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Abstract: The spectral imaging (SI) approach is used in analytical 
electron microscopy for determining chemical compositions in materials 
at the microscale. A major challenge is how to efficiently unlock micro-
spatially resolved chemical information in large SI data cubes. Tata Steel 
has developed an in-house software approach called PhAse Analysis, 
Recognition and Characterization (PARC). PARC combines automated 
phase recognition with flexible user-defined refinement functions to 
create phase allocation models. These models may be used in automated 
batch processing on multiple SI fields, enabling the visualization of  
complex microstructures, and the quantification of phase proportions 
and chemistry, at length scales up to several millimeters. The approach 
bridges the gap between microanalysis and bulk analysis and lends 
itself to cross-validation with independent bulk analytical techniques 
such as X-ray fluorescence (XRF) and X-ray diffraction (XRD).

Introduction
Scanning electron microscopy (SEM) combined with 

X-ray microanalysis is widely used for the characterization of  
solid materials. With the current generation of hardware—
including field-emission electron guns, energy-dispersive X-ray 
analysis systems employing silicon drift detectors (SDD), and 
fast acquisition capabilities—chemical information from each 
pixel in an SEM image can be acquired within milliseconds. 
The greatest challenge is how to efficiently extract the maximum 
information from such a spectral imaging (SI) data set. Locked 
within the acquired SI data is spatially resolved chemical 
information that can be used to define phases, map their distri-
bution and relative abundances, and determine the accurate 
chemistry of not only the individual phases but also the local 
bulk composition on the millimeter to centimeter scale. 
To unlock this potential at Tata Steel, we have developed 
the PhAse Recognition and Characterization (PARC) post- 
processing software for SI data [1–3].

The ability to determine the distributions and chemical 
compositions of individual phases is crucial for the character-
ization of materials. Phases, as opposed to elements, are the most 
directly relevant building blocks of many complex materials 
and are indicative of the conditions of a material’s formation 
and its chemical and mechanical properties. The spatial distri-
bution of phases can be related to gradients in chemistry or 
physical conditions like temperature and oxygen activity (fO2). 
Often gradients in phase distribution become apparent only 
at a scale of centimeters (for example, in geological materials) 
requiring characterization of microstructure and microchem-
istry on this length scale. Moreover, phases can have internal 
chemical zonation. For tackling such materials character-
ization, the acquisition of SIs from large areas is particularly 
powerful, avoiding many of the pitfalls of manual point analysis 
and associated user bias.

To illustrate the application of PARC, we use it to study the 
microstructure of metallurgical slag produced in steelmaking. 
The studied slag derives from the converter process in which 
liquid Fe metal from the blast furnace is refined by extracting 

C, Si, P, Mn, and Ti as well as trace metals like V, Ba, Cr, and 
Mo. In the converter, C forms gaseous CO, and the other 
impurity elements are oxidized and react with lime (CaO) and 
dolime (CaO.MgO) to form a slag. Converter slag is subject to 
European Union regulations regarding Registration, Evaluation, 
Authorisation and Restriction of Chemicals (REACH) [4]; it is 
the most voluminous byproduct of steelmaking (~0.1 ton slag 
per 1 ton steel) with limited options for reuse. Understanding 
slag microstructure and phase makeup is relevant for predicting 
its environmentally relevant behavior [5]. Converter slag is  
particularly challenging to study because, owing to rapid non- 
equilibrium cooling, phase distribution gradients as well as 
chemical zonation within phases are present.

This article provides a description of the PARC software 
and its application to the characterization of converter 
slag. A more extensive comparison of PARC results 
with complementary methods of analysis such as X-ray 
diffraction-Rietveld (XRD-Rietveld) and X-ray fluorescence 
(XRF) bulk chemical analysis is the subject of a separate 
publication [6].

