. It follows from (H) that there exists L0 > 0 such that ν1 ≥ 0 for

L ≥ L0. Meanwhile, we extend ψ(ξ) to R by letting ψ(ξ) = 0 for ξ 6∈ [−M − L,−M ]. Define

ϕ(t) := e
∫ t
0 [r(t,−∞)+ 1

T
ln g′(0)− (c∗)2

4
]ds, t ∈ (kT+, (k + 1)T ] with ϕ(kT ) = [g′(0)]−1.

It is easy to see that ϕ(t+kT ) = ϕ(t) for any t ∈ (0+, T ], ϕ(kT+) = g′(0)ϕ(kT ). Now we construct

a lower solution of (1.3)-(1.6):

U(t, ξ) :=


ε0e

γ(t−kT )− c
2
ξψ(ξ)ϕ(t), t ∈ (kT+, (k + 1)T ], ξ ∈ R,

ε0e
− c

2
ξψ(ξ)ϕ(kT+), t = kT+, ξ ∈ R,

ε0e
γT− c

2
ξψ(ξ)ϕ(kT ), t = kT, ξ ∈ R,

(3.2)

where ε0 > 0 is sufficiently small and γ > 0 will be determined later. Notice that for ε > 0, there

are δε > 0 and ξε < 0 satisfying

r(t, ξ)− U(t, ξ) ≥ r(t,−∞)− ε, for U ∈ [0, δε], ξ ≤ ξε. (3.3)

Then

U t − Uξξ − cUξ − U [r(t, ξ)− U ] = (γ + ϕ′(t)/ϕ(t))U + (c2/4)U − (ν1 + (1/T ) ln g′(0))U − U [r(t, ξ)− U ]

≤
[
γ + c2/4− ν1 − (1/T ) ln g′(0) + ϕ′(t)/ϕ(t)− r(t,−∞) + ε

]
U

=
[
γ + c2/4− ν1 − (c∗)2/4 + ε

]
U.

provided that 0 ≤ U ≤ δε for ξ ≤ ξε. Since (c∗)2

4 − c2

4 − ε > 0 for c ∈ (−c∗, c∗) and small ε > 0,

together with ν1 ≥ 0 for L ≥ L0, we observe that γ := − c2

4 + ν1 + (c∗)2

4 − ε > 0 for L ≥ L0 and

small ε. Thus U t − U ξξ − cU ξ − U [r(t, ξ)− U ] ≤ 0. Moreover, we apply (G4) and γ > 0 to obtain

U(kT+, ξ)− g(U(kT, ξ)) ≤ U(kT+, ξ)− g′(0)U(kT, ξ) +DUρ(kT, ξ)

= ε0e
− c

2
ξψ(ξ)− ε0eγT−

c
2
ξψ(ξ) +Dερ0e

γTρ− c
2
ξρψρ(ξ)(g′(0))−ρ

= ε0e
− c

2
ξψ(ξ)[1− eγT +Dερ−1

0 eγTρ−
c
2
ξ(ρ−1)ψρ−1(ξ)(g′(0))−ρ] ≤ 0,

if ε0 is sufficiently small. The comparison principle implies that U is a nonnegative lower solution

if 0 ≤ U ≤ δε for ξ ≤ ξε. Indeed, sup(t,ξ)∈(0,+∞)×(ξε−L,ξε) U(t, ξ) ≤ ε0e
γT e−

c
2

(ξε−L) max[0,T ] ϕ(t).

As long as ε0 ≤ [eγT e−
c
2

(ξε−L) max[0,T ] ϕ(t)]−1δε, it deduces that 0 ≤ U ≤ δε for ξ ≤ ξε. Take

M = −ξε and L = L0, then the conclusion holds for c ∈ (−c∗, c∗). For case (ii), for such ε > 0 given

by (3.3), it follows from c ≤ −c∗ and r̄(−∞) − ε > 0 that µ2 > 0 is the smaller positive root of

µ2+cµ+r̄(−∞)−ε = 0. Then there is η > 0 small enough such that (µ2+η)2+c(µ2+η)+r̄(−∞)−ε <

https://doi.org/10.4153/S0008414X25101727 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101727


12 Y. TANG, B. DAI & J. WU

0. For such a given η > 0, choosing M > 1, there is ξM < 0 such that 1 = MeηξM . Define

U(t, ξ) :=


0, t > 0, ξ ≥ ξM ,
ε0β(t)[eµ2ξ −Me(µ2+η)ξ], t ∈ (kT+, (k + 1)T ], ξ ≤ ξM ,
ε0β(kT+)[eµ2ξ −Me(µ2+η)ξ], t = kT+, ξ ≤ ξM ,
ε0β(kT )eµ2T [eµ2ξ −Me(µ2+η)ξ], t = kT, ξ ≤ ξM ,

where ε0 > 0 is small enough and β(t) satisfies

β(t) := e
∫ t
0 [µ22+cµ2+r(t,−∞)−ε]ds, t ∈ (kT+, (k + 1)T ] with β(kT ) = [g′(0)]−1.

