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IMPACT OF BIRTH PULSE AND ENVIRONMENT SHIFT ON POPULATION
SURVIVAL AND PROPAGATION

YAOBIN TANG!, BINXIANG DAIM*, JIANHONG WU#H*

ABSTRACT. We consider the propagation dynamics of a single species with a birth pulse and living
in a shifting environment driven by climate change. We describe how birth pulse and environment
shift jointly impact the propagation properties. We show that a moderate environment shifting
speed promotes the spatial-temporal propagation represented by a stable forced KPP wave, and
that the birth pulse shrinks the survival region.

1. INTRODUCTION

Reaction-diffusion equations have been used to describe mechanisms for spatiotemporal dynamics
in ecological systems where dispersal of individuals in the considered population follows random
diffusion [1-6]. Significant progress has been made for the propagation dynamics of biological
invasion since the pioneering work of Aronson and Weinberger [7,8] on the Fisher-KPP equation
U = Ugy + f(u), V(t,z) € (0,+00) x R, where u(t,z) represents the density of the species at
time ¢ and location x; function f is C'—smooth, f(0) = f(1) = 0, f(u) > 0 for u € (0,1) and
f(u) < f/(0)u for u > 0. It is known that the asymptotic spreading speed cxpp = 24/f(0)
coincides with the minimal speed of traveling waves. Reproductive synchrony of some plant and
animal populations (e.g., fish, dandelions, or large mammals), where individuals give birth only at
the beginning of each period, motivates the study of the impulsive reaction-diffusion system:

u™ =l + (™), te 0.7 xeQ,
u™(0,2) = g(Nm(2)), =€,
Npi1(z) = u™(T, ), z€Q,
where g(u) is the (continuous) birth function. Lewis and Li [11] showed that such a system has a

threshold, related to the domain size, that can be used to characterize the extinction or persistence
of the species for bounded domain Q with (™) (t,2) = 0 for 2 € dQ. They also showed that the

minimal speed crp,p = 2\/ f/(0) + £1n¢/(0) (see Lin and Wang [12] for a general response term
f(u)). See [13] for a non-local impulsive version of the model formulated to study the population
dynamics in a stream and to examine how advection affects population persistence. See also [9,10]
for impulsive models in higher dimensions, and recent studies in [14-22].
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Another relevant line of research has been driven by the impact of climate change on species
persistence [23-25]. Potapov and Lewis [26] developed a population dynamic model in a climate-
driven shifting environment u; = uz, + f(x —ct,u),V(t, z) € (0,400) x R, where ¢ > 0 is the speed
caused by climate changes. For the scenario where a supportive environment is encircled by adverse
ones, they derived the minimum habitat size required for the persistence of the species. Subsequent
studies [27-32] motivated this pioneering work. In addition, Berestycki & Fang [33] considered the
situation where a favorable environment on the left half of a plane expands into an unfavorable
environment on the right at the shifting speed ¢ > 0. Other developments include studies [27, 28]
linking the global dynamics, the forced waves (e.g., [28, Theorem 3.6]) and the study by Fang et
al. [34] on the propagation dynamics in time-periodic environment; as well as the paper [35] for
propagation dynamics involving nonlocal dispersal.

Consideration of the effects of habitat shifting on the propagation of species with birth pulse in
high-dimensional spaces leads to the following model

uf™ =y + f(x — cte,ut™), te(0,1],x R,
™0, 2) = (N (2)),  ER", (1.1)
Ny (z) = u™(1, ), x € R™

The studies [36-38] established the threshold dynamics in bounded domains, analyzed the proper-
ties of positive steady states, and demonstrated how the shifting speed ¢ along with the impulsive
reproduction rate g influences the persistence of the population. These studies ignore the depen-
dence of the growth rate r(¢,x) in seasonal succession. Incorporating this T-periodic growth rate
r(t,z) and the occurrence of birth pulses at pionts k7" (k = 0,1,2,...), naturally, it leads to the
following Fisher-KPP equation with a time-periodic environment and birth pulse:

Up = Ugy +u(r(t,z —ct) —u), te (T, (k+1)T],zeR,

wkT, z) = g(u(kT,x)), r €R,kEN, (1.2)

u(0,z) = up(x), z €R,
where r(t,x — ct), with r(t + T, z) = r(t,x), denotes the growth rate of species in a time-periodic
shifting environment with speed ¢; the function g(-) describes a birth pulse occurring at the start of
each period; the initial function ug(x) is nonnegative, bounded, and continuous. For t € (KT, (k+
1)T7] in the first equation of (1.2), u satisfies the equation for ¢t € (KT, (k + 1)T] with the initial
value u(kT™,z), which is the right-hand limit of u at ¢ = kKT. Hence, we provide a systematic
description of the dynamics of model (1.2).

Throughout the remainder of this paper, we assume that 7(t,z) is continuous, bounded on R2,
nonincreasing in x, and has the following property to reflect that the environment is supportive at
local —oo and adverse at local +oc:

(R): the limits r(¢, +00) and r(¢, —00) exist uniformly in ¢, and r(¢, +00) < 0 < r(t, —00).
In addition, we assume

(G1):  g(u) is continuous and non-decreasing, locally Lipschitz continuous uniformly in u > 0;
(G2):  ¢(0) =0; ¢'(0) exists; g(u)/u is non-increasing and g(u) > 0 in u > 0;

(G3):  There is N > 0 such that Lf\y) <1

(G4):  There exist D, p > 1 and small 6 > 0 satisfying g(u) > ¢'(0)u — Du” for u € [0, 6].

We will show the existence and exponential stability of forced KPP waves, and investigate the
global dynamical behaviors of (1.2). Herein, the term “forced” signifies that the propagation speed
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c of the KPP wave is externally prescribed by the drift speed of the heterogeneous environment,
rather than being an intrinsic wave speed selected by the system. We first define a forced KPP
wave by considering u(t,z) = U(t,z — ct). Let £ =z — ct. Note that U(t,¢) satisfies

U =Uge + cUc + U(r(t,€) = U),t € (KT, (k+ 1)T],£ € R; (1.3)
UkT",€&) = g(U(KT,€)),k € N, ¢ € R; (1.4)
Ut +T,6) = U(t,€),t € (KT, (k+ 1)T], € € R. (1.5)
Then, U(t, &) is a forced KPP wave of (1.2) when
U(t,+00) =0 and U(t,—o0) = p(t). (1.6)

Here, p(t) satisfies (2.2) when e7(—%) [g’(O)]% > 1.

Note that (1.2) is discontinuous at ¢ = kT due to the birth pulse. Unlike the continuous time-
periodic system considered in [34], the corresponding Poincaré map of (1.2) has different properties.
Constraints must be imposed on the birth pulse g to ensure that the Poincaré map remains bounded.
Moreover, we establish a comparison principle and construct appropriate upper and lower solutions.
In studying the propagation dynamics, we apply the principal eigen-pair of the eigenvalue problem
for the corresponding linearized equation, along with iteration methods, to prove the results when
¢ < —c*. This approach differs from that in [34] as we will have to consider the birth pulse.

The paper continues with the following structure. In section 2, we provide some preliminaries
about the limit systems and some a-priori estimates for possible forced waves. In section 3, we
consider the forced KPP waves and analyze the spreading properties of solutions to (1.2) with
different speeds c. In section 4, we present some numerical simulations, and in the final section we
present some discussions.

2. PRELIMINARIES

2.1. Two periodic problems. In this subsection, we summarize some preliminary results which
will be used in subsequent analysis. We first consider the limiting equation

ur = u(r(t,—oo) —u), te (KT, (k+1)T],
wkTt) = g(u(kT)), keN, (2.1)
u(0) = ug > 0.

By the classical theory of ODEs, (2.1) admits a unique classical solution. We establish a threshold
result for system (2.1):

Lemma 2.1. Let a(t;ug) be the unique solution of (2.1) with initial value ug > 0 and define
_ 1 T
F(—00) = 7 [, r(t,—o0)dt.
(1) If e"(=°) [g’(O)]% <1, then (2.1) has only the zero solution.
(2) If e"(=) [g’(())]% > 1, then a(t;ug) > 0 satisfies t_lgrn |a(t;ug) — p(t)| = 0. Here, p(t) > 0
1s the unique solution of
up = u(r(t,—oo) —u), te (0+,T],
u(0%) = g(u(0)), (22)
u(0) = u(T).
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Proof. By [39, Theorem 2.3.4], we only show . 1ir+n |a(t; up) — p(t)| = 0. The proof of [40, Theorem
—+00

3.4] implies that (2.2) has a unique solution p(t). For given uy > 0, there are ¢ > 0 and C' >
max{N, maxjy ) r(t,—oc)} such that ¢ < up < C. Choose a large enough K > 0 such that
u(r(t, —o0) — u) + Ku is increasing in u. Define {w(™},,>¢ satisfying

wt(m) + Kw™ = Kw™=1 4+ wm=D(r(t, —o0) —w™ ), te (0,7,

w™(0%) = g(w™1(0)),

W (0) = wln-D(T),
with w(©® = C. Obviously, 0 < wmth) < pm) < < D) < 0 = C. Then there is w*(t)
satisfying (2.2) such that liI_Ii_l w™ (t) = w*(t),Vt € [0,T]. By the uniqueness, w*(t) = p(t).

m——+0Q
Observed that a(t;up) < max{N,max|yp r(t,—c0)} < C = w®, then a(T;ug) < wO(T) =
wM(0), so a(TH;up) = gla(T;up)) < g(w(T)) = w(0F). By comparison principle, we fol-
lows from the iteration methods that a(t + mT;ug) < w\™(t),vt € [0,T], for m = 0,1,2,....
Then lilil a(t +mT;ug) < liIE w(™ (t) = p(t). Similarly, we can find an increasing sequence
m—+o00 m—+00

{v(™},,50 satisfying

v,gm) + Ko™ = Kom=1 4 om=D(p(t, —o0) —om=1) t e (0,71,
o™ (0%) = g(v0™=D(0)),
0™ (0) = v(Mm=D(T),

with v(0) = ¢, such that lim «a(t+mT;ug) > lim 0™ (t) = p(t). This completes the proof. [

m—-+00 m—-+00

We now consider the eigenvalue problem in bounded domain [l1, l2]:

¢t = ¢zz + T(t, _OO)¢ + A(b, te (0+7T]7$ € (lhl?)’
¢(0+,:II) = g/(0)¢(0,$), T € (l1712)7

(2.3)
o(t, 1) = ¢(t,l2) =0, t€ 0,77,
¢(0,2) = (T, x) r € (I, l2).
By [40, Lemma 2.3], the generalized principal eigenvalue of (2.3) can be written as
A a]) = () = (=00) = 7l g (0). (24)
2 — 1
We apply the eigenvalue problem (2.3) to discuss the following problem in bounded domain:
Ut = Uz +u(r(t,—o0) —u), te (KT, (k+ 1T,z € (I1,l2),
w(kT*, z) = g(u(kT,x)), ke N,z e (I1,12), (2.5)
u(t,l1) = u(t,l2) =0, t>0,
u(0,x) = up(z), x € (l1,12).