Materials and Methods
SI-data processing and the rationale for PARC. Each  

pixel within an SI data set stores a full energy dispersive 
X-ray spectroscopy (EDS) spectrum, representing elemental 
information derived from X rays emitted from the electron 
beam interaction volume. Various options are integrated 
into the majority of commercial EDS-software packages 

Figure 1: Reflected light microscopy image of K3-slag grains showing two grains 
selected for analysis with PARC.
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number of maps that can be combined in one overlay image is 
limited to three, otherwise there is no unique correspondence 
between a given element combination and a given color. 
For complex materials with phases potentially comprising 
more than three elements (or oxide components), the visual 
overlay method is somewhat cumbersome and requires 
cross-referencing between different overlay permutations 
to identify all the phases present. A preferable option is to 
group pixels according to recurring combinations of multiple 
elements (chemically defined phases) and represent these in  
a color-coded segmented “phase map,” while extracting 
the sum spectra of the grouped pixels to provide chemical 
information of the individual phases.

The phase identification approaches used in commercially 
available software can be divided into two main categories:  
grouping of areas in elemental X-ray maps [7] and principal 
component analysis (PCA) of the SI data cube [8, 9]. In the 
first approach elemental maps are extracted after (or during) 
an SI data set acquisition. As soon as sufficient counts are 
acquired, phases can be defined and displayed for those spatial 
domains with similar element combinations. Individual spectra 
of a domain are summed to represent a phase spectrum. This 
selection can be done semi-automatically, by defining only the 
elements on which the grouping is to be based, or manually by 
selecting data domains in scatter plots or bivariate histogram 
plots of one element intensity/concentration against another. 
In addition, as spectra are quantified, ZAF maps can also 
be derived [10]. In the second approach a minimum 
number of principal spectral components are found, 
which are subsequently translated into maps to completely 

describe the SI data set. A detailed 
description of the PCA as used in the 
Noran System Six software (COMPASS 
from Thermo Fisher Scientific) is 
described in a technical note [9]. This 
approach has drawbacks, including 
for example that ZAF correction is 
not strictly applicable to spectra from 
principal component groupings because 
these do not necessarily represent 
physical entities (that is, phases) in 
a material. Additionally, the options 
for batch data evaluation of multiple 
image fields are limited because the 
principal components are derived for 
each individual image rather than being 
derived in a selected reference image 
and then applied to all subsequent 
images.

The approach used in PARC 
falls under the first category. Broadly 
speaking, the procedure is as follows:  
all individual pixel spectra are split 
into channels for evaluation, and when  
channel intensities exceed a user- 
defined threshold value, a peak 
position is defined and assigned to an 
element. Subsequently, spectra with 

to process, visualize, and utilize this spatially resolved 
information. Summed spectra from multiple pixels can be 
extracted using user-defined square-, circular-, polygon-, or 
BSE image-based selections. To visualize spatial variations 
in local chemical composition, X-ray maps of different 
user-selected elements can be extracted and reported in terms 
of net counts or weight (and atomic) percentages. These 
element maps can be overlaid on the reference SEM grayscale 
image. Because there are only three primary colors, the 

Figure 2: BSE image from a K3 slag. A=Ca2SiO4 (C2S), B=decomposed 
Ca3SiO5 (C3S): phase intergrowth – dark phase C2S, bright phase lime (CaO). 
Image width = 512 μ m.

Figure 3: (a) Automated grouping of spectra. Red color shows a group of non-relevant spectra containing signals 
from both grains and epoxy mounting material. (b) Re-coloring phases and non-phase regions for better recognition. 
(c) Legends. Image width = 512 µm.
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identical peak combinations are grouped together as phases. 
The group definitions set up for one image can be applied to 
another image acquired with the same analytical conditions, 
and batch processing of SI data sets comprising multiple 
image fields is integral to the functionality.