Note that

sup
(t,ξ)∈(0,+∞)×(−∞,ξM )

U(t, ξ) ≤ ε0eµ2ξM eµ2T max
[0,T ]

β(t) ≤ δε

for ε0 > 0 sufficiently small. Then

U t − U ξξ − cU ξ − U [r(t, ξ)− U ]

= ε0β(t)eµ2ξ[
β′(t)

β(t)
− µ2

2 − cµ2]− ε0β(t)Me(µ2+η)ξ[
β′(t)

β(t)
− (µ2 + η)2 − c(µ2 + η)]− U [r(t, ξ)− U ]

≤ ε0β(t)eµ2ξ[
β′(t)

β(t)
− µ2

2 − cµ2 − r(t,−∞) + ε]

− ε0β(t)Me(µ2+η)ξ[
β′(t)

β(t)
− (µ2 + η)2 − c(µ2 + η)− r(t,−∞) + ε] < 0

and

U(kT+, ξ)− g(U(kT, ξ)) ≤ U(kT+, ξ)− g′(0)U(kT, ξ) +DUρ(kT, ξ)

= ε0[eµ2ξ −Me(µ2+η)ξ][1− eµ2T +Dερ−1
0 eµ2Tρβρ−1(ξ)(g′(0))−ρ] ≤ 0.

Thus the conclusion holds for c ≤ −c∗. We have constructed a nonnegative lower solution that is

nonzero for system (1.3)-(1.6), and Step 3 is proved. Thus the theorem holds. �

3.2. Spreading properties. Denote by u(t, x;u0) the solution of (1.2) for a given u0 ∈ C(R,R+).

We can also utilize the monotonicity of g(u) to derive the comparison principle:

Lemma 3.4 (Comparison principle). If there exists a function ū(t, ξ) ∈ C1,2([0,∞)×R) satisfying
ūt ≥ ūxx + ū(r(t, x− ct)− ū), t ∈ (kT+, (k + 1)T ], x ∈ R,
ū(kT+, x) ≥ g(ū(kT, x)), x ∈ R, k ∈ N,
ū(0, x) ≥ u0(x), x ∈ R,

then ū(t, x) ≥ u(t, x) in [0,∞)× R.

In this subsection, we study the long-time behavior for (1.2) with different c. For c < c∗, by

Theorem 3.3, system (1.2) admits a forced KPP wave U(t, x− ct). Now, we demonstrate that the

solution of (1.2) with sufficiently large initial data M ≥ p(0), denoted by u(t, x;M), uniformly

converges to the forced KPP wave as t→ +∞.

Lemma 3.5. For c < c∗, choosing M ≥ p(0),

lim
t→+∞

|u(t, x;M)− U(t, x− ct)| = 0, (3.4)

uniformly in R.
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Proof. By the proof of Lemma 2.7, there exists a non-increasing φ(ξ) satisfying φ(+∞) = 0 and

φ(−∞) = p(0) such that Hm
0,k+1[M ] converges locally uniformly to φ(ξ) for M > U(0, ξ). This

implies that, for any bounded set [−L, x0] of R, equation (3.4) holds uniformly in x− ct ∈ [−L, x0].

Choose L large enough, it then follows that lim
t→+∞

|p(t)−U(t, x−ct)| = 0 uniformly in x−ct ≤ −L.
Note that the unique positive solution α(t;M) of (2.1) with u0 = M satisfies lim

t→+∞
|p(t)−α(t;M)| =

0 from Lemma 2.1 and is an upper solution of (1.2) with initial value M due to r(t, ξ) ≤ r(t,−∞).

In view of U(0, ξ) ≤ U(0,−∞) = p(0) ≤ M , the comparison principle implies that U(t, ξ) ≤
u(t, x;M) ≤ α(t;M). This deduces that

lim sup
t→+∞

[u(t, x;M)− U(t, x− ct)] ≤ lim sup
t→+∞

[α(t;M)− U(t, x− ct)]

≤ lim
t→+∞

|α(t;M)− p(t)|+ lim sup
t→+∞

|p(t)− U(t, x− ct)| = 0

uniformly in x − ct ≤ −L. Combining with lim sup
t→+∞

[u(t, x;M) − U(t, x − ct)] ≥ 0, equation (3.4)

holds uniformly in x − ct ≤ −L. For x − ct > x0, assume that there are δ0 > 0 and {(tn, xn)}∞n=1

satisfying xn − ctn → +∞ such that u(tn, xn;M) = δ0. Obviously, there is t∗ ∈ (0, T ] such that

lim
n→+∞

tn− [tn/T ]T = t∗, where [tn/T ] is the inter part of tn/T . Let wn(t, x) := u(t+ tn, x+xn;M).

We can find a function w such that wn → w locally uniformly holds as n→∞, and w satisfies
wt = wxx + w(r(t+ t∗,+∞)− w), t ∈ (kT+, (k + 1)T ], x ∈ R,
w(kT+ − t∗, x) = g(w(kT − t∗, x)), x ∈ R, k ∈ N,
u(0, x) = M, x ∈ R

and w(0, 0) = lim
n→+∞

wn(0, 0) = δ0 > 0. By Remark 2.2, w ≡ 0, which is a contradiction. Thus,

equation (3.4) holds uniformly in x− ct ≥ x0. The proof is complete. �

Meanwhile, for c ∈ (−c∗, c∗), we shall construct a pair of upper-lower solutions of (1.2) by using

the forced wave.

