ON GAUSSIAN AND GEODESIC CURVATURE OF RIEMANNIAN MANIFOLDS

HANSKLAUS RUMMLER

Introduction. In [1], S. S. Chern gave a very elegant and simple proof of the Gauss-Bonnet formula for closed (i.e. compact without boundary) oriented Riemannian manifolds of even dimension:

$$\int_M \Omega = c\chi(M).$$

Here, c is a suitable constant depending on the dimension of M and Ω is an *n*-form $(n = \dim M)$ which may be calculated from its curvature tensor. W. Greub gave a coordinate-free description of this integrand Ω (cf. [4]).

Chern generalized his result in [2] to smooth polyhedral regions G with boundary ∂G :

$$\int_{G} \Omega + \int_{\nu(\partial G)} \Pi = c \chi(G, \partial G).$$

Here, Π is a (n - 1)-form on the unit sphere bundle E over M and $\nu: \partial G \to E$ is the outer unit normal field on the boundary ∂G of G. Now, $\Omega = nKdV_n$, where dV_n is the oriented Riemannian volume on M and K is a smooth function on M, which may be considered as Gaussian curvature. In the same way, $\nu^*\Pi = \kappa dV_{n-1}$, where dV_{n-1} is the induced volume on ∂G . The function κ is then uniquely determined and corresponds to the geodesic curvature in the case n = 2, where ∂G is a curve. The aim of this article is to define the geodesic curvature for any oriented hypersurface in an even-dimensional oriented Riemannian manifold—without using the sphere bundle for this definition and to state and prove the Gauss-Bonnet formula for compact regions with smooth boundary:

$$\int_{\partial G} \kappa d V_{n-1} + n \int_{G} K d V_n = c_{n-1} \chi(G, \partial G).$$

Here, $c_{n-1} = 2 \pi^m / (m-1)!$ is the volume of the unit (n-1)-sphere and χ is the Euler-characteristic. The constants n and c_{n-1} appear in the formula to simplify notation in the definition of K and κ .

Part 1 of this article defines K and κ in terms of the Riemannian connexion and curvature tensor. Part 2 proves the Gauss-Bonnet formula. To do so, we

Received December 8, 1972 and in revised form, March 14, 1973. This research was supported by NRC Grant A-3018.

HANSKLAUS RUMMLER

use Chern's idea to work with the unit sphere bundle. Furthermore we use details of Greub's proof in [4].

1. Gaussian and geodesic curvature and the Gauss-Bonnet formula. Throughout this paragraph, M denotes an oriented Riemannian manifold of dimension n = 2m, with 2-co- and 2-contravariant curvature tensor R, regarded as 2-form on M with values in $\Lambda^2 TM$ (TM the tangent bundle of M). To avoid unnecessary minus-signs, let us make the following sign-convention for R: If M is the *n*-sphere of radius r in Euclidean (n + 1)-space, its curvature tensor is given by

$$R(x; u_1, u_2) = + \frac{1}{r^2} u_1 \wedge u_2 \quad \text{for } x \in M, u_1, u_2 \in T_x M.$$

(This corresponds to the form $-\Lambda$ in [4]!) R induces an *n*-form R^m on M, with values in the line bundle $\Lambda^n TM$: define for $u_1, \ldots, u_n \in T_xM$

$$R^{m}(x; u_{1}, \ldots, u_{n}) := \frac{1}{2^{m}m!} \sum_{\sigma \in S_{n}} \epsilon_{\sigma} R(x; u_{\sigma_{1}}, u_{\sigma_{2}}) \wedge \ldots \wedge R(x; u_{\sigma_{n-1}}, u_{\sigma_{n}}).$$

Here, S_n is the symmetric group of permutations of n objects, and ϵ_{σ} is the sign of $\sigma \in S_n$.

The oriented Riemannian volume on M is a map $dV_n = e^* \colon \Lambda^n TM \to \mathbf{R}$, linear on each fibre. It is determined by the property $\langle e^*, e_1 \land \ldots \land e_n \rangle = 1$ for any positively oriented orthonormal basis e_1, \ldots, e_n of T_xM .

Definition. Let e_1, \ldots, e_n be an orthonormal basis of T_xM , and denote by e_1^*, \ldots, e_n^* the dual basis. Then the Gaussian curvature of M at x is defined by

$$K(x) := \frac{1}{2^m m!} \langle e_1^* \wedge \ldots \wedge e_n^*, R^m(e_1, \ldots, e_n) \rangle.$$

(The choice of the constant factor is not the usual one; it is, however, useful in our context.)