Validation approaches. The quantified chemistry of 
correctly assigned crystalline phases recognized with PARC  
should correspond to a known stoichiometry, requiring 
that a phase like NaCl is (a) free from crystallographically 
incompatible elements like Si, Al, or O, and (b) its cation-
to-anion ratio is in agreement with the known chemical 
formula of Na:Cl = 1:1. This notion provides an important 
consistency check for the quality of the phase assignment 
with PARC. With sufficient total specimen surface area 
covered by multiple image fields dependent on local hetero-
geneity, the data sets should become representative of the 
bulk material. Such bulk data sets therefore also open the 
way to cross-validation checks of results with independent 
bulk analyses. Two additional “bulk” consistency checks that 
can be applied are related to XRD-Rietveld analysis and bulk 
chemical composition. First, the inventory of PARC-defined 
crystalline phases and their proportions should be consistent 
with those determined independently by Rietveld analysis of 
the powder XRD pattern (where agreement can reasonably 
be expected between (micro)chemically defined and crystal-
lographically defined phases). In the second consistency 
check, the PARC output of chemical compositions and area 
proportions of phases, in combination with corresponding 
phase densities, allows the bulk chemical composition to be 

calculated and compared with independent bulk chemical 
analyses (XRF, inductively coupled plasma optical emission 
spectrometry). Therefore three potential validation “checks” 
for PARC apply: individual phase stoichiometry, consistency 
with XRD-Rietveld phase inventory and proportions, and 
agreement with bulk chemistry [6].

Sample selection. Two typical converter slag samples, K1 
and K3, obtained in single batches of steelmaking were selected. 
Testing showed them to differ substantially in their leaching 
properties and volume expansion tendency. Typical aggregate 
properties of K1-type slags include low-volume expansion in 
EN1744-1 tests and noticeable vanadium leaching in the CEN/
TS 14405 test; whereas, K3 type slags exhibit much higher 
expansion but no vanadium leaching.

Specimen preparation for microscopy and data 
acquisition. Specimens were prepared by mounting the 
slag grains in Struers EpoFix, grinding, and polishing to a 
flat surface according to standard procedures. Light optical 
microscopy (LOM) was carried out using a Carl Zeiss 
AxioImager microscope, with integrated AxioVision 
software 4.9. Thereafter, the sample was coated with approx-
imately 10 nm of carbon for SEM investigation. The SI data 
were acquired with a JEOL JSM-7001F SEM equipped with 
two 30 mm2 SDD detectors (Thermo Fisher Scientific) and 
a NORAN-System7 with NSS.3.3 software. The accelerating 
voltage was 15 kV, and the beam current in the focused 
probe was 6.2 nA. The step size was 1 μ m, with an individual 
SI field comprising 512 × 384 pixels. The acquisition time 
per field was 60 minutes.

Table 1: Phase comparison between PARC and XRD.

PARC XRD-Rietveld PARC XRD-Rietveld

K1-Grain1 K1-Grain2 Bulk K3-Grain1 K3-Grain2 Bulk

ave wt% ave wt% wt% 2σ  error ave wt% ave wt% wt% 2σ  error

Lime (CaO) 1 1 1.1 0.4 5 3 7.1 0.5

Portlandite 
(Ca[OH]2) 0.1 0.1 0.6 0.3

Calcite 
(CaCO3) 0.1 0.2 0.5 0.4

Aragonite 
(CaCO3) 0.0 0.3 0.7 0.4

Wuestite (FeO) 6.5 2.0 31 26 18.6 1.8

Mg-Wuestite 
([Mg,Fe]O) 24 24 16.9 1.8 6.8 2.2

Srebrodolskite 
(Ca2FeO5) 22 23 22.2 1.0 23 21 21.5 1.2

Larnite 
(Ca2SiO4) 52 51 40.4 1.9 28 30 24.6 1.6

a’-C2S 
(Ca2SiO4) 9.8 1.9 3.8 1.5

“Hatrurite” 
(Ca3SiO5) 9 16 0.0 0.5

amorphous 3.0 6.1 15.8 4.2
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Results
Preliminary LOM and SEM characterization. From each 

slag sample, a reflected-light LOM image was acquired (Figure 1) 
to select two representative grains for slag characterization. For 
each of these grains, SI data were acquired by SEM-EDS from 
more than 40 fields to cover the whole grain area. Figure 2 shows 
a backscattered electron (BSE) image of one of these fields from 
the K3 slag.