Similar to the proof of [40, Lemma 2.5], we obtain the following threshold dynamics:
Lemma 2.2. Denote by u(t, z;uo(z)) the unique solution of (2.5) with ug(x) > and # 0.

(1) lim wu(t,x;up(x)) = 0 uniformly in [l1,l2] if A([l1,12]) > 0.

t—-+o0
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(2) For any (t,x) € (07, T] x [l1,1s], lim w(t+mT,z;uo(x)) = u*(t,z) if X([l1,12]) < 0. Here

—+00
u*(t,z) satisfies

Up = Ugy + u(r(t,—o0) —u), te (07,T],z e (I,l2),
uw(0", ) = g(u(0, 1)), x € (Iy,12),
u(t,l1) = u(t,l2) =0, te (0+,T],
u(0,2) = u(T, x), x € (Iy,12).

2.2. Spreading properties of some time-periodic-parabolic problems. At begin, we give
some definitions for the following equation:
Ut = Ugg + u(r(t,—o0) —u), te kT, (k+1)T),z€R,
wkTt,z) = g(u(kT,x)), r€RkeN, (2.6)
u(0,z) = up(z) > 0, z e R.

Definition 2.3. A T-periodic traveling wave solution of (2.6) is a special solution of the form
u(t,x) = W(t,x — ct), where c € R is the wave speed if W (t,x — ct) satisfies

Wi = Wee + cWe + W(r(t,—o0) — W), t € (KT, (k+1)T],£ €R
W(KT",€) = g(W(KT,€)),k € N,§ € R;
W(t+T,6) =W(tE),t e (kTT, (k+ 1T, €R

with boundary conditions U(t,+00) = 0 and U(t, —o00) = p(t). Moreover, we denote by the down-
stream spreading speed c*, which coincides with the minimal wave speed for which traveling wave
solutions exist.

Remark 2.1. [t is crucial to distinguish the concept of a forced KPP wave from that of a traveling
wave. A traveling wave is any solution of the form u(t,x) = W (x — ct), where the speed c is a
parameter. In contrast, a forced KPP wave is a very specific type of traveling wave, where the wave
speed ¢ is not a free parameter but is externally prescribed by the drift speed. Namely, a forced
wave is a traveling wave that is locked to this environmental speed, rather than being a member of
a continuum of waves.

According to [41, Theorems 2.2 and 2.3|, we can obtain the existence of T-periodic traveling
wave and the downstream spreading speed:

Sl

Lemma 2.4. If ¢"(=®)[¢/(0)]T > 1, then there exists a downstream spreading speed

1
= 2\/7'(—00) t 7 In ¢’(0)
such that, system (2.6) has a T-periodic traveling wave solution W (t,x — ct) with W (t, —oo) = p(t)
and W (t,+o00) = 0 if and only if ¢ > c*.

Remark 2.2. If "(+) [g’(O)]% < 1, then the comparison argument and Lemma 2.1 deduce that,
as t — oo, every nonnegative solution of (2.6) with r(t,—o0) replaced by r(t,+00) converges to 0
uniformly for x € R.

In our study here, we consider the following case:

(H): g'(0) <1< =g (0)]

S=
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It is easy to see that e”(+)[¢/(0)]T < 1 < €"(=>)[¢/(0)]T. Using standard LP theory, together with
the upper and lower solution methods, monotone iteration, and the comparison principle, it can be
shown that (1.2) has a unique classical solution u(t, z;ug).
For any given y € RU {£oc}, consider
U; = Ugg + CUg -+ U(T(t,f + y) — U), t e (/CTJr, (k + 1>T],§ € R,
UKT*,€) = g(U(KT,¢)), keN, £ eR, (2.7)
U(0,¢) = ¢(8), £ eR,

where ¢(§) € C(R,R) is nonnegative and not identically zero. We first define the generalized upper
and lower solutions of (2.7).

Definition 2.5. If there are {x;}™, C R and function U € C12([0,00) x R\ {z;}7,) satisfying
U >Ug+cUs+U(r(t,E+y) —U), te (kTT,(k+1)T),€ €R,
Ur(t,€7) < Ux(t,€7), t>0,6=x4,1<i<m,
UkT*,&) > g(U(KT\€)), keN ¢ eR,
then U(t,€) is called a generalized upper solution of (2.7). A generalized lower solution of (2.7)
can be defined by reversing the above inequalities.
When y = 0, the first equation of (2.7) reduces to (1.3). As y — o0, the first equation of (2.7)
approaches the corresponding limiting equation:
Up = Uge + cUg + U(r(t,£00) = U),t € (KT, (k+ 1)T], € R.

Denote by UY(t,&; ¢(+)) the unique solution of (2.7). Since U°(t, & + y; ¢(+)) and UY(t,&; ¢(- + %))
are solutions of

Uy =Ug+cUs +U(r(t,6+y)—U), te (KTT,(k+1)T),¢ R,

UKT*,&) = g(U(KT,£)), keN§eR,
U(0,8) = o(§ + ), {ER,
the uniqueness implies that
U(t, 6 +y;0() = UY(t,& 9(- +)),Vt > 0,€,y € R, (2.8)

Denote by P, : C(R,RT) — C(R,R") the time-T solution map of Uy = Uge + cUg + U(r(t, € +y) —
U),t >0,¢ € R. Then Q, = P,og is the poincaré map of (2.7) and UY(kT,&; ¢(-)) = Qlyf(qb), where
QZ is the kth iteration of @),. Note that P, meets the properties of [35, Lemma 3.3] or [34, Lemma
2.1]. We first define the local uniform convergence: a sequence of functions {¢,} C C(R,R™)
converges to ¢ if for any compact set K C R, sup,cg |¢n(z) — ¢(x)] — 0.

Lemma 2.6. @), satisfies the following conclusions:

(1) (Compactness Property) If a,(§) is uniformly bounded, then Qylayn], up to a subsequence,
converges locally uniformly.

(2) If U(t, &) and U(t,€) are a pair of upper-lower solution of (2.7) for t > 0 and satisfy
Ut &) > U(t,E), then

(3) Qyle(I(€+y) = Qylo(- +9)](§), Y,y € R.
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Proof. (1)1t follows from the third property of [34, Lemma 2.1] that if a,,(§) is uniformly bounded,
then Pya,], up to a subsequence, converges locally uniformly. The hypothesis (G1) ensures that
Qylax] also converges locally uniformly.

(2) By (G1), g(a1(£)) < g(az(§)) for given a1(§) < az(§). It then follows from the first property
of [34, Lemma 2.1] that P,og(ai(§)) < Pyog(az(§)), namely, Qy(ai(§)) < Qy(aza(€)). Moreover, we
choose a pair of upper and lower solutions of (2.7), U(t,&) and U(t,£), satisfying U(t, &) < U(t,€)
for t € (T, (k + 1)T]. Since U(KT*,£) < g(U(KT,£)), it follows that

Py(U(KT™,€)) < Pyo g(U(KT,§)) = Qy(U(KT, ).

Similarly, Q, (U (kT,&)) = Pyog(U(kT,€)) < P,(U(KT*,£)). By the fourth property of [34, Lemma
2.1] and the monotonicity of @, we obtain

(3) It follows from (2.8) that Q,[¢()](€ +y) = Qy[#(- + y))(€), V€, y € R. O

Lemma 2.7. If (1.3)-(1.6) admits a T-periodic bounded solution U(t,£) > 0 but # 0, then U(t,§) €
(0,p(t)) for (t,€) € (0,+00) x R, and U(t,+00) = 0 uniformly in [0,T].

Proof. Firstly, we show U(t,£) > 0. Otherwise, we can find (o, xo) such that U(to, o) = 0, where
to € (01, T). If to = T, then U(T,z9) = 0. In terms of U(0",¢) = ¢g(U(0,£)) > 0 and # 0,
the strong maximum principle deduces that U(T,&) > 0 for any £ € R, a contradiction with our
assumption. If ¢y € (07, 7T), then the strong maximum principle also implies that U(t,£) = 0 in
[0, T], which contradicts U(T, ) > 0.

Next, we shall show U (¢,£) < p(t). Observe that a(t; M) is an upper solution of (1.3)-(1.5) for any
M > 0, the comparison principle deduces that a(t; M) > U(t,§) for M > max{max¢cr U(0,&), N}.
Define operator Hy ;41 := ];‘H. By Lemma 2.6(1), we regard U(t,€) as a lower solution of (1.3)-
(1.6). Then

U(0*,€) < HPWHL M) < Hy 4 [M] < g(M) < M,Vk € N.
Note that, if a(¢) is non-increasing in £ € R, then g(a(§)) is also non-increasing, and thus Qy(a(§)) =
Pylg(a(§))] is non-increasing in & by the second property of [34, Lemma 2.1]. Thus there exists
a non-increasing function ¢(§) such that Hy,  [M] converges locally uniformly to ¢(¢). Hence
Ho +1(¢) = ¢. It follows from Lemma 2.6(2) that

B+oc) = lim o(y) = lim Hoxa(6)(y) = lim Hyialé(: +9)(0).

y——+00 y—>+00
Notice that
lim Hypalo(+9)(0) = T UY((k+ 1DT,0:6( +3))

Yy—+00
= Ur((k+ 1)T, 0; ¢(+00)) = Hyoo k+1(¢(400)).