Lemma 3.6. Function w±(t, x) = U(t, x − ct) ± ρe−σ(t−ξ0)[1 + MU(t, x − ct)] is a pair of upper

and lower solutions of (1.2), where ξ0 ∈ R, σ > 0 small enough, ρ > 0, and M large enough will

be determined later.

Proof. We only show that w+ is an upper solution of (1.2). Note that

w+
t (t, x) = Ut(t, x− ct)− cUξ(t, x− ct)− σρe−σ(t−ξ0)[1 +MU(t, x− ct)]

+ ρe−σ(t−ξ0)M [Ut(t, x− ct)− cUξ(t, x− ct)];

w+
xx(t, x) = Uξξ(t, x− ct) + ρe−σ(t−ξ0)MUξξ(t, x− ct).

Then,

w+
t − w+

xx(t, x)− w+(r(t, x− ct)− w+)

=ρe−σ(t−ξ0){(1 +MU(t, x− ct))[−σ + (1 +MU(t, x− ct))e−σ(t−ξ0)]

− r(t, x− ct) + 2U(t, x− ct) +MU2(t, x− ct)}.
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The properties of U(t, x− ct) and r(t, ξ) means that, there exist σ > 0 small enough and M large

enough satisfying

(1 +MU(t, x− ct))e−σ(t−ξ0) > σ;

− r(t, x− ct) + 2U(t, x− ct) +MU2(t, x− ct) > 0;

ρe−σ(kT−ξ0)(1 +MU(kT, x− ckT )) > N, ρe−σ(kT−ξ0)M > 1,

where N is given by (G3). Hence, w+
t −w+

xx(t, x)−w+(r(t, x−ct)−w+) ≥ 0. Meanwhile, it follows

from (G2) and (G3) that

g(ρe−σ(kT−ξ0)Mu) ≤ ρe−σ(kT−ξ0)Mg(u),∀u > 0

and
g(ρe−σ(kT−ξ0)(1 +MU(kT, x− ckT )))

ρe−σ(kT−ξ0)(1 +MU(kT, x− ckT ))
< 1.

Consequently,

w+(kT+, x) = g(U(kT, x− ckT )) + ρe−σ(kT−ξ0) + ρe−σ(kT−ξ0)Mg(U(kT, x− ckT ))

≥ g(U(kT, x− ckT )) + ρe−σ(kT−ξ0) + g(ρe−σ(kT−ξ0)MU(kT, x− ckT ))

≥ g(U(kT, x− ckT )) + ρe−σ(kT−ξ0)

+ [1− 1

1 +MU(kT, x− ckT )
]g(ρe−σ(kT−ξ0)(1 +MU(kT, x− ckT )))

≥ g(U(kT, x− ckT )) + g(ρe−σ(kT−ξ0)(1 +MU(kT, x− ckT )))

+ ρe−σ(kT−ξ0)[1− g(ρe−σ(kT−ξ0)(1 +MU(kT, x− ckT )))

ρe−σ(kT−ξ0)(1 +MU(kT, x− ckT ))
]

≥ g(U(kT, x− ckT )) + g(ρe−σ(kT−ξ0)(1 +MU(kT, x− ckT )))

≥ g(U(kT, x− ckT ) + ρe−σ(kT−ξ0)(1 +MU(kT, x− ckT ))) = g(w+).

Thus w+ is an upper solution of (1.2). �

Then, by Lemma 3.5 and Lemma 3.6, we obtain the spreading properties of solution of (1.2).

Theorem 3.7. Denote by u(t, x;u0) the solution of (1.2), where u0(x) ≥ but 6≡ 0 is bounded.

(1) For c ≤ −c∗, if further u0(x) has a compact support, then

lim sup
m→+∞

u(t+mT, x;u0) = 0, uniformly in [0, T ]× R.

(2) For c ∈ (−c∗, c∗),

lim
t→+∞

sup
x≥−µt

|u(t, x;u0)− U(t, x− ct)| = 0 for any µ ∈ (c, c∗). (3.5)

Moreover, if lim inf
x→−∞

u0(x) > 0, then there is µ > 0 such that

lim
t→+∞

sup
x∈R
|u(t, x;u0)− U(t, x− ct)|eµt = 0. (3.6)

Proof. (1) Define two operators

Lφ(x) := φ′′(x) + cφ′(x) + r̄(−∞)φ(x), , x ∈ R;

L̃tφ(x) := φ′′(x) + cφ′(x) + r(t,−∞)φ(x), x ∈ R.

https://doi.org/10.4153/S0008414X25101727 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101727


IMPACT OF BIRTH PULSE AND ENVIRONMENT SHIFT ON POPULATION 15

Observe from [36, Section 2] and [28, proposition 2] that the eigenvalue equation −Lφ = λφ, x ∈ R
has a principle eigenvalue λ(−L) := −r̄(−∞) + c2

4 and there is a positive eigenfunction φ∗(x)

with ‖φ∗‖∞ = 1 such that −Lφ∗ = λ(−L)φ∗. Since r(t,−∞) is a T-periodic function in t, the

eigenvalue equation −L̃tφ = λφ, x ∈ R also has a principle eigenvalue λ(−L̃t) = λ(−L). Referring

to [43, Section 2.1], we discuss the following linear model:
w

(m)
t = w

(m)
xx + cw

(m)
x + r(t,−∞)w(m), t ∈ (0+, T ], x ∈ R,

w(m)(0+, x) = g′(0)w(m)(0, x), x ∈ R,
w(m)(0, x) = w(m−1)(T, x), x ∈ R,

with w(0)(0, x) = Mφ∗(x). It follows easily that w(m)(t, x) = M(e−λ(−L̃t)T g′(0))me−λ(−L̃t)tg′(0)φ∗(x).