Now fix an orthonormal basis e_1, \ldots, e_n of T_xM , and select 2p pairwise different indices $j_1, \ldots, j_{2p} (1 \leq p \leq m)$. $e_{j_1}, \ldots, e_{j_{2p}}$ span a 2p-dimensional subspace of T_xM , and for a sufficiently small neighbourhood U of 0 in that subspace, $\exp_x(U)$ is a 2p-dimensional submanifold of an open neighbourhood of x in M. We denote it by $M_{j_1} \ldots_{j_{2p}}$ or M_J , if J denotes the 2p-tuple $J = (j_1, \ldots, j_{2p})$ and call it the submanifold spanned by $e_{j_1}, \ldots, e_{j_{2p}}$. M_J shall be endowed with the induced Riemannian metric. In particular, it has a welldefined Gaussian curvature at x.

LEMMA. The Gaussian curvature of M_J at x is

$$K_{J}(x) = \frac{1}{2^{p} p!} \langle e_{j_{1}}^{*} \wedge \ldots \wedge e_{j_{2_{p}}}^{*}, R^{p}(e_{j_{1}}, \ldots, e_{j_{2_{p}}}) \rangle.$$

630

Proof. Denote the curvature tensor of M_J by \tilde{R} . $\Lambda^{2p}T_xM_J$ may be regarded as a one-dimensional subspace of $\Lambda^{2p}T_xM$, and if p_* : $\Lambda^{2p}T_xM \to \Lambda^{2p}T_xM_J$ denotes the map induced by the orthogonal projection $T_xM \to T_xM_J$, one checks that

$$\bar{R}^{p}(e_{j_{1}},\ldots,e_{j_{2}p}) = p_{*}R^{p}(e_{j_{1}},\ldots,e_{j_{2}p}).$$

(To do so, one needs the fact that M_J is geodesic at x, i.e. it contains the geodesics passing through x in directions $e_{j_1}, \ldots, e_{j_{2p}}$.) Now the lemma follows, because $(T_xM_J)^*$ can be regarded as a subspace of $(T_xM)^*$, $e_{j_1}^*$, \ldots , $e_{j_{2p}}^*$ being the dual basis to $e_{j_1}, \ldots, e_{j_{2p}}$.

Before defining the geodesic curvature, we introduce some notational conventions: For $p, r \in \mathbb{N}, p \leq r$, denote by $A\binom{r}{p}$ the set of ordered p-tuples (i_1, \ldots, i_p) with $1 \leq i_1 < \ldots < i_p \leq r$, and for $I \in A\binom{r}{p}$ let J(I) be the complementary (r - p)-tuple in

$$A\binom{r}{r-p}: J = (j_1, \ldots, j_{r-p}), 1 \leq j_1 < \ldots < j_{r-p} \leq r,$$

$$\{i_1, \ldots, i_p, j_1, \ldots, j_{r-p}\} = \{1, \ldots, r\}.$$

If p = r, J(I) is not defined since $A\binom{r}{r} = \emptyset$! For $I \in A\binom{r}{p}$ and real numbers $\lambda_{i_1}, \ldots, \lambda_{i_p}$ set $\lambda_I: = \lambda_{i_1} \ldots \lambda_{i_p}$.

Next consider an oriented hypersurface N of M. N has an upper unit normal field ν . For $x \in N$, define $L_x: T_x N \to T_x N$ by $L_x(u):= D_u \nu$, where D is the Levi-Civita connexion on M. L_x is the so-called Weingarten map, which is self-adjoint with respect to the induced metric on N (see [6]). Therefore there exists an orthonormal basis e_1, \ldots, e_{n-1} of $T_x N$, consisting of eigenvectors of L_x . Denote the respective eigenvalues by $\lambda_1, \ldots, \lambda_{n-1}$.

Definition. With the foregoing notations, the geodesic curvature of N at x is defined by

$$\kappa_N(x) := \sum_{k=0}^{m-1} {\binom{m-1}{k}}^{-1} \sum_{I \in A \binom{m-1}{n-1-2k}} \lambda_I K_{J(I)}(x).$$

(Note that for k = 0, I = (1, ..., n - 1) and that J(I) is not defined. So the term for k = 0 is simply $\lambda_1 ... \lambda_{n-1}!$)

This definition reduces to the usual one in the case n = 2, where N is an oriented curve on a surface. More generally, the eigenvalues λ_i can be interpreted as geodesic curvatures of certain curves on surfaces: Take a smooth curve γ in N, passing through x in direction e_i , and attach to its points the geodesics passing through it in direction ν . This yields a surface $M_{\nu,\gamma}$ whose tangent space at x is spanned by $\nu(x)$ and e_i . Endow $M_{\nu,\gamma}$ with the induced Riemannian metric and orient it by requiring $(\nu(x), e_i)$ to represent the orientation at x. Then, if γ is oriented by its tangent vector e_i at x, λ_i is the geodesic curvature of γ at x, regarded as curve on the surface $M_{\nu,\gamma}$. We leave the verification to the reader.