S0, ¢(400) = Hioo kt1(¢(400)), similarly, ¢(—o0) = H_s p+1(¢(—00)). Observe that, (2.7) has
only zero solution when y = +o0, and (2.7) has a zero solution or a T-periodic solution p(¢) when
y = —oo (similar to the proof of [40, Theorem 3.4]), namely, ¢(—oc) = p(0) or 0, ¢(4+00) = 0. By
#(&) > U(0T,€), we have ¢(—o0) = p(0). By the comparison principle and ¢(€) < p(0), we conclude
that U(t,£) < p(t). Furthermore, the strong maximum principle implies that U(¢,£) < p(¢).
Moreover, due to ¢(+00) = 0, Lemma 2.6(2) implies

Ult+00) = lim Ultyié()) = lim U(E0:6(-+ ) = UF(t,056(+o0) = 0.

Then U (t, 4+00) = 0 uniformly in [0, 7. O
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3. PROPAGATION DYNAMICS
Note that the analysis in this section is based on the assumptions (R),(G1)-(G4) and (H).

3.1. Forced KPP waves. We first use the monotonicity of g(u), combining with [40, Lemma 3.1],
to derive the maximum principle and the comparison principle:

Lemma 3.1 (Maximum principle). For any given ¢(§) > 0, assume that, for some c(t,§) €
L>®([0,00) x R), function U(t,£) € C12(]0,00) x R) satisfies

Up > Uge + cUe + c(t,6)U, te (KT, (k+1)T], € €R,

UKT*,€) 2 g(U(KT,€)), keNER,

U(0,8) = (&) = 0, {eR.
Then U(t,&) > 0 in [0,00) x R. Moreover, U(t,£) > 0 in (0,00) x R if ¢(§) # 0 in R.

Lemma 3.2 (Comparison principle). Let U(t,£) be the unique solution of (1.3)-(1.4). Assume
that there exists a function U(t,&) € C12([0,00) x R) satisfying

Uy > Uge + cUg + U(r(t,€) = U), te (kT (k+1)T],§ €R,
U(KT*,€) > g(U(KT\¢)), keN,§eR,
U(0,6) = U(0,¢), £eR.

Then U(t,€) > U(t,€) in [0,00) x R.

Recall that ¢* := 2\/F(—oo) + L 1Ing'(0) and 7(doo) = Tfo r(t,+00)dt, and e"(+°°)[¢(0 )]% <

1 < (=) [g’(O)]%. By a simple analysis, the equation 2+ cpu+7(4-00)+ T In ¢’(0) = 0 has a unique
negative root 1 < 0 for any given ¢ € R. If ¢ > ¢*, then equation A? + cA + 7(—o0) + % Ing’(0) =0
admits two negative roots \; < Ay < 0. Noting A?+cAj+7(400)+7 In ¢'(0) = 7#(+00) —7(—00) < 0,
we have \; > ;.

In this subsection, we discuss the existence/nonexistence of forced KPP waves for (1.2), which
is equivalent to consider the properties of the solution to (1.3)-(1.6).

Theorem 3.3. The forced KPP wave of (1.2) exists only in the case that ¢ < c¢*. Moreover, if it
exists, denoted by U (t,€), then it is unique and nonincreasing in & € R.

Proof. We divide the proof into three steps.
Step 1. We show that, if ¢ > ¢*, no forced wave is present for (1.2).
If system (1.3)-(1.6) has a positive T-periodic solution U(t,§) for ¢ > ¢*, then it follows from
Lemma 2.7 that U(t,&) < p(t). We prove U(t,—o0) > p(t) to get a contradiction.
Claim: U(t, &) = o(e“1+M¢) for some 1 > 0 as &€ — 400. Letting €9 = —7(+00) > 0, for any given
e € (0, €), there exists 7 > 0 such that g1 +7 < 0,A\; > 1 +n and
1

(11 +m)?* + e + 1) + 7(+00) +  Ing'(0) + € =0.

Choose & > 0 satistying r(t,§) < r(t,+00) + €, V& > . Define

() = elollmtm telutn)tris oot Ing O)keds 4 ¢ (Rt (k4 1)T), with g (kT) = [¢/(0)] .

Obviously, pe(t+kT) = ¢(t),Vt € (01, T] and ¢ (kT") = ¢'(0)¢(kT). Then, by the boundedness
of p(t) and p.(t), there is M > 0 such that

M el M8 (1) > max p(t), V€ < et > 0.
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v (G2), g(u) < ¢'(0)u for u > 0. When ¢ > &, function we(t, &) := M.e1+Mp (1) satisfies

(we)t — (we)ee — c(we)e — we(r(t, &) —we) = [r(t, +00) + € —r(t, §)we + (w6)2 =0,
we(k:T+,§) = g’(O)wE(kT, §) 2 g(we(kT,§)), k € N,
which means that w(t,§) := min{w.(¢,£),p(t)} is a generalized upper solution of system (1.3)-
(1.6). The Claim holds if w(t,&) > U(t, &) for £ € Rt > 0. Indeed, w(t,§) > U(t,£) holds in
D :={(t,§)|w(t,&) > p(t)}. If (t,€) € D, then & > &. Define
W(t) = elorsto)relds for ¢+ e (kT (K + 1)T] with »(kT) = [¢/(0)] .

There is 0 > 0 such that w(¢, &) + 0 () is also a generalized upper solution of system (1.3)-(1.6) for

(t,€) € D. Due to U(0,4+00) = 0, we can choose 7 > 0 small enough such that w(0,&) + d1(0) >

T > U(0,§),V¢ > &. Combining with w(t, +00) + 69 (t) = 0v(t) > 0 = U(t, 4+00), it deduces from

the comparison principle that w(t, &) + d(t) > U(t, €), and the strong maximum principle implies

that w(t,&) + d(t) > U(t, ). Letting § — 0, we have w(t, &) > U(t,&) for (¢,£) € D. Define
M, ¢) := MeMEx(t), where

x(t) = eloPi+ertr(t—o0)+ 4 Ing O)ds g 4 ¢ (KT, (k +1)T] and x(kT) = [¢'(0)] "

Similarly, v™ (¢, €) is also an upper solution of system (1.3)-(1.6) for some M > 0. By A\; > 1 +1
and the Claim,

Mt €) = MeMEx(t) > Mel T ex(t) = ol ) = U(t,€), a5 £ — oo.
So we can find M* > 0 and £(t) € R satisfying v™" (t,£) > U(t,£),Vt > 0,£ € R and oM™ (¢,£(t)) =
U(t,&(t)). Thus, W (t, &) := oM (t,£) — U(t,€) satisfies W (t,£) > 0 and W(t,£(t)) = 0 for any
t > 0,& € R. Observing that
Wy — Wee — cWe — r(t, —00)W = [r(t, —o0) — r(t, )]W + W? > 0,

the strong maximum principle implies that v™ (¢, &) = U(t, &), then v (¢, —00) = +o0. This is a
contradiction with U(¢,€) < p(t). Then Step 1 is compete.

Step 2. We show that, if there is a forced KPP wave for (1.2), then it is unique.

Assume that system (1.3)-(1.6) has two different positive solutions U;(t,£)(i = 1,2). Clearly,
0 < Ui(t,&) < p(t), Ui(t,+00) = 0 and U;(t, —o0) = p(t). For any € > 0, define

Ke = {k > 1|kU1(ta€) > UQ(t7§) - 66](15,5)},

where ¢(t, ) is a positive, continuous and bounded T-periodic function satisfying ¢(¢,+o00) > > 0
for some § > 0. Notice that

lim U2 (t7 5) — €q(t, 5) — p(t) — EQ(t7 700) lim UQ(t’ 5) (t 5)
{——o0 U, (t,f) p(t) 7{—)—1—00 Uq (t,f)

Ua(t, ) — eq(t, §) < Lc on [0,7] x R, namely, K. # (). Denote
Ur(t, €)

ke := inf K, and k* := hmk: So, kUi (t, 5) > Us(t, &) — eq(t,€) and ke is non-increasing in € > 0

and k* > 1. In the followmg, we shall show k* = 1. By way of contradiction, if £* > 1, then there
exists €g > 0 such that k¢, > 1 and k. > k¢, > 1 for any 0 < € < €. Define

we(tag) = keUl(tag) - U2(ta€) + EQ(taf) > 0;
'U)(t,f) = 12%106@75) = k‘*Ul(taé.) - UQ(tvé)

= —oo uniformly in [0, 7.

Thus there is L. > 0 such that
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There exists (e, &) such that we(te, &) = 0 and we(t,£) > 0 in any neighborhood of (t, &). Indeed,
if we(t,€) > 0 for t > 0 and £ € R, then for such €, we can find > 0 small enough such that
ke—n>1and ;ﬁgg > 1, which means (k. —n)U1 (¢, &) — Ua(t, &) +€q(t, ) > 0. This contradicts the
definition of k.. We consider three different possibilities for {&}:(i) {&} is bounded; (ii) {&} 7 +o0
as € — 0;(iii) {&} \ —o0 as € — 0.

For case (i), if {¢} is bounded, then k* < +4oo and there is (t*,£*) € RT x R such that

{(te, &)} — (t*,&*) as € — 0 and w(t*,&*) = 0. Note that
wy — wee — cwg > 7t E)w + U5 — (K*U1)* = [r(t,€) — K*Ur — UsJw;
w(kT™,&) = kK g(Uy (KT, €)) — g(Ua(KT,€)) > g(K*Ur(kT, €)) — g(Ux(ET, €)) > 0.