Note that, for c ≤ −c∗,

−λ(−L̃t)T + ln g′(0) = [r̄(−∞)− c2

4
+

1

T
ln g′(0)]T = [

(c∗)2

4
− c2

4
]T ≤ 0.

Then, w̃(m)(t, x) := w(m)(t, x− ct) satisfies

w̃(m)(t, x) = M(e−λ(−L̃t)T g′(0))me−λ(−L̃t)tg′(0)φ∗(x− ct)→ 0, as m→ +∞

and 
w̃

(m)
t = w̃

(m)
xx + r(t,−∞)w̃(m), t ∈ (0+, T ], x ∈ R,

w̃(m)(0+, x) = g′(0)w̃(m)(0, x), x ∈ R,
w̃(m)(0, x) = w̃(m−1)(T, x), x ∈ R,

with w̃(0)(0, x) = Mφ∗(x). Meanwhile,

w̃
(m)
t − w̃(m)

xx − w̃(m)(r(t, x− ct)− w̃(m)) = [r(t,−∞)− r(t, x− ct)]w̃(m) + (w̃(m))2 > 0;

w̃(m)(0+, x) = g′(0)w̃(m)(0, x) ≥ g(w̃(m)(0, x)).

Then, choosingM large enough satisfying u0(x) ≤Mφ∗(x) for x ∈ R, it follows from the comparison

principle that u(t, x;u0) ≤ w̃(0)(t, x) in (0+, T ] × R. By induction for m, we can eventually derive

that u(t+mT, x;u0) ≤ w̃(m)(t, x),m ∈ N. Hence,

0 ≤ lim sup
m→+∞

u(t+mT, x;u0) ≤ lim sup
m→+∞

w̃(m)(t, x) = 0 uniformly in [0, T ]× R.

(2)We divide the proof into three steps.

Step 1. We shall show the equation (3.5). Fix σ ∈ (0, c∗ − c). we prove that, ∀ε > 0, there is

T0 > 0 satisfying

sup
x≥(−c∗+σ)t

|u(t, x;u0)− U(t, x− ct)| < ε, ∀t ≥ T0.

For given ξ0 ∈ R, let c0 be the downstream spreading speed of traveling wave of
wt = wxx + w(r(t, ξ0)− w), t ∈ (kT+, (k + 1)T ], x ∈ R,
w(kT+, x) = g(w(kT, x)), x ∈ R, k ∈ N,
w(0, x) = u0(x), x ∈ R.

(3.7)

Observe that there is ξ0 < 0 such that U(t, ξ) > p(t)− ε
2 , ∀t > 0, ξ ≤ ξ0 and r(t, ξ0) > r̄(−∞) + σ2

16 .

Thus c0 > c∗ − σ
2 and er̄(ξ0)[g′(0)]

1
T > er̄(−∞)[g′(0)]

1
T > 1. By Lemma 2.1, equation (2.2) with

r(t,−∞) replaced by r(t, ξ0) has a solution p0(t) > 0 satisfying p0(t) > p(t) − ε
2 for any t > 0.

Consider cases: (i) x ≥ ξ0 + ct; (ii) x ∈ [(−c∗ + σ)t, ξ0 + ct). For case (i), when x ≥ ξ0 + ct, from

https://doi.org/10.4153/S0008414X25101727 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101727


16 Y. TANG, B. DAI & J. WU

Lemma 3.5, equation (3.4) holds uniformly in x−ct ≥ ξ0. For case (ii), when x ∈ [(−c∗+σ)t, ξ0+ct),

obviously, U(t, x− ct) ≥ U(t, ξ0) ≥ p(t)− ε
2 , ∀t > 0. Then

sup
x∈[(−c∗+σ)t,ξ0+ct)

|u(t, x;u0)− U(t, x− ct)|

≤ sup
x∈[(−c∗+σ)t,ξ0+ct)

|u(t, x;u0)− p(t)|+ sup
x∈[(−c∗+σ)t,ξ0+ct)

|p(t)− U(t, x− ct)|

≤ sup
x∈[(−c∗+σ)t,ξ0+ct)

|u(t, x;u0)− p(t)|+ ε

2
,

it suffices to show that supx∈[(−c∗+σ)t,ξ0+ct) |u(t, x;u0)−p(t)| < ε
2 , ∀t ≥ T0. Denote by w(t, x;u0) the

unique positive solution of (3.7). Observe that w(t, ξ0 + ct;u0) and u(t, ξ0 + ct;u0) are a solutions

of 
Ut = Uξξ + cUξ + U(r(t, ξ0)− U), t ∈ (kT+, (k + 1)T ], ξ ∈ R,
U(kT+, ξ) = g(U(kT, ξ)), k ∈ N, ξ ∈ R,
U(0, ξ) = φ(ξ), ξ ∈ R.