PARC finds and groups phases present. Prior  
to processing with the PARC software, SI data sets were  
converted into LISPIX format [11, 12]. Next, a data set 
from a single SI image field was selected and imported into 
PARC for the initial phase characterization. For grouping 
spectra, the user-defined minimum energy cutoff was set  
to 0.9 keV, and a minimum signal threshold was selected.  
In the present example, the grouping of phases was based on the 
presence of (up to) five different X-ray peaks exceeding the  
threshold value (Figure 3a). Areas related to the epoxy 
mounting material or to non-relevant spectra from two phases 
at a phase boundary are coded in red. After initial grouping, 
a correlation table was produced (using the Pearson product- 
moment correlation coefficient), and groups with similar 
spectra were merged. For example, pixel spectra with a Kβ  
peak for Ca or Fe just below or just above a threshold value 

result in identification as different groups, and hence speckled 
domains in the phase images, while in fact they represent the 
same phase. These groups are automatically merged via 
the correlation step. For ease of visual phase recognition, 
color-coding of phases and non-phase regions may be listed 
in a legend according to the user’s preferences (Figure 3b).

Separating similar phases with different element 
ratios. If within a group a subgroup is present with an 
identical combination of elements but in quantitatively 
different proportions, the group can be subdivided into 
multiple groups corresponding to the different phases. This 
is done by interactively selecting data regions in bivariate 
histogram plots—or “density plots”—of channel intensities 
or mathematical expressions thereof (for example, sum, 
ratio). Clustering of data in an X-Y scatter plot is highlighted 
in an example here, for two different Ca-silicate phases/
phase-intergrowths (Figure 4). Phase A (grain A in Figure 2)  
shows an internally smooth appearance in the BSE image and 
exhibits the spectrum shown in Figure 4b. Phase B is in fact 
a two-phase intergrowth with a bright phase within a darker 
matrix. Extracting a clean phase spectrum of the darker phase 
within B via manual pixel selection using NSS software (Figure 4c)  
is cumbersome because there are always contributions of 
grain-edge pixels of the intergrown brighter phase and because 

Figure 4: (a) Ca-silicate phases with different Ca/Si ratio with representative grains A and B. Image width = 512 μ m. (b) Sum spectrum extracted using NSS software 
from area A. (c) Sum spectrum extracted using NSS software from area B (yellow pixels).

https://doi.org/10.1017/S1551929516000572  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1551929516000572


Large-Area Phase Mapping

16 www.microscopy-today.com  •  2016 September

the microstructure is finer than the analytical spatial resolution 
for X-ray spectrometry. It is actually more useful to identify 
the phase intergrowth (B) as the decomposition product of  
a former single phase, hence lumping together both the brighter 
and darker phases. This is possible in PARC: the broader group 
defined, by Ca, Si, and O peaks, can be subdivided into two 
phases using the density plot approach. As demonstrated in 
Figure 5a, a polygon selection of a Ca-rich phase is defined in 
such a way that this phase corresponds to those regions visible 
in orange on the BSE grayscale image (Figure 5b). In this way, 
distinction is made between phase A, “C2S” (Ca2SiO4), and 
phase B, “C3S” (Ca3SiO5). The latter exhibits an exsolution 
intergrowth of C2S (dark phase) and lime (CaO, bright phase), 
a phase mixture commonly encountered in such slag material. 
Once all groups are refined and the desired color-coding legend 
is specified, this model can be stored and applied to all SI data 
sets collected under identical analytical conditions. An example 
of the final color-coded phase segmentation map of a single K3 
grain is shown in Figure 6.