By the strong maximum principle, it follows from w(t,£) > 0 and w(t*,£*) = 0 that w(¢,£) =0 on
[0,T] x R, which contradicts w(t,—o0) = (k* — 1)p(t) > 0. For case (ii), if {{} 7 +o0 as e — 0,
then k* € (1, +o00]. Choose d, > 0 such that

(we)t = ke(Ur)e — (U2)¢ + €qe
= (we)ee + c(we)e + keUn[r(t,€) — Uh] = Uz[r(t,€) — Uz] + €lgr — qux — €]
> [r(t, &) — keUr — Us](keUr — Uz) + €[qt — Guz — Cqu]
= [r(t,&) — kUr — UsJwe + €lgr — qee — cqe — (r(t, &) — kU — Ua)q]
in domain Q¢ = [0,T] x (& — d¢, & + dc). We find that, if

@ — qee — cqe — (r(t,€) — kUr — Ua)g > 0, (¢,€) € Q., (3.1)

then it follows from we > 0 and the strong maximum principle that w. = 0 in Q., a contradiction
with the definition of (t.,z.). For case (iii), if {{} \y —o0 as € — 0, then k* € (1,+o00] and
(we)t — (we)ge — c(we)e — [(t, &) — kU — Us]we > 0 in domain Q. if (3.1) holds in Q.. Similarly, the
strong maximum principle deduces a contradiction. In what follows, we construct ¢(¢, &) satisfying
(3.1) in Q.. For any t > 0,

gglf [r(t, &) — kUy — Us] = r(t, +oo);£EI_n [r(t,€) — keUy — Uz] = r(t, —00) — (ke + 1)p(t).

Then there is 4 > 0 satisfying r(¢, &) — kU — Uz < r(t,+00) — 7(400) := ai(t),& > x4 and there
is x_ < 0 satisfying
1 [T

T(t,g) - keUl - U2 < T(t, _OO) - (ke + 1)p(t) + klf 0 p(t)dt = O‘?@)v& <z_.

Noting that a1(t),as(t) are T-periodic function, we choose q(t,&) € CU'([0,T],R) such that
q(t, &) = eJo a1(s)ds for &> xq, q(t,) = eo a2(s)ds for < z_,and 0 < ¢(t,§) < eJo a1(9)ds for
0< &< o, 0<q(t§) <eloox®)ds for < ¢ < 0. Then, (3.1) holds for £ < z_ and € > x4,
completing the proof of Step 2.

Step 3. We show that, for ¢ < ¢*, system (1.2) has a forced KPP wave U (t, ) nonincreasing in
e

To establish the existence of solutions to the system (1.3)-(1.6), we show that there exists a function
#(§) € C(R) satisfying (1.3)-(1.5) and the boundary conditions

U(0,4+00) = ¢(+00) = 0,U(0, —00) = ¢p(—00) = p(0).

From Lemma 2.7, there exists a non-increasing function ¢(¢) such that Hg', ,  [M] converges locally
uniformly to ¢(§) and satisfies Hp p41(¢) = ¢, where ¢(400) equals 0 and ¢(—o0) equals either
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p(0) or 0. Notably, if ¢(—o0) = p(0), then ¢(§) € C(R) satisfies (1.3)-(1.5) and the boundary
conditions (1.6) for ¢t = 0. Furthermore, U(t,&) is non-increasing in £ € R since the initial value
®(&) is non-increasing in £ € R. If system (1.3)-(1.6) admits a solution U > and # 0, then it follows
that ¢(—o0) = p(0). It suffices to show that U is nonnegative and not identically zero. Namely, we
need to construct a nonnegative, nonzero lower solution for system (1.3)-(1.6).

We consider (i) ¢ € (—c*,c¢*); (ii) ¢ < —c*. For case (i), for given M, L > 0, let (v1,9(§) be the
principal eigen-pair of

0(©) = 1 Ing (O)0(€) = w(€),€ € [~M — L,—M] with ¥(~M — L) = b(~M) =0,

Clearly, v1 = —4 Ing’(0) — (F)% It follows from (H) that there exists Ly > 0 such that vy > 0 for
L > Ly. Meanwhile, we extend 1(§) to R by letting 1(§) = 0 for £ € [-M — L, —M]. Define

(c*)?

o(t) i= elolrt—o0)+ 3 ng'(O)=155ds 4 o (k7+ (k4 1)T) with o(kT) = [¢/(0)] .

It is easy to see that p(t+kT) = ¢(t) for any t € (01, T, o(kTT) = ¢'(0)p(kT). Now we construct
a lower solution of (1.3)-(1.6):

oV TFD=38(E)p(t), te (KTT,(k+1)T),€ € R,
U(t, &) == { ege 289(€) (KT, t=KkTt, ¢ eR, (3.2)
coeT TP p(kT),  t=kT,{ €R,

where €y > 0 is sufficiently small and v > 0 will be determined later. Notice that for e > 0, there
are 0. > 0 and & < 0 satisfying

r(t, &) —U(t,&) > r(t,—o0) —¢,for U € [0,0],§ < &. (3.3)
Then
Uy = Uge — U = Ulr(t,€) = Ul = (v + ¢/ (1) /() U+ (*/4)U — (1 + (1/T) In g/(0)) U — U[r(t,€) — U]
< [v+ /= = (T Ing (0) + &/ (1) /(1) = (t,—00) +€|U
=[v+a—m—(@)?/a+ U

provided that 0 < U < ¢, for £ < &. Since % — % —¢€ >0 for c € (—c*,c¢*) and small € > 0,
together with 11 > 0 for L > Lg, we observe that v := —% + v + % —¢ >0 for L > Ly and
small €. Thus U, — Uge — cU, — Ulr(t,€) — U] < 0. Moreover, we apply (G4) and v > 0 to obtain

U(KT*,€) — g(U(KT, €)) < U(KT*,€) — g U (KT, €) + DU (KT, €)
= €oe” 25() — eoe™ T 2EP(€) + Defe? P 2Y (€)(g/(0)) 7
= coe” FY(E)[L = T + D TP EE Yl (£)(g'(0) 7] <0,
if €y is sufficiently small. The comparison principle implies that U is a nonnegative lower solution
if 0 < U <9 for & < &. Indeed, sup( g)e(0,+o0)x(¢c—Lg) Ut €) < epe?Tem2(E~1) maxo 7] ¢(t)-
As long as ¢y < [eVTe_é(&_L) maxig 7 ©(t)] 719, it deduces that 0 < U < §, for ¢ < &. Take
M = —¢. and L = Ly, then the conclusion holds for ¢ € (—c*, ¢*). For case (ii), for such € > 0 given

by (3.3), it follows from ¢ < —c* and 7(—o00) — € > 0 that us > 0 is the smaller positive root of
p2+cp+7(—o00)—e = 0. Then there is > 0 small enough such that (u2+1)2+c(pa+n)+7(—00)—e <
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0. For such a given 1 > 0, choosing M > 1, there is {7 < 0 such that 1 = Me"M. Define

0, t>0,§>8m,
U(t,€) o | OB = Melie], te (KT, (k+1T],€ < &,
T ) @B(RT [ — Meln e, = kT, € < &y,

coB(kT)er2Ter2s — Meln24me] ¢ = kT, ¢ < &y,
where €y > 0 is small enough and §(t) satisfies
B(t) i= elolidtenatriti—oo)=dds 4 o kTt (k4 1)T] with B(,T) = [¢/(0)] .

Note that

sup U(t, &) < eoet2éM 2T max B(t) < 0e
(t76)e(0,+oo)><(—oo,§M) [OvT]

for €9 > 0 sufficiently small. Then
U, Uge — cUg — Ulr(t, &) - U]

:mmquag—u&wmyfwwMawwﬁgg—om+m%wwrwm—kua—m
< coB)e ()~ 1 = — r(t, ~00) +
—@mnMéM”ﬁ@$§—ou+nf—cwa+m—rm—«»+d<o

and
U(KT*,&) — g(U(KT,§)) < U(KT™,€) — ¢'(0)U (KT, &) + DU (KT, €)
= 60[6#25 _ Me(“2+’7)5][1 —et2T Dﬁg—lemTpﬁpfl(g)(g/(o))fp] <0.

Thus the conclusion holds for ¢ < —c*. We have constructed a nonnegative lower solution that is
nonzero for system (1.3)-(1.6), and Step 3 is proved. Thus the theorem holds. O

3.2. Spreading properties. Denote by u(t, z;ug) the solution of (1.2) for a given ug € C(R,R™).
We can also utilize the monotonicity of g(u) to derive the comparison principle:

Lemma 3.4 (Comparison principle). If there exists a function u(t, &) € C*2([0,00) x R) satisfying
U > Ugy + U(r(t,z —ct) —a), te (KT, (k+1)T),z €R,
w(kT,z) > g(a(kT,x)), reR,keN,
a(0,2) > up(x), reR

then u(t,z) > u(t,z) in [0,00) x R.

In this subsection, we study the long-time behavior for (1.2) with different ¢. For ¢ < ¢*, by
Theorem 3.3, system (1.2) admits a forced KPP wave U(t,z — ct). Now, we demonstrate that the
solution of (1.2) with sufficiently large initial data M > p(0), denoted by wu(t,x; M), uniformly
converges to the forced KPP wave as ¢t — +oo.