(3.8)

The uniqueness means u(t, ξ0+ct;u0) = w(t, ξ0+ct;u0) for any t > 0. In view of r(t, x−ct) ≥ r(t, ξ0)

for x − ct ≤ ξ0, by the comparison principle, u(t, x;u0) ≥ w(t, x;u0), ∀x ≤ ξ0 + ct. Together

with [42, Remark 3.7], we can deduce that the unique positive solution w(t, x;u0) of (3.7) satisfies

lim
t→+∞

sup
|x|≤(c∗−σ)t

|w(t, x;u0)− p0(t)| ≤ lim
t→+∞

sup
|x|≤(c0−σ2 )t

|w(t, x;u0)− p0(t)| = 0.

Then for T1 > 0 sufficiently large, u(t, x;u0) ≥ w(t, x;u0) ≥ p0(t) − ε
4 ≥ p(t) − ε

2 for t ≥ T1 and

x ∈ [(−c∗ + σ)t, ξ0 + ct). Take ρ > 1 satisfying ρ supx∈R u0(x) > max{p(0), N}. By Lemma 3.5,

u(t, x;u0) ≤ u(t, x; ρ sup
x∈R

u0(x)) ≤ α(t; ρ sup
x∈R

u0(x))→ p(t), as t→ +∞.

So there is T0 > T1 large such that u(t, x;u0) ≤ p(t) + ε
2 ,∀x ∈ R.

Step 2. We shall show that, if initial function u0(x) satisfies lim inf
x→−∞

u0(x) > 0, then

lim
t→+∞

sup
x∈R
|u(t, x;u0)− U(t, x− ct)| = 0. (3.9)

By the proof of Step 1 in Theorem 3.7(2), it suffices to show that lim
t→+∞

supx≤−µt |u(t, x;u0) −
U(t, x − ct)| = 0 for some fixed µ ∈ (−c, c∗). Due to U(t,−∞) = p(t) and Uξ(t, ξ) ≤ 0, it deduces

that

sup
x≤−µt

|p(t)− U(t, x− ct)| = p(t)− inf
x≤−µt

U(t, x− ct) = p(t)− U(t,−(µ+ c)t).

By the choice of µ, it is easy to see that µ+ c > 0, then lim
t→+∞

supx≤−µt |p(t)−U(t, x− ct)| = 0. By

the triangular inequality, we shall prove lim
t→+∞

supx≤−µt |u(t, x;u0)−p(t)| = 0. Take δ ∈ (0,min{µ+

c, c∗ − c}) and some x0 > 0 such that

lim
t→+∞

sup
x≤−µt

|u(t, x;u0)− p(t)| ≤ lim
t→+∞

sup
x≤−(µ−δ)t−x0

|u(t, x;u0)− p(t)|

= lim
t→+∞

sup
x≤−x0

|u(t, x− (µ− δ)t;u0)− p(t)|.
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Observe that w(t, x) = u(t, x− (µ− δ)t;u0) satisfies
wt = wxx − (µ− δ)wx + w[r(t, x− (µ− δ + c)t)− w], t ∈ (kT+, (k + 1)T ], x ∈ R,
w(kT+, x) = g(w(kT, x)), x ∈ R, k ∈ N,
w(0, x) = u0(x), x ∈ R.

(3.10)

Let v(t, x) be the unique solution of
vt = vxx − (µ− δ)vx + v[r(t, x)− v], t ∈ (kT+, (k + 1)T ], x ∈ R,
v(kT+, x) = g(v(kT, x)), x ∈ R, k ∈ N,
v(0, x) = u0(x), x ∈ R.

By the proof of Step 3 in Theorem 3.3, v(t, x) has a lower solution, which is similar to (3.2).

In addition, it is easy to see that v(t, x) ≤ w(t, x) for t > 0 and x ∈ R. Then w(nT, x) ≥
ε0e

γ1T+µ−δ
2
xψ(x)[g′(0)]−1, where ε0, γ1, ψ(x) are determined by Step 3 in Theorem 3.3. Obviously,

lim inf
x→−∞

w(0, x) = lim inf
x→−∞

u0(x) > 0. By Lemma 2.1, system (2.1) with u0 = M has a unique positive

w̄(t;M) satisfying lim
t→+∞

|w̄(t;M)−p(t)| = 0. Choose M > supx∈Rw(0, x), by comparison principle,

w(t, x) ≤ w̄(t;M) for all t > 0, x ∈ R. Thus,

lim
t→+∞

sup
x≤−x0

[w(t, x)− p(t)] ≤ lim
t→+∞

[w̄(t;M)− p(t)] = 0.