Pixel erosion at boundaries. All pixels are included for 
the purposes of producing phase maps out of image fields and 
for quantifying areal proportions (volume fractions) of phases. 
However, pixels adjacent to other phases may contain a mixed 
chemical signal reflecting both phases. For the purposes of 
extracting “clean” spectra for quantitative chemical analysis 
of the individual phases, these pixels must be excluded. This 
is achieved by applying a binary erosion step using a 3 × 3 
matrix. Only those pixels whose eight neighboring pixels are 
all allocated to the same group contribute to the sum spectrum. 
In sample K3, if the C3S phase intergrowth (phase B) had been 
further subdivided into its constituent two separate phases, this 
erosion step could be used to extract cleaned-up spectra of the 
two (if any pixels remained after erosion). In the case of phase 
B in Figure 4, the bright CaO regions each occupy only a few 
pixels and may be smaller than the analytical spatial resolution 
at 15 kV.

Identification of boundary phases. In the K1 slag sample, 
V-rich entities are expected. To extract these from the C2S 
phase, a density plot was generated using the Si signal on the X 
axis and the sum of V+P+Al signals on the Y axis (Figure 7a).  
A polygon was drawn manually around the pixels with high 
intensities of V+P+Al and defined as a separate group (colored 
pixels in Figure 7b). Many of these green pixels (354 in total) 
were immediately adjacent and contaminated by the signal from 
an Al-rich Ca-ferrite phase, inferred from their relatively high 
Al-signal. After applying an erosion filter to the pixels within the 
red square, only seven pixels remain, coded in red in Figure 7c,  
from which a cleaned spectrum of the V-rich sub-group could 
be extracted. A “before and after” comparison between the 
two extracted spectra (Figures 7d) shows clearly the effect of the 
erosion filter in cleaning up the phase spectrum extraction. The 
combined approach of using density plots and the erosion filter 
is extremely useful for removing (even minimal) contamination 
of analyses from adjoining phases.

Large-area phase images. Once a model has been established,  
it can be run in batches on series of SI fields collected under the 
same conditions that can subsequently be stitched together to  T
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create phase segmentation images several millimeters across 
(Figure 8). This particular example shows clearly the length scale 
of heterogeneity of slag grains for K1 and K3. The areal propor-
tions of each individual phase can be exported per SI field. When 
integrating over sufficient surface area (if necessary multiple SI 
fields), estimates of local bulk composition, and any systematic 
gradients therein, may be obtained. In this case, no gradients 
in phase distribution were observed on the length scale of an 
individual grain, and the areal proportions of phases were 
integrated over each grain as an indication of the slag’s bulk 
mineralogy (Table 1). The phase proportions (Table 1), phase 
chemistries from the extracted phase spectra (Table 2), and  
assumed phase densities are combined to calculate the bulk 
chemical composition of each grain (Table 3). The total time 
to characterize a slag grain, 45 fields as presented in Figure 8d, 
including SI data acquisition (1 hr per field) and modeling with 
PARC (for this application ~5 minutes), was between 46 and 47 
hours depending on the computer platform (MAC or PC) used.

Discussion
Validation. Qualitatively, the same major phase categories 

are identified by both PARC and independent XRD analyses 

of the same samples: Ca-silicates, 
Ca-ferrites, Mg-Fe-oxides, and one 
minor Ca-oxide phase (Table 1). The 
quantitative chemical analyses of the 
phase spectra extracted by PARC 
(Table 2) yield compositions in line 
with expected stoichiometric ranges 
for the phases (from left to right 
in the table): C2S, C3S, srebro-
dolskite / brownmillerite (2CaO.
(Fe,Cr,Al,V)2O3), Mg-wuestite 
((Mg,Fe,Mn)O), and lime (CaO). The 
bulk chemical compositions of the 
slag grains reconstructed by PARC 
analysis (Table 3) generally deviate 
less than 10% relative from those 
independently analyzed by XRF, for 
the major elements (Si, Ca, Mg, and 

Fe), whereas for minor elements this deviation ranges up to 
~20% relative (for example, Ti).