Lemma 3.5. For ¢ < ¢*, choosing M > p(0),
lim |u(t,z; M) —U(t,x — ct)| =0, (3.4)

t—-+o0

uniformly in R.
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Proof. By the proof of Lemma 2.7, there exists a non-increasing ¢(§) satisfying ¢(+o00) = 0 and
¢(—o0) = p(0) such that Hgy ,,[M] converges locally uniformly to ¢(¢) for M > U(0,&). This
implies that, for any bounded set [—L, 2] of R, equation (3.4) holds uniformly in « — ¢t € [—L, xq].
Choose L large enough, it then follows that . li+m Ip(t) —U(t,x —ct)| = 0 uniformly in z —ct < —L.
—+00
Note that the unique positive solution a(t; M) of (2.1) with ug = M satisfies . liin Ip(t)—a(t; M)| =
—+00

0 from Lemma 2.1 and is an upper solution of (1.2) with initial value M due to r(¢,&) < r(t,—o0).
In view of U(0,¢) < U(0,—o0) = p(0) < M, the comparison principle implies that U(¢,§) <
u(t,z; M) < a(t; M). This deduces that

limsup[u(t, z; M) — U(t,x — ct)] < limsup|a(t; M) — U(t,z — ct)]

t—+o00 t——+o00
< lim |a(t; M) — p(t)| + limsup |p(t) — U(t,z — ct)] =0
t—+o0 t—+00

uniformly in z — ¢t < —L. Combining with limsup[u(t,z; M) — U(t,x — ct)] > 0, equation (3.4)
t——4o00

holds uniformly in  — ¢t < —L. For x — ¢t > x0, assume that there are 09 > 0 and {(tn,zn)}02,

satisfying z,, — ct, — 400 such that u(t,,z,; M) = d9. Obviously, there is ¢, € (0,7] such that
lim t,—[t,/T|T = t., where [t,/T] is the inter part of ¢,,/T. Let wy,(t,z) := u(t+tn, x+x0; M).

n—-+00
We can find a function w such that w, — w locally uniformly holds as n — co, and w satisfies

Wy = Way + w(r(t +ty, +o0) —w), t€ (kTT,(k+1)T],z €R,

w(kTT —t,2) = g(w(kT — ty,x)), = €R k€N,

u(0,z) = M, reR
and w(0,0) = nETOO wp(0,0) = §y > 0. By Remark 2.2, w = 0, which is a contradiction. Thus,
equation (3.4) holds uniformly in  — ¢t > xg. The proof is complete. O

Meanwhile, for ¢ € (—c*, ¢*), we shall construct a pair of upper-lower solutions of (1.2) by using
the forced wave.

Lemma 3.6. Function w*(t,z) = U(t,x — ct) £ pe ¢8)[1 + MU(t,x — ct)] is a pair of upper
and lower solutions of (1.2), where § € R, o > 0 small enough, p > 0, and M large enough will
be determined later.

Proof. We only show that w™ is an upper solution of (1.2). Note that
wy (t,x) = U(t,x — ct) — cUg(t,x — ct) — ope 1 4 MU(t, 2 — ct)]
+ pe T MU (t, 2 — ct) — cUe(t,x — ct)];
wi (t,x) = Uge(t,x — ct) + pe_”(t_ﬁo)MUgg(t, x — ct).
Then,
w —wl (t,x) —wh(rt,z —ct) —wh)
—pe U8 (1 + MU(t, z — ct))[—0o + (1 + MU (t,z — ct))e "0
—r(t,z —ct) + 2U(t,x — ct) + MU*(t,z — ct)}.
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The properties of U(t,z — ct) and r(t,&) means that, there exist o > 0 small enough and M large
enough satisfying

(14 MU(t,z — ct))e %) > o,

—r(t,x —ct) +2U(t,x — ct) + MU?(t,z — ct) > 0;

pe " FT=80)(1 4+ MU (KT, z — ckT)) > N, pe *T=8)pr > 1,

where N is given by (G3). Hence, w;” —w}, (t,z) —w™' (r(t,z —ct) —w™) > 0. Meanwhile, it follows
from (G2) and (G3) that
g(peig(kT*fO)Mu) < peig(kT*éo)Mg(u),Vu >0

and
g(peKT=€0) (1 + MU (KT, x — ckT)))

pe=okT=80)(1 + MU (KT, x — ckT))

< 1.

Consequently,
wt (KT, z) = g(U(KT, z — ckT)) + pe 0 HFT=%0) 4 pe=0WT=80) Njo(U (KT, 2 — ckT))
g(UkT,x — ckT)) + pe~?*kT=80) 4 g(pe= 0 KT=8) M\ (KT, 2 — ckT))
g(U(KT, z — ckT)) + pe=o*kT=)
1
14+ MU(KT,z — ckT)
> g(UKT, z — ckT)) + g(pe FT=80) (1 + MU (KT, — ckT)))
g(pe=*T=8)(1 + MU (KT, x — ckT)))
pe—o(6T—80) (1 + MU (KT, z — ckT)) ]
> g(UKT, z — ckT)) + g(pe oFT=80) (1 + MU (KT,  — ckT)))
> g(U(KT,x — ckT) + pe *FT=) (1 + MU (KT, x — ckT))) = g(w™).

+1- 1g(pe=@*T=8)(1 4 MU (KT, 2 — ckT)))

+ pe—U(kT—fo) [1 _

Thus w' is an upper solution of (1.2). O
Then, by Lemma 3.5 and Lemma 3.6, we obtain the spreading properties of solution of (1.2).

Theorem 3.7. Denote by u(t, z;ug) the solution of (1.2), where ug(z) > but # 0 is bounded.
(1) For ¢ < —c*, if further uo(x) has a compact support, then

limsup u(t + mT, z;ug) = 0, uniformly in [0,T] x R.

m—+00
(2) Forc e (—c*,c*),

lim sup |u(t,z;up) —U(t,xz —ct)] =0 for any p € (c,c). (3.5)
t——+o0 IZ*M

Moreover, if liminf ug(z) > 0, then there is u > 0 such that
T—r—00

1 t t,x— ct)|e! = 0. :
t_grnooi1€1£|u( ,xyug) — U(t,x — ct)|e 0 (3.6)

Proof. (1) Define two operators
Lo(x) := ¢"(x) + c¢/(x) + 7(—00)d(x), , v € R;
Lig(z) := ¢"(x) + c¢f (x) + r(t, —00)d(x), z € R.
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Observe from [36, Section 2] and [28, proposition 2| that the eigenvalue equation —L¢ = A\p,x € R
has a principle eigenvalue A(—L) := —7(—o00) + % and there is a positive eigenfunction ¢*(x)
with ||¢*[|cc = 1 such that —L¢* = A(—L)¢*. Since r(t, —c0) is a T-periodic function in ¢, the
eigenvalue equation —L;¢p = A\¢, z € R also has a principle eigenvalue A\(—L;) = A\(—L). Referring
to [43, Section 2.1], we discuss the following linear model:

wgm) = wg(g;) + cwém) +r(t, —oo)wl™, te (0%, T],z €R,
wm (0%, ) = ¢'(0)w™(0, z), v €R,
w™(0,z) = w™ (T, x), z €R,

with w(©) (0, z) = M¢*(z). It follows easily that w(™ (¢, z) = M(e"\(_if)Tg’(O))me_)‘ (=Loyt g'(0)¢*(z).
Note that, for ¢ < —c*,

B . - 02 1 , (C*)Q CQ
“A=L)T +Ing/(0) = [(-o0) = 5 + 7 g (O)T = [ = 5

Then, @™ (t,z) := w™ (t, z — ct) satisfies
w(m) (t, l’) — M(e—A(—it)Tgl(O))me—k(—it)tgl(o)d)* (l‘ _ Ct) 50, as m — +00
and
W™ =@ +r(t, —o0)d™, te (0F,T],z R,
B (0%, 2) = ¢ (0)5™(0,2), = R,
™0, z) = (T, z), z € R,
with @(©)(0,z) = M¢*(z). Meanwhile,
@™ — @™ — 5™ (r(t,z — ct) —

™) =
@™ (0%, 2) = ¢'(0)a"™(0,2) = g(@ m)(O,
)

Then, choosing M large enough satisfying ug(z
principle that u(t, z;up) < W@ (t,z) in (07, T] x R. By induction for m, we can eventually derive
that u(t +mT, z;u0) < W™ (t,z), m € N. Hence,

[r(t, —00) — r(t,x — )™ + (w(™)2 > 0;
))-

x
< M¢*(x) for z € R, it follows from the comparison

0 < limsup u(t + mT, 2;up) < limsup @™ (¢, z) = 0 uniformly in [0,7] x R.

m—-+00 m——+00

(2)We divide the proof into three steps.
Step 1. We shall show the equation (3.5). Fix o € (0,¢* — ¢). we prove that, Ve > 0, there is
Ty > 0 satisfying
sup  |u(t,z;uo) —U(t,z — ct)| <e, Vt>Tp.
x>(—c*+o)t

For given &y € R, let ¢y be the downstream spreading speed of traveling wave of

Wi = Wy +w(r(t, &) —w), te (KT, (k+1)T),x € R,

wkTt, x) = g(w(kT,z)), =xeRkeN, (3.7)

w(0,x) = up(x), z eR.
Observe that there is & < 0 such that U(t,&) > p(t) — §, Vt > 0,& < & and r(t,&) > 7(—00) + %Z.
Thus ¢ > ¢* — § and e"€)[g/(0)]T > e"—)[¢(0)]T > 1. By Lemma 2.1, equation (2.2) with

r(t, —oo) replaced by 7(t,&y) has a solution po(t) > 0 satisfying po(t) > p(t) — § for any ¢ > 0.
Consider cases: (i) x > & + ct; (i) z € [(—c* + 0)t,&o + ct). For case (i), when z > &y + ct, from
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Lemma 3.5, equation (3.4) holds uniformly in x —ct > &. For case (ii), when x € [(—c¢*+0)t, {o+ct),
obviously, U(t,z — ct) > U(t,&) > p(t) — §,Vt > 0. Then

sup |u(t, z;up) — U(t,z — ct)
z€[(—c*+0)t,Lo+et)
< sw o ultmu)—pM+ s |pt) = Utz — et
z€[(—c*+0o)t, o+ct) z€[(—c*+0o)t,&o+ct)
€
< sup lu(t, z; ug) — p(t)] + 3

wel(~c*+o)tEo+et)

it suffices to show that supge((—c+4o)t,¢04ct) [U(t: T3u0) —p(t)| < 5, Vt > Ty. Denote by w(t, z;ug) the
unique positive solution of (3.7). Observe that w(t, &y + ct;up) and u(t, &y + ct; ug) are a solutions

of
Up = Uge + cUe + U(r(t, &) —U), te (KT, (k+1)T),¢ R,
UkT*,&) = g(U(KT,¢)), keNEeR, (3.8)
U(0,8) = ¢(§), £ eR.