Then, it suffices to prove lim
t→+∞

supx≤−x0 [p(t) − w(t, x)] ≤ 0, namely, ∀ε > 0, there are t0 > 0

and x0 > 0 satisfying infx≤−x0 w(t, x) > p(t) − ε,∀t ≥ t0. For any ε > 0, there exists γ > 0

sufficiently small such that r̄(−∞)−γ > 0. By Lemma 2.1, equation (2.2) with r(t,−∞) replaced by

r(t,−∞)−γ has the unique positive solution β(t) satisfying β(t) > p(t)− ε
2 . For such γ and w(t, x),

we can find y0 < 0 such that r(t, y0) ≥ r(t,−∞)− γ for all t > 0 and w(0, x) ≥ 1
2 lim inf
x→−∞

w(0, x) for

x ≤ y0. According to µ− δ + c > 0 and r(·, x) nonincreasing in x, we obtain

r(t, x− (µ− δ + c)t) ≥ r(t, y0) ≥ r(t,−∞)− γ, (3.11)

for any t ≥ nT, x − (µ − δ + c)nT ≤ y0. Define xn := y0 + (µ − δ + c)nT and un0 (x) :=

ε0e
γ1T+µ−δ

2
xψ(x)[g′(0)]−1, x ≤ xn. Let wn(t, x;un0 ) be the unique solution of
wnt = wnxx − (µ− δ)wnx + [r(t,−∞)− γ − wn]wn, t ∈ (kT+, (k + 1)T ], x < xn,

wn(t, x) = 0, t > nT, x = xn,

wn(kT+, x) = g(wn(kT, x)), k ≥ n, x < xn,

wn(nT, x) = un0 (x), x < xn.

From (2.4) and µ − δ ∈ (−c∗, c∗), λ((−∞, xn]) = lim
L→+∞

λ((xn − L, xn]) = (µ−δ)2
4 − (c∗)2

4 < 0.

We apply Lemma 2.2 to get that lim
m→+∞

wn(t + mT, x;un0 ) = wn,∗(t, x),∀t ∈ [0, T ], x ≤ xn, where

wn,∗(t, x) is the unique solution of
wnt = wn,∗xx − (µ− δ)wn,∗x + [r(t,−∞)− γ − wn,∗]wn,∗, t ∈ (0+, T ], x < xn,

wn,∗(t, x) = 0, t ∈ (0+, T ], x = xn,

wn,∗(0+, x) = g(wn,∗(0, x)), x < xn,

wn,∗(0, x) = wn,∗(T, x), x < xn.
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Notice that wn,∗(t, x) is nonincreasing in x and increasing in n, wn,∗(t,−∞) = β(t). Thus, it follows

from xn → +∞ as n→∞ that there is w∗ satisfying lim
n→+∞

wn,∗(t, x) = w∗(t, x) and w∗(t, x) is the

solution of 
w∗t = w∗xx − (µ− δ)w∗x + [r(t,−∞)− γ − w∗]w∗, t ∈ (0+, T ], x ∈ R,
w∗(0+, x) = g(w∗(0, x)), x ∈ R,
w∗(0, x) = w∗(T, x), x ∈ R.

Since w∗(t, y0) = lim
n→+∞

wn,∗(t, y0) ≥ w1,∗(t, y0) > 0 and µ − δ ∈ (−c∗, c∗), we use Louville’s

theorem and [44, Theorem 1.3] to deduce that w∗(t, x) ≡ β(t). Then, due to (3.11) and w(nT, x) ≥
un0 (x), from the comparison principle, we get w(t + nT, x) ≥ wn(t + nT, x), ∀t ∈ (0+, T ], x ≤ xn.

Consequently,

lim inf
n→+∞

sup
x≤y0

w(nT + t, x) ≥ lim inf
n→+∞

sup
x≤y0

wn(t+ nT, x) ≥ lim
n→+∞

wn(t, y0) = β(t) > p(t)− ε

2

for all t ∈ (0+, T ]. Taking x0 = −y0, equation (3.9) holds.

Step 3. We shall show the equation (3.6).

By equation (3.5), there are T0 > 0 and ρ > 0 satisfying |u(T0, x) − U(T0, x − cT0)| < ρ, ∀x ∈ R.

Taking ξ0 = T0, we know that w± is a pair of upper-lower solutions of (1.2) for t > T0 and x ∈ R,

where w± is given in Lemma 3.6. It follows from the comparison principle that w−(t, x) ≤ u(t, x) ≤
w+(t, x), ∀t > T0, x ∈ R. So,

|u(t, x)− U(t, x− ct)| ≤ ρe−σ(t−T0)[1 +MU(t, x− ct)] ≤ ρeσT0 [1 +M max
[0,T ]

p(t)]e−σt, ∀t > T0, x ∈ R.

Hence, the proof is complete by letting 0 < µ < σ. �

Remark 3.1. As shown in [34], the forced KPP wave of ut = uxx + u(r(t, x− ct)− u) with initial

value u0(x) exists if and only if c < cF := 2
√
r̄(−∞). Assumption (H) implies c∗ < cF . By

Theorem 3.7, the birth pulse reduces this likelihood that the species moves like a forced KPP wave.

Moreover, we can apply similar arguments to show the propagation dynamics for c ≥ c∗:

Theorem 3.8. For c ≥ c∗, if u0(x) is bounded, then

lim
t→+∞

sup
|x|≤µt

|u(t, x;u0)− p(t)| = 0 for any µ ∈ (0, c∗).

If u0(x) has a compact support, then

lim
t→+∞

sup
|x|≥(c∗−µ)t

u(t, x;u0) = 0 for any µ ∈ (0, c∗).