The quantitative discrepancy between PARC and XRD 
phase proportions (Table 1) in the case of the Ca-silicates, 
Ca-(hydrous)oxide, Ca-carbonate, and Mg-Fe-oxides 
is explained by the chemical versus crystallographic 
definition of phases in the respective analytical methods, 
which in fact highlights the necessity of combining independent 
techniques to fill the blind spots in each. The phase intergrowth 
referred to in previous sections is defined in PARC as a 
single phase—C3S—while in fact the intergrowth represents 
a well-documented decomposition texture of C3S to a mixture 
of C2S and lime (CaO), apparently amorphous because it does 
not show up as additional C2S and lime, but corresponds to 
the “amorphous” content in the Rietveld XRD analysis. The 
absence of any detectable crystalline C3S phase (hatrurite) 
in the XRD analyses is therefore explainable. The higher 
proportion of lime, portlandite, and Ca-carbonate in sample 
K3 corresponds well with the higher fraction of “CaO” in the 
PARC analysis (all three phases in the XRD would be identified 
as CaO using the PARC chemical definition of Ca and O 

Table 3: Bulk chemistry comparison between PARC and XRF.

PARC XRF PARC XRF

K1-Grain1 K1-Grain2 K1-Bulk K3-Grain1 K3-Grain2 K3-Bulk

Wt% Wt% Wt% Wt% Wt% Wt%

MgO 7.3 7.8 7.8 9.5 8.6 7.5

Al2O3 2.8 2.7 2.7 1.1 1.0 1.1

SiO2 15.2 15.4 14.8 10.4 13.0 11.9

P2O5 1.6 1.7 1.6 1.1 1.3 1.2

CaO 43.7 43.8 44.7 38.2 41.8 43.6

TiO2 1.7 1.7 1.4 1.2 1.1 1.0

V2O5 1.1 1.0 1.2 0.6 0.6 0.8

Cr2O3 0.6 0.5 0.2 0.5 0.5 0.2

MnO 4.6 4.3 4.7 5.2 4.4 4.5

FeO 21.1 20.8 20.8 32.0 27.5 30.3
*Na2O, SO3, Cl and K2O were equal or below 0.2% and therefore not shown in the table.

Figure 5: (a) Density plot of Si and Ca for Ca-rich group of pixels only. Polygon selection of pixels tuned to 
correspond with BSE image in Figure 5b. (b) BSE image with selected pixels from density plot in highlighted orange. 
Image width = 512 μ m.
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peak combination). In short, this serves to illustrate that the 
PARC results can be cross-validated with other independent 
techniques and constraints and that in this case any discrep-
ancies have a logical explanation given prior knowledge of the 
materials and associated processes.

Strategies for effective use of PARC. The results above 
illustrate how the PARC software can be used to identify phases 
and produce a large-area phase map. Often it is necessary 
to check for phases that are unexpected or to detect known 

phases that are present in low-volume 
fractions. These determinations can 
be made using PARC to process SI 
data sets via two different strategies: 
full-automatic mode and query mode.

Full-automatic mode. In 
full-automatic mode PARC sorts the 
individual pixel spectra according 
to their characteristic multi-element 
combinations using only two 
constraints: peak threshold above 
background and the X-ray energy 
lower limit cut-off. Generally 
this is a successful strategy with 

coarse-grained materials having phase domains of 10 μ m 
or larger, such as geological samples [1] and metallurgical 
slag. In full-automatic PARC mode, pixels within phases 
forming solid solutions with a broad chemical range can 
become assigned to separate phases. However these can be 
merged manually afterwards to a single phase if stringent 
phase mapping is desired. In general, a solid solution phase 
can be recognized independently by BSE-intensity changes 
within a grain. These BSE-intensity changes correspond 

Figure 7: (a) Density plot to extract V-rich entity from C2S phase. (b) Selected polygon pixels: green marked pixels are adjacent to another phase and expected to 
contain mixed chemical information. Image width = 365 μ m. (c) Close-up of selected polygon pixels: red marked pixels are clean V-C2S pixels. (d) Overlay between sum 
spectra of all selected polygon pixels (red spectrum) and clean pixels (yellow spectrum). Spectra are scaled to Ca-Kα .