The uniqueness means u(t, {o+ct; ug) = w(t, o+ct; up) for any ¢ > 0. In view of r(t, z—ct) > r(t, &)
for x — ¢t < &, by the comparison principle, u(t,z;ug) > w(t,z;up), Vo < & + ct. Together
with [42, Remark 3.7], we can deduce that the unique positive solution w(t, z;ug) of (3.7) satisfies

lim sup  |w(t, z;up) — po(t)| < lim sup  |w(t,xz;up) — po(t)] = 0.
t—400 |x|§(c*—o‘)t . t_>+oo‘x|§(00—%)t 7

Then for 77 > 0 sufficiently large, u(t,z;ug) > w(t,z;ug) > po(t) — § > p(t) — § for ¢ > T1 and
x € [(—c* + o)t & + ct). Take p > 1 satisfying psup,cr uo(z) > max{p(0), N}. By Lemma 3.5,

u(t, x;up) < u(t,z; psupug(x)) < a(t; psupug(x)) — p(t), as t — +oo.
z€R z€R

So there is Ty > T1 large such that u(t,z;ug) < p(t) + §,Vz € R.
Step 2. We shall show that, if initial function ug(z) satisfies liminf ug(z) > 0, then
T—r—00

lim sup |u(t, z;up) — U(t,z — ct)| = 0. (3.9)

=400 4cR
By the proof of Step 1 in Theorem 3.7(2), it suffices to show that , liin Sup,<_ ¢ [u(t, 3 u0) —
— 400 =
U(t,xz — ct)| = 0 for some fixed u € (—c,c*). Due to U(t, —o0) = p(t) and Ue(t,£) < 0, it deduces
that

sup |p(t) = U(t,z — ct)| = p(t) — irifu U(t,x —ct) =p(t) = U(t,—(p + c)t).
c<—put r<—ut

By the choice of p, it is easy to see that p+ ¢ > 0, then . ligl sup,<_, [p(t) = U(t,z —ct)] = 0. By
— 100 -
the triangular inequality, we shall prove , li+m Supy<_ [u(t, 3 u0) —p(t)| = 0. Take § € (0, min{pu+
—+00 -
¢, c* — c}) and some z > 0 such that

lim sup |u(t,z;up) — p(t)] < lim sup u(t, x;ug) — p(t
i, g fult i) —pOI St sup ) = pl0)

= lim sup [u(t,z — (1= 0)t;uo) — p(t)]-

t—+o00 x<—1z0
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Observe that w(t,x) = u(t,x — (u — )t; up) satisfies
Wy = Way — (= 0wy + wr(t,z — (W—30+c)t) —w], te€ (kTT,(k+1)T],z R,
w(kT*, 2) = g(uw(KT, ), reRkEN, (3.10)
w(0,x) = up(x), zeR.
Let v(t,z) be the unique solution of
V= Uy — (0 — O)vg +0[r(t,z) —v], te (KT, (k+1)T],z €R,
v(kT, 2) = g(v(kT, z)), r €R,kEN,
v(0,2) = up(x), x €R.
By the proof of Step 3 in Theorem 3.3, v(¢,x) has a lower solution, which is similar to (3.2).

In addition, it is easy to see that v(¢t,x) < w(t,x) for ¢t > 0 and z € R. Then w(nT,z) >

eoemT*MT_éxw(:c)[g’(O)]_l, where €g, 71,9 (x) are determined by Step 3 in Theorem 3.3. Obviously,
liminf w(0,z) = liminf up(z) > 0. By Lemma 2.1, system (2.1) with up = M has a unique positive
T——00 Tr——00

w(t; M) satisfying . 1ir+n |w(t; M)—p(t)] = 0. Choose M > sup,r w(0,x), by comparison principle,
—+00
w(t,x) <w(t; M) for all t > 0,2 € R. Thus,
lim sup [w(t,z) —p(t)] < lm [w(t; M) —p(t)] = 0.

t—=+00 p< gy T t—=+4oo
Then, it suffices to prove 1tlier SUP,< 4, [P(t) — w(t,z)] < 0, namely, Ve > 0, there are ¢y > 0
—+00 -

and zo > 0 satisfying infy<_,, w(t,z) > p(t) — €,Vt > to. For any € > 0, there exists v > 0
sufficiently small such that 7(—o0)—~ > 0. By Lemma 2.1, equation (2.2) with r(¢, —oo) replaced by
r(t, —00) —~ has the unique positive solution 3(t) satisfying 3(t) > p(t) — §. For such v and w(t, z),
we can find yo < 0 such that r(¢,y9) > r(t, —o0) —~ for all ¢ > 0 and w(0,z) > %EE}_H;E w(0, z) for

x < yp. According to y — d + ¢ > 0 and (-, z) nonincreasing in x, we obtain
r(t,x — (u—>5+c)t) > r(t,yo) > r(t,—o0) — 7, (3.11)
for any t > nT,x — (p — 0 + ¢)nT < yo. Define z, = yo + (& — § + ¢)nT and ug(x) =

60671T+M775mw(x)[g’(0)]_1,x < . Let w" (¢, z;uy) be the unique solution of

wp =wl, — (p—0)w? + [r(t,—o0) —y —w"w™, te (KTT,(k+1)T],z < zy,

w™(t,x) =0, t>nT,z=x,,
w(kTT, x) = g(w™(kT, z)), k>n,x <y,
w(nT, x) = ug(z), T < Tn.

From (2.4) and p — ¢ € (—c*,c*), M(—o0,z,]) = Ll_ig_loo)\((fl,‘n — L,x,]) = (“1‘5)2 - @ < 0.

We apply Lemma 2.2 to get that lil}rl w™(t + mT,x;uf) = w*(t,z),vt € [0,T],z < x,, where
m——+0o0

w™*(t, z) is the unique solution of

w = wyy — (p—0)wy™ + [r(t,—00) — v — w™*w™*, te (07,7, < zp,

w™*(t,x) =0, te (0N, 1),z =z,
w™* (0%, ) = g(w™*(0,2)), T < Tp,
w™*(0,2) = w™*(T, x), T < Tp.
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Notice that w™*(t, z) is nonincreasing in x and increasing in n, w™*(t, —oc) = £(t). Thus, it follows
from x,, = 400 as n — oo that there is w* satisfying ngrfoo w*(t,x) = w*(t, z) and w*(¢, z) is the
solution of

wf =wk, — (p— Owk + [r(t,—o00) — v —w*jw*, t€ (0T, T],z €R,

w*(0%,z) = g(w*(0,2)), z €R,

w*(0,z) = w*(T, x), z eR.

Since w*(t,y0) = liI_’I_l w* (t,y0) > wi*(t,y0) > 0 and u — § € (—c*,c*), we use Louville’s
n—-+0o0

theorem and [44, Theorem 1.3] to deduce that w*(¢,xz) = 5(t). Then, due to (3.11) and w(nT, z) >

ufl(z), from the comparison principle, we get w(t + nT,z) > w"(t + nT,z),Vt € (07,T],z < z,.

Consequently,

liminf sup w(nT + ¢, x) > liminf sup w"(t + nT,z) > lm w"(t,y0) = B(t) > p(t) — g

n—-+oo z<yo n—-+oo z<yo n—-+oo

for all ¢ € (0%, T)]. Taking zo = —yo, equation (3.9) holds.

Step 3. We shall show the equation (3.6).

By equation (3.5), there are Ty > 0 and p > 0 satisfying |u(Tp, ) — U(Ty, x — cTp)| < p,Vz € R.
Taking & = Tp, we know that w¥ is a pair of upper-lower solutions of (1.2) for t > T and = € R,
where w?* is given in Lemma 3.6. It follows from the comparison principle that w™(t,z) < u(t,z) <
wt(t,z),Vt > Ty, € R. So,

lu(t,z) — U(t,x — ct)| < pe TN 4 MU(t, 2 — ct)] < pe”°[1 + Mr[{]lz})](p(t)]e*"t,w > Ty, xz € R.

Hence, the proof is complete by letting 0 < p < . g

Remark 3.1. As shown in [34], the forced KPP wave of uy = ugy + u(r(t, z — ct) — w) with initial
value ug(z) exists if and only if ¢ < cp = 24/7F(—00). Assumption (H) implies ¢* < cp. By
Theorem 3.7, the birth pulse reduces this likelihood that the species mowves like a forced KPP wave.