Proof. By the proof of Step 1 in Theorem 3.7(2), for any ε > 0, there is large enough T0 > 0

satisfying

sup
x∈[(−c∗+σ)t,ξ0+ct)

|u(t, x;u0)− p(t)| < ε

2
,∀t ≥ T0,

where ξ0 is given in Step 1 of Theorem 3.7(2) and σ > 0. Due to c ≥ c∗ and µ ∈ (0, c∗), there is

large enough T1 > 0 such that µt ≤ ct+ ξ0 for t ≥ T1. We choose 0 < σ < c∗ − µ, then

sup
|x|≤µt

|u(t, x;u0)− p(t)| ≤ sup
x∈[(−c∗+σ)t,ξ0+ct)

|u(t, x;u0)− p(t)| < ε

2
,∀t ≥ max{T0, T1}.
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If further u0(x) has a compact support, then it follows from the proof of Theorem 3.7(1) that

u(t+mT, x;u0) ≤ w̃(m)(t, x) and for c ≥ c∗,

w̃(m)(t, x) = M(e−λ(−L̃t)T g′(0))me−λ(−L̃t)tg′(0)φ∗(x− ct)→ 0, ∀t ∈ (0+, T ], x ∈ R, as m→ +∞.

Consequently,

0 ≤ lim
t→+∞

sup
|x|≥(c∗−µ)t

u(t, x;u0) ≤ lim
m→+∞

sup
|x|≥(c∗−µ)s

u(s+mT, x;u0)

≤ lim
m→+∞

sup
|x|≥(c∗−µ)s

w̃(m)(s, x) = 0,∀s ∈ (0+, T ].

Hence, our conclusions follow. �

4. Simulations

In this section, we present some simulations to demonstrate our theoretical results, and to illus-

trate how shifting speed c, impulsive rate g′(0) and initial function u0(x) combined affect the long-

term behaviors of population dynamics. We truncate infinite domain R to finite domain [−L,L],

where L is sufficiently large. Set T = 1, L = 50 and r(t, x) = (2e−x−ex)(0.8 cos(2πt)+1)/(e−x+ex)

throughout this section. Obviously, r̄(−∞) = 2 and r̄(+∞) = −1.

4.1. Forced wave. Let g(u) = au(a > 0). In the case where c = −12 and a = 1/e. Then

c < c∗ = 2 and (H) is satisfied. The simulations of forced waves in a bounded domain [−50, 50]

are shown in Figure 1. It observes that the forced wave U(t, ξ) is 1-periodic and non-increasing in

ξ, which is consistent with the results of Theorem 3.3.
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Figure 1. Forced wave for c = −12 and g′(0) = 1/e

4.2. Spatial spread with different shifting speed c. To simulate the propagation dynamics

for different shifting speeds c, we set g(u) = au(a > 0) with a = 1/e, then c∗ = 2. Meanwhile, we

select the initial function u0(x) from the following two options:

f1(x) =


0, if − 50 ≤ x ≤ 0

sin
(
πx
20

)
, if 0 < x < 20

0, if 20 ≤ x ≤ 50;

f2(x) =


1, if − 50 ≤ x ≤ 0

cos
(
πx
40

)
, if 0 < x < 20

0, if 20 ≤ x ≤ 50.

For the initial function u0(x) = f1(x) having compact support, the evolution of the solution is

shown in Figure 2. It is observed that, for c ≤ −c∗, the species becomes extinct in any domain

as time progresses, which verifies Theorem 3.7(1). If c ∈ (−c∗, c∗), then there exists µ ∈ (c, c∗)

such that the density distribution of species u on the domain x > −µt gradually approaches the

shape of the forced wave over time. Furthermore, the direction of the forced wave is determined

by the sign of the shifting speed c, consistent with equation (3.5) in Theorem 3.7. Additionally,

for c ≥ c∗, the species will survive and reach a steady state in the core region. Moreover, there
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exist two transitional regions (buffer zones) where the species density sharply decreases due to

shifting environmental factors. Beyond these buffer zones, the species is absent, ultimately leading

to extinction, consistent with Theorem 3.8.

Figure 2. The impact of different shifting speed c on the density of u when u0 = f1

(Top left panel c = −5; Top right panel c = −1; Bottom left panel c = 1; Bottom right
panel c = 5)

For the initial function u0(x) = f2(x), it holds that lim inf
x→−∞

u0(x) > 0 and c∗ = 2. Figure 3 shows

that the density distribution of species u across the entire domain gradually approximates the shape

of the forced wave as time evolves. Moreover, the direction of the forced wave is determined by the

sign of the shifting speed c, consistent with equation (3.9) in Theorem 3.7.

Figure 3. The density of u when u0 = f2 (Left panel c = −1; Right panel c = 1)

4.3. Spatial spread with different initial value u0. To investigate the impact of the initial

value u0(x) on propagation dynamics, we still set g(u) = au(a > 0) with a = 1/e, and select u0(x)

from functions defined on the domain [−50, 50]: f3(x) = 1; f5(x) = cos(πx) + 2; f7(x) = e−x
2
;

f4(x) =


0.4 if − 50 ≤ x ≤ 0

0.4− 0.04x if 0 < x < 10

0 if 10 ≤ x ≤ 50;

f6(x) =


0 if − 50 ≤ x ≤ 0

0.06x if 0 < x < 10

0.6 if 10 ≤ x ≤ 50.
As shown in Figure 4, Lemma 3.5 still holds for different initial value f3, f4, f5, respectively.