Figure 6: (a). Final color-coding K3-grain1. Image width = 512 μ m. (b) Legends.
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Figure 8: Large-area phase images. (a) BSE image of K1-slag grain. (b) Phase image of K1-slag grain including a legend. 
(c) BSE image of K3-slag grain. (d) Phase image of K3-slag grain (legend in (b) applies). Image width = 2.56 mm.

to a variation of elements concomitant with a fixed stoichi-
ometry linked to the phase’s crystal structure. In PARC, 
compositional gradients in such solid solution phases can 
be highlighted visually in the phase segmentation maps with a 
color shading for a single element (even for those elements with 
an energy below the minimum defined keV used for initial 
grouping), element ratio, or combination of elements. The 
full-automatic mode recognizes trace phases containing unusual 
elements or combinations of elements. Artifacts associated 
with adjoining phase boundaries can be mitigated by applying 
image-processing techniques such as erosion operations on the 
peripheries of phases.

Query mode. In the query mode, 
PARC is asked to search for known 
element combinations that are 
specific for a given phase of interest. 
This works well with prior knowledge 
about a sample (for example, from 
powder XRD-analysis), but it can 
also be used when searching for the 
presence of certain trace phases in 
large sample areas.

Typically both of these 
strategies would be employed:  
(1) use the software in automated 
mode to confront the user with 
unexpected features that may 
otherwise be overlooked, and (2) 
use the software in query mode to 
find expected features that may be 
so low in abundance as to be below 
the detection limits of other techniques 
(for example, bulk XRD-Rietveld). A 
key strength of PARC software is the 
flexibility for the user to readily modify 
and refine the phase assignment model 
manually using “density plots” as 
described.

The aim of developing PARC was 
to enhance our ability to harness SI 
data sets for characterizing the phase 
distribution and phase chemistry in 
diverse materials with respect to  
what was possible with commercially  
available software. The key functional  
features of PARC are summarized  
as follows: (a) automatic and query 
grouping of individual SI pixel spectra as 
phases, (b) flexibility in user-defined 
refinement of phase allocation by 
merging and/or splitting phases, 
(c) clean-up functionality (erosion) 
to obtain accurate phase chemistry, 
and (d) batch processing of multiple SI 
data sets with a given phase allocation 
model.

The introduction of PARC 
software at Tata Steel R&D has fundamentally changed our 
approach to materials characterization. Our PARC phase 
assignment models have been developed for various types of 
steel industry-related materials, such as iron-ore pellets [13], 
metallurgical slags [14–16], diverse process and environ-
mental dusts, casting powder, and surface defects in steel 
products. In addition, PARC has been applied to geological 
investigations (experimental petrology [2, 17] on hydrous 
andesite and gabbro), archeological and historical artifacts 
(Roman steel, seventeeth-century paintings [1]), and 
slags from several other processes, such as sewage-sludge 
incineration and fertilizer production.
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Conclusion
Developments in SEM and SI have made it possible to 

acquire micro-spatially resolved chemical information on solid 
materials so quickly and in such large volume that a major 
challenge is how to process the data to unlock the stored 
information. An innovative software approach has been 
described here for automating phase recognition, producing 
phase segmentation maps, quantifying areal phase propor-
tions, and extracting phase spectra from large SI data 
cubes: PARC. Key to the functionality of the software is  
the combination of (1) automated phase recognition based 
on elemental combinations in pixel spectra, (2) flexibility for 
user-defined refinement of phase allocation models and clean-up 
of extracted phase spectra, and (3) batch processing on multiple 
SI fields in an unattended mode. Complex microstructures 
can be clearly visualized, and phase proportions and phase 
chemistry accurately quantified, on a range of length scales (up 
to several millimeters). This enables a bridge to be made between 
microanalysis and bulk analyses: heterogeneities and gradients 
in local bulk mineralogy and chemical composition can be 
quantified that would otherwise fall between the two length scales 
of analysis. The PARC approach moreover lends itself to cross- 
validation with bulk techniques (for example, bulk XRF, XRD 
analyses).
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