Moreover, we can apply similar arguments to show the propagation dynamics for ¢ > ¢*:

Theorem 3.8. For ¢ > c*, if up(x) is bounded, then

lim sup |u(t,z;ug) — p(t)| =0 for any p € (0,c").
b= 00 |2 <yt

If up(x) has a compact support, then
lim sup  u(t,x;up) =0 for any p € (0,c").
E= 400 3> (c*—p)t
Proof. By the proof of Step 1 in Theorem 3.7(2), for any € > 0, there is large enough Ty > 0
satisfying

s fult,wiuo) = plt)] < 5.Vt = To,
z€[(—c*+o)t, o+-ct) 2
where &) is given in Step 1 of Theorem 3.7(2) and o > 0. Due to ¢ > ¢* and u € (0,c¢*), there is
large enough 77 > 0 such that ut < ct 4 & for ¢t > T1. We choose 0 < o < ¢* — p, then

sup |u(t, x;up) — p(t)| < sup lu(t, x;up) — p(t)| < E,Vt > max{Ty, 11}
| <put wel(—c*+o)t,Eo+et) 2
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If further ugp(z) has a compact support, then it follows from the proof of Theorem 3.7(1) that
u(t + mT, 2;up) < 0" (t, x) and for ¢ > ¢*,

o™ (¢, x :Me_’\(_it)T (0 me_)‘(_ii)t "(0)o*(x —ct) > 0,Vt € (07, 7],z € R, as m — +o0.
(t,z) ( g'(0)) g'(0)¢™( ) =0, (0™, 17, ’

Consequently,
0< lim sup  u(t,z;up) < lim sup  u(s + mT, xz;up)
E2 00 || > (c* —put MH0 g > (e —p)s
< lim sup @™ (s,z) = 0,Vs € (07, 7).
MTE | >(c*—p)s
Hence, our conclusions follow. ]

4. SIMULATIONS

In this section, we present some simulations to demonstrate our theoretical results, and to illus-
trate how shifting speed ¢, impulsive rate ¢’(0) and initial function ug(z) combined affect the long-
term behaviors of population dynamics. We truncate infinite domain R to finite domain [—L, L],
where L is sufficiently large. Set T' =1, L = 50 and r(¢,z) = (2¢7* —e”)(0.8 cos(2nt)+1)/(e”* +e”)
throughout this section. Obviously, 7(—o0) = 2 and 7(4+00) = —1.

4.1. Forced wave. Let g(u) = au(a > 0). In the case where ¢ = —12 and a = 1/e. Then
¢ < c¢* =2 and (H) is satisfied. The simulations of forced waves in a bounded domain [—50, 50]
are shown in Figure 1. It observes that the forced wave U(t,§) is 1-periodic and non-increasing in
&, which is consistent with the results of Theorem 3.3.

The Forced waves of system (1.2) . The Forced waves at Specific Positions ¢

&

Solution Ut

a7 / -

Y 3
“V;//\/l/l// *fiz

Qn 2 a 6 8 - 10

Time t

Space ¢

FIGURE 1. Forced wave for ¢ = —12 and ¢'(0) = 1/e

4.2. Spatial spread with different shifting speed c. To simulate the propagation dynamics
for different shifting speeds ¢, we set g(u) = au(a > 0) with a = 1/e, then ¢* = 2. Meanwhile, we
select the initial function ug(z) from the following two options:

0, if —50<z<0 1, if —50<z<0
fi(z) = qsin (3F), f0<z<20 fo(x) = qcos (52), if0<z<20
0, if 20 <z < 50; 0, if 20 < x < 50.

For the initial function ug(z) = fi(z) having compact support, the evolution of the solution is
shown in Figure 2. It is observed that, for ¢ < —c*, the species becomes extinct in any domain
as time progresses, which verifies Theorem 3.7(1). If ¢ € (—c*,c*), then there exists u € (c,c*)
such that the density distribution of species v on the domain x > —put gradually approaches the
shape of the forced wave over time. Furthermore, the direction of the forced wave is determined
by the sign of the shifting speed ¢, consistent with equation (3.5) in Theorem 3.7. Additionally,
for ¢ > ¢*, the species will survive and reach a steady state in the core region. Moreover, there
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exist two transitional regions (buffer zones) where the species density sharply decreases due to

shifting environmental factors. Beyond these buffer zones, the species is absent, ultimately leading
to extinction, consistent with Theorem 3.8.

‘The denisty of u

The denisty of u at specific fimes

The denisty of u

The denisty of u at specific times t

Soluton u(t, )

Soluton ut, x)

Space x

The denisty of u The denisty of u

o

The danisty of u at spacic times ¢
LB NS

)
N

‘Solution uft, x)
Saluton u(t
Soluon uft
o
H

°
°

o o

10
Time t P Space x

Space x o
50 Time t o -50 P %

FI1GURE 2. The impact of different shifting speed ¢ on the density of u when uy = f;

(Top left panel ¢ = —5; Top right panel ¢ = —1; Bottom left panel ¢ = 1; Bottom right
panel ¢ = 5)

For the initial function ug(z) = fa(x), it holds that liminf ug(x) > 0 and ¢* = 2. Figure 3 shows
Tr——00

that the density distribution of species u across the entire domain gradually approximates the shape
of the forced wave as time evolves. Moreover, the direction of the forced wave is determined by the
sign of the shifting speed ¢, consistent with equation (3.9) in Theorem 3.7.

The denisty of u

The denisty of u at specific times t The denisty of u

16
y \
i 14
i = 12

The denisty of u at specific times t

Soluton uft, x)
Solution u(t, X}
Soluton ut, x)

EREBRBS°

‘50 o s0
Space x

FiGURE 3. The density of u when ug = fo (Left panel ¢ = —1; Right panel ¢ = 1)
4.3. Spatial spread with different initial value ug. To investigate the impact of the initial

value ug(x) on propagation dynamics, we still set g(u) = au(a > 0) with a = 1/e, and select ug(z)
from functions defined on the domain [—50,50]: fs(z) = 1; fs5(x) = cos(mz) + 2; fr(z) = e *°;

0.4 if —50<z<0 0 if —50<z<0
fa(z) =< 04—0.04z if0 <z <10 fo(z) =< 0.06z if 0 <z < 10
0 if 10 < x < 50; 0.6  if10 <z < 50.

As shown in Figure 4, Lemma 3.5 still holds for different initial value f3, f4, f5, respectively.
Then we provide a guess that the species density u on entire domain approaches the shape of the
forced wave over time, as long as ¢ < ¢* and liminfup(z) > 0. Those give us some direction to

Tr—r—00

weaken the initial value condition in theoretical proofs.
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The denisty of u with ¢ = -5 The denisty of u with ¢ = -1 The denisty of uwith ¢ = 5 The denisty of u with ¢ = -1

Soluton u(t, )
Solution uft, x)

FIGURE 4. The species density of v under different initial conditions (Top left panel
ug = f3; Top right panel ug = f4; Bottom panel ug = f5)

In the case where ¢ < —c* or ¢ > ¢*, we select ug as fg and f7, respectively, in Figure 5. Note that
Theorems 3.7(1) and 3.8 still hold even when the initial value does not have compact support. Thus,
we conjecture that Theorems 3.7(1) and 3.8 remain valid under the condition liminf ug(x) = 0.

Tr—r—00

The denisty of u with ¢ = 5 “The denisty of uwith ¢ = 5 The denisty of uwith ¢ = 5. “The denisty of u with ¢ = 5

x)

Solution u(t

F1GURE 5. The species density of u under different initial conditions (Left panel
ug = fe; Right panel ug = f7)

4.4. Spatial spread with different birth pulses g(u). To explore the influence of the birth
pulse g(u) on the propagation dynamics, we set the shifting speed ¢ = 1 and the initial function
uo(x) = f1(z). The birth pulse g(u) is chosen from one of the following functions:

g1(w) = el ga(u) = u/(e +u)igs(u) = e 2ue' ™

where g/(0) = e71(i = 1,2, 3) satisfies condition (H); g» is the Beverton-Holt function and g3 is a
Ricker function. Notably, g1 and g» are monotone, while g3 is non-monotone. As shown in Figure
6(A), the population density varies depending on the form of g. However, when ¢’(0) remains the
same, the survival region of species u at any given time remains unchanged, despite variations in
the form of g. From the propagation dynamics of u with g = g3, we provide a guess that Theorem
3.7 and Theorem 3.8 may still hold even when the birth pulse g(u) is non-monotone.

Recalling ¢* := 2\/F(—oo) + £ 1In¢/(0), we find that the value ¢’(0) will affect the value of ¢*. In
this case, we choose shifting speed ¢ = 1, the initial function ug(z) = f1(z) and g(u) = au(a > 0)
with different a. Figure 6(B) shows the population density of u for a = a;(i = 0, 1,2), respectively,
where ap = 1/e,a1 = 1 and ag = e. Observe that the density and survival region of species u vary
with ¢’(0); moreover, the survival region expands as ¢’(0) increases, at any given time. Notably,

bl
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when a = aj, our system (1.2) reduces to the model in [34], indicating that the birth pulse affects
the density and survival region of species u. For a = ag, condition (H) is not satisfied; however,
the propagation dynamics remain the same. Thus, we conjecture that Theorems 3.7 and 3.8 hold
when condition (H) is replaced by e™(+°°) [g'(())]% <1< el [g’(O)]%.

The contour ot ofu(x) with g, The contour plt of u(tx) with g,

“The contour plot o u(Lx) with 2, The contour plotof u(t) wth a,
0

- w .
2 » s
20 4
"
£ s
]
10 2
os
s |
o 5 o
© 50 o ©
spacax

(A) The density of u with ¢’(0) = 1/e (B) The density of u with different ¢'(0)

FIGURE 6. The species density of u

5. DISCUSSION

In this work, we described the propagation dynamics of species giving birth only at a particular
time of each period and undergoing a shifting environment with the speed ¢ (the case where the
birth pulse is also impacted by the shift of the environment should be considered in future studies).
The sign of ¢ indicates if the supportive or adverse environment dominates the invasion process,
in our study, we assumed that the environment is supportive at —oo and adverse at +oco. We
first defined a forced KPP wave of (1.2), namely, u(t,z) = U(t,x — ct) satisfies (1.3)-(1.6). We
obtained the existence/nonexistence and uniqueness of forced KPP waves. We have shown that
if ¢ < ¢*, then the forced KPP wave exists and is unique; if ¢ > ¢*, then the forced KPP wave
does not exist. We obtained the threshold value ¢* as the downstream spreading speed of limit
system (2.6) and showed that this threshold is determined only by the intrinsic growth rate, the
birth pulse and the period time. It should be emphasized that the maximum spreading speed c*
of the forced KPP wave is less than that of in [34], which implies that the birth pulse reduces the
possibility that the species eventually moves like a forced KPP wave. In addition, we obtained the
propagation behaviors of solutions to (1.2). Our results show that regardless of the direction the
environment is moving, as long as the speed of shifting environment is appropriate, the species will
eventually propagate like a forced KPP wave, which moves at the same speed as that of the shifting
environment. We proved that the forced KPP wave is exponentially stable under some conditions
on initial functions. When the shifting speed moves leftward at a large speed, it causes the species
extinction in all domains. This occurs because the harsh environment expands rapidly, forcing the
species to remain in it for an extended period. When the shifting speed moves rightward at a large
speed, the propagation dynamics resemble those of the limiting system in a favorable environment.
This is because the species remains in the good environment for a prolonged period.