Then we provide a guess that the species density u on entire domain approaches the shape of the

forced wave over time, as long as c < c∗ and lim inf
x→−∞

u0(x) > 0. Those give us some direction to

weaken the initial value condition in theoretical proofs.
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Figure 4. The species density of u under different initial conditions (Top left panel
u0 = f3; Top right panel u0 = f4; Bottom panel u0 = f5)

In the case where c ≤ −c∗ or c ≥ c∗, we select u0 as f6 and f7, respectively, in Figure 5. Note that

Theorems 3.7(1) and 3.8 still hold even when the initial value does not have compact support. Thus,

we conjecture that Theorems 3.7(1) and 3.8 remain valid under the condition lim inf
x→−∞

u0(x) = 0.

Figure 5. The species density of u under different initial conditions (Left panel
u0 = f6; Right panel u0 = f7)

4.4. Spatial spread with different birth pulses g(u). To explore the influence of the birth

pulse g(u) on the propagation dynamics, we set the shifting speed c = 1 and the initial function

u0(x) = f1(x). The birth pulse g(u) is chosen from one of the following functions:

g1(u) = e−1u; g2(u) = u/(e+ u); g3(u) = e−2ue1−u,

where g′i(0) = e−1(i = 1, 2, 3) satisfies condition (H); g2 is the Beverton-Holt function and g3 is a

Ricker function. Notably, g1 and g2 are monotone, while g3 is non-monotone. As shown in Figure

6(A), the population density varies depending on the form of g. However, when g′(0) remains the

same, the survival region of species u at any given time remains unchanged, despite variations in

the form of g. From the propagation dynamics of u with g = g3, we provide a guess that Theorem

3.7 and Theorem 3.8 may still hold even when the birth pulse g(u) is non-monotone.

Recalling c∗ := 2
√
r̄(−∞) + 1

T ln g′(0), we find that the value g′(0) will affect the value of c∗. In

this case, we choose shifting speed c = 1, the initial function u0(x) = f1(x) and g(u) = au(a > 0)

with different a. Figure 6(B) shows the population density of u for a = ai(i = 0, 1, 2), respectively,

where a0 = 1/e, a1 = 1 and a2 = e. Observe that the density and survival region of species u vary

with g′(0); moreover, the survival region expands as g′(0) increases, at any given time. Notably,
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when a = a1, our system (1.2) reduces to the model in [34], indicating that the birth pulse affects

the density and survival region of species u. For a = a2, condition (H) is not satisfied; however,

the propagation dynamics remain the same. Thus, we conjecture that Theorems 3.7 and 3.8 hold

when condition (H) is replaced by er̄(+∞)[g′(0)]
1
T < 1 < er̄(−∞)[g′(0)]

1
T .

(A) The density of u with g′(0) = 1/e (B) The density of u with different g′(0)

Figure 6. The species density of u

5. Discussion

In this work, we described the propagation dynamics of species giving birth only at a particular

time of each period and undergoing a shifting environment with the speed c (the case where the

birth pulse is also impacted by the shift of the environment should be considered in future studies).

The sign of c indicates if the supportive or adverse environment dominates the invasion process,

in our study, we assumed that the environment is supportive at −∞ and adverse at +∞. We

first defined a forced KPP wave of (1.2), namely, u(t, x) = U(t, x − ct) satisfies (1.3)-(1.6). We

obtained the existence/nonexistence and uniqueness of forced KPP waves. We have shown that

if c < c∗, then the forced KPP wave exists and is unique; if c ≥ c∗, then the forced KPP wave

does not exist. We obtained the threshold value c∗ as the downstream spreading speed of limit

system (2.6) and showed that this threshold is determined only by the intrinsic growth rate, the

birth pulse and the period time. It should be emphasized that the maximum spreading speed c∗

of the forced KPP wave is less than that of in [34], which implies that the birth pulse reduces the

possibility that the species eventually moves like a forced KPP wave. In addition, we obtained the

propagation behaviors of solutions to (1.2). Our results show that regardless of the direction the

environment is moving, as long as the speed of shifting environment is appropriate, the species will

eventually propagate like a forced KPP wave, which moves at the same speed as that of the shifting

environment. We proved that the forced KPP wave is exponentially stable under some conditions

on initial functions. When the shifting speed moves leftward at a large speed, it causes the species

extinction in all domains. This occurs because the harsh environment expands rapidly, forcing the

species to remain in it for an extended period. When the shifting speed moves rightward at a large

speed, the propagation dynamics resemble those of the limiting system in a favorable environment.

This is because the species remains in the good environment for a prolonged period.

Finally, our numerical simulations demonstrated that the shifting speed c, the impulsive rate

g′(0), and the initial function u0(x) combined will influence the long-term behaviors of population

dynamics. Particularly, the survival region of species u at any given time expands as g′(0) increases.

Our numerical simulations also suggested a conjecture that Theorem 3.7 and Theorem 3.8 may

remain valid under weaker conditions on the initial values or the birth pulse.
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