Finally, our numerical simulations demonstrated that the shifting speed ¢, the impulsive rate
¢'(0), and the initial function ug(z) combined will influence the long-term behaviors of population
dynamics. Particularly, the survival region of species u at any given time expands as ¢’(0) increases.
Our numerical simulations also suggested a conjecture that Theorem 3.7 and Theorem 3.8 may
remain valid under weaker conditions on the initial values or the birth pulse.

https://doi.org/10.4153/S0008414X25101727 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101727

IMPACT OF BIRTH PULSE AND ENVIRONMENT SHIFT ON POPULATION 23

DATA AVAILABILITY STATEMENT

All data supporting the findings of this study are provided within the article.

ACKNOWLEDGEMENT

We thank the reviewers for their helpful comments and suggestions. We would like to ac-
knowledge the support from the National Natural Science Foundation of China (No. 12271525);
the NSERC-Sanofi Industrial Research Research Chair program “Vaccine Mathematics, Modelling
and Manufacturing” (No. 517504); the Discovery Grant of the Natural Science and Engineer-
ing Research Council of Canada (No. 105588); the Fundamental Research Funds for the Central
Universities of Central South University (No. CX20230218).

REFERENCES
[1] Shigesada N, Kawasaki K. Biological invasions: theory and practice. Oxford University Press, UK, 1997.
[2] Skellam J G. Random dispersal in theoretical populations. Biometrika, 1951, 38(1/2): 196-218.
[3] Murray J D. Mathematical biology I: an introduction. Berlin: Springer, 2002.
[4] Murray J D. Mathematical Biology II: Spatial Models and Biomedical Applications. New York: springer, 2003.
[5] Okubo A, Levin S A. Diffusion and ecological problems: modern perspectives. New York: Springer, 2001.
[6] Cantrell R S, Cosner C. Spatial ecology via reaction-diffusion equations. John Wiley & Sons, 2004.
[7] Aronson D G, Weinberger H F. Nonlinear diffusion in population genetics, combustion and nerve propagation,

Part. Diff. Eq. and related topics, Lectures Notes in Math., Vol. 446. 1975: 5-49.
[8] Aronson D G, Weinberger H F. Multidimensional nonlinear diffusion arising in population genetics. Adv. Math.,
1978, 30(1): 33-76.
[9] Fazly M, Lewis M, Wang H. On impulsive reaction-diffusion models in higher dimensions. SIAM J. Appl. Math.,

2017, 77(1): 224-246.

[10] Fazly M, Lewis M, Wang H. Analysis of propagation for impulsive reaction-diffusion models. STAM J. Appl.
Math., 2020, 80(1): 521-542.

[11] Lewis M A, Li B. Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion
models. Bull. Math. Biol., 2012, 74: 2383-2402.

[12] LinY, Wang Q R. Spreading speed and traveling wave solutions in impulsive reaction-diffusion models. Commun.
Nonlinear Sci. Numer. Simul., 2015, 23(1-3): 185-191.

[13] Vasilyeva O, Lutscher F, Lewis M. Analysis of spread and persistence for stream insects with winged adult
stages. J. Math. Biol., 2016, 72: 851-875.

[14] Meng Y, Lin Z, Pedersen M. Effects of impulsive harvesting and an evolving domain in a diffusive logistic model.
Nonlinearity, 2021, 34(10): 7005-7029.

[15] BaiZ, LouY, Zhao X Q. Spatial dynamics of species with annually synchronized emergence of adults. J. Nonlinear
Sci., 2022, 32(6): 78.

[16] Wang Z, An Q, Wang H. Properties of traveling waves in an impulsive reaction-diffusion model with overcom-
pensation. Z. Angew. Math. Phys., 2023, 74(3): 114.

[17] Wang Z, Wang H. Bistable traveling waves in impulsive reaction-advection-diffusion models. J. Differ. Equ.,
2021, 285: 17-39.

[18] Wang Z, Salmaniw Y, Wang H. Persistence and propagation of a discrete-time map and PDE hybrid model with
strong Allee effect. Nonlinear Anal. RWA., 2021, 61: 103336.

[19] Wu R, Zhao X Q. The evolution dynamics of an impulsive hybrid population model with spatial heterogeneity.
Commun. Nonlinear Sci. Numer. Simul., 2022, 107: 106181.

[20] Wang M, Zhang Y, Huang Q. A stage-structured continuous-/discrete-time population model: persistence and
spatial spread. Bull. Math. Biol., 2022, 84(11): 135.

[21] Faria T, Figueroa R. Positive periodic solutions for systems of impulsive delay differential equations. Discrete
Contin. Dyn. Syst. Ser. B, 2023, 28 (1): 170-196.

[22] Buedo-Ferndndez S, Faria T. Positive periodic solutions for impulsive differential equations with infinite delay
and applications to integro-differential equations. Math. Meth. Appl. Sci., 2020,43(6):3052-3075.

https://doi.org/10.4153/S0008414X25101727 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101727

24 Y. TANG, B. DAI & J. WU

[23] Alan Pounds J, Bustamante M R, Coloma L A, et al. Widespread amphibian extinctions from epidemic disease
driven by global warming. Nature, 2006, 439(7073): 161-167.

[24] Thomas C D, Hill J K, Anderson B J, et al. A framework for assessing threats and benefits to species responding
to climate change. Methods Ecol. Evol., 2011, 2(2): 125-142.

[25] Stanton J C, Shoemaker K T, Pearson R G, et al. Warning times for species extinctions due to climate change.
Glob. Change Biol., 2015, 21(3): 1066-1077.

[26] Potapov A B, Lewis M A. Climate and competition: the effect of moving range boundaries on habitat invasibility.
Bull. Math. Biol., 2004, 66(5): 975-1008.

[27] Berestycki H, Diekmann O, Nagelkerke C J, et al. Can a species keep pace with a shifting climate?. Bull. Math.
Biol., 2009, 71: 399-429.

[28] Berestycki H, Rossi L. Reaction-diffusion equations for population dynamics with forced speed I: The case of the
whole space. Discrete Contin. Dyn. Syst., 2008, 21(1): 41-67.

[29] Li B, Bewick S, Shang J, et al. Persistence and spread of a species with a shifting habitat edge. STAM J. Appl.
Math., 2014, 74(5): 1397-1417.

[30] Shen W, Shen Z, Xue S, Zhou D. Population dynamics under climate change: persistence criterion and effects
of fluctuations. J. Math. Biol., 2022 Mar;84(4):30.

[31] Shen W, Xue S. Forced waves of parabolic-elliptic Keller-Segel models in shifting environments. J. Dyn. Differ.
Equ., 2021:1-32.

[32] Vo H H. Persistence versus extinction under a climate change in mixed environments. J. Differ. Equ., 2015,
259(10): 4947-4988.

[33] Berestycki H, Fang J. Forced waves of the Fisher-KPP equation in a shifting environment. J. Differ. Equ., 2018,
264(3): 2157-2183.

[34] Fang J, Peng R, Zhao X Q. Propagation dynamics of a reaction-diffusion equation in a time-periodic shifting
environment. J, Math. Pure Appl., 2021, 147:1-28.

[35] Zhang G B, Zhao X Q. Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic
shifting habitat. J. Differ. Equ., 2020, 268(6): 2852-2885.

[36] Wang Z, Wang H. Persistence and propagation of a PDE and discrete-time map hybrid animal movement model
with habitat shift driven by climate change. SIAM J. Appl. Math., 2020, 80(6): 2608-2630.

[37] ZhangY, Yi T, Chen Y. Spreading dynamics of an impulsive reaction-diffusion model with shifting environments.
J. Differ. Equ., 2024, 381: 1-19.

[38] Zhang Y, Yi T, Wu J. Global population propagation dynamics of reaction-diffusion models with shifting envi-
ronment for non-monotone kinetics and birth pulse. J. Differ. Equ., 2024, 402: 290-314.

[39] Zhao X Q. Dynamical systems in population biology, 2nd ed. New York: Springer, 2017.

[40] Meng Y, Ge J, Lin Z. Dynamics of a free boundary problem modelling species invasion with impulsive harvesting.
Discrete Contin. Dyn. Syst. B, 2022, 27(12): 7689-7720.

[41] Liang X, YiY , Zhao X Q .Spreading speeds and traveling waves for periodic evolution systems. J. Differ. Equ.,
2006, 231(1):57-77

[42] Fang J, Zhao X Q. Traveling waves for monotone semiflows with weak compactness. SIAM J. Math. Anal., 2014,
46(6): 3678-3704.

[43] Wu R, Zhao X Q. Spatial invasion of a birth pulse population with nonlocal dispersal. STAM J. Appl. Math.,
2019, 79(3): 1075-1097.

[44] Peng R, Wei D. The periodic-parabolic logistic equation on RY. Discrete Contin. Dyn. Syst., 2012, 32(2): 619-
641.

https://doi.org/10.4153/S0008414X25101727 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101727

	1. Introduction
	2. Preliminaries
	2.1. Two periodic problems
	2.2. Spreading properties of some time-periodic-parabolic problems

	3. Propagation dynamics
	3.1. Forced KPP waves
	3.2. Spreading properties

	4. Simulations
	4.1. Forced wave
	4.2. Spatial spread with different shifting speed c
	4.3. Spatial spread with different initial value u0
	4.4. Spatial spread with different birth pulses g(u)

	5. Discussion
	Data availability statement
	Acknowledgement
	References