HANSKLAUS RUMMLER

Now, let *G* be a compact domain in *M*, with smooth boundary ∂G , and denote by ν the outwards pointing unit normal field on ∂G . (Recall that *M* is oriented!) It can be extended to a vector field $\hat{\nu}$ on *G* with a single singularity. The index of this singularity does not depend on the particular extension, but only on ν , and hence on *G*. We define the Euler-characteristic of $(G, \partial G)$ by

 $\chi(G, \partial G)$: = index ($\hat{\nu}$).

In this definition, ν can be replaced by any tangent field on ∂G without zeroes. Such tangent fields exist, because ∂G has odd dimension.

THEOREM (Gauss-Bonnet formula). Let M be an oriented Riemannian manifold of even dimension n = 2m, and G a compact domain in M with smooth boundary ∂G , oriented by the outwards pointing normal field. Then

$$\int_{\partial G} \kappa_{\partial G} dV_{n-1} + n \int_{G} K dV_n = c_{n-1} \chi(G, \partial G).$$

Here, dV_n and dV_{n-1} denote the oriented Riemannian volume on M and ∂G , respectively, and $c_{n-1} = 2 \pi^m / (m-1)!$ is the volume of the unit (n-1)-sphere.

2. The proof of the Gauss-Bonnet formula. Denote by (E, p, M) the unit sphere bundle over M, whose fibre at x is the unit sphere S_x in the tangent space T_xM .

For $v \in E$, the Levi-Civita connexion D on M defines a decomposition of the tangent space

$$T_v E = H_v E \bigoplus V_v E$$

into horizontal and vertical part. The horizontal part, H_vE , is isomorphic to $T_{p(v)}M$, the isomorphism being given by the derivative of p at v, $p_*:T_vE \to T_{p(v)}M$. We therefore regard p_* as the projection of T_vE onto its horizontal part and write $H:=p_*$. The vertical part can be identified with the subspace v^{\perp} of $T_{p(v)}M$, and we denote by $V:T_vE \to T_{p(v)}M$ the corresponding projection map.

If $v: U \to E$ is a differentiable section (U an open subset of M), for its derivative $v_*:TU \to TE$ and its covariant derivative $Dv:TU \to TM$ the following relations hold:

(1)
$$V \circ v_* = Dv, \quad H \circ v_* = \mathrm{id}.$$

On the fibre product $TE \times_E TE$ we define the alternating bilinear bundle map ("Alternating bilinear" means alternating and **R**-bilinear on each fibre.)

$$W:=V \wedge V:TE \times_E TE \to \Lambda^2 TM$$

over $p: E \to M$, i.e., $W(w_1, w_2) = 2V(w_1) \wedge V(w_2) \in \Lambda^2 T_{p(v)}M$ for $v \in E$,

632

 $w_1, w_2 \in T_v E$. In the same way,

$$R \circ H := R \circ (H \times {}_{r}H) : TE \times {}_{E}TE \to \Lambda^{2}TM$$

is an alternating bilinear bundle map over $p: E \to M$.

Following the main ideas of [4], we construct for $\lambda \in \mathbf{R}$ the alternating (n-1)-linear bundle map

$$\Phi_{\lambda} := V \wedge (\lambda W + R \circ H)^{m-1} : TE \times_{E} \ldots \times_{E} TE \to \Lambda^{n-1}TM.$$

Here, the "exterior power" is defined as

$$(\lambda W + R \circ H)^{m-1}$$
: = $\frac{1}{(m-1)!} (\lambda W + R \circ H) \land \ldots \land (\lambda W + R \circ H),$

and the binomial formula holds:

$$(\lambda W + R \circ H)^{m-1} = \sum_{k=0}^{m-1} \lambda^k W^k \wedge (R \circ H)^{m-1-k}.$$

(See [4].)

For fixed $v \in E$, $\varphi_{\lambda}(v) := \langle e^*, v \land \Phi_{\lambda} \rangle$ is a well-defined alternating (n-1)-form on $T_v E$, i.e. φ_{λ} is an (n-1)-form on the manifold E, depending on the parameter λ . With the inclusion map $J: E \to TM$, we can write

 $\varphi_{\lambda} = \langle e^*, J \wedge \Phi_{\lambda} \rangle.$

From (1) we obtain for any local differentiable section v in E the relation

(2)
$$v^*(\varphi_{\lambda}) = \langle e^*, v \wedge Dv \wedge (\lambda Dv \wedge Dv + R)^{m-1} \rangle.$$

Greub proved in [4] the formula

(3)

$$d\langle e^{*}, v \wedge Dv \wedge (\lambda Dv \wedge Dv + R)^{m-1} \rangle$$

$$= \sum_{k=0}^{m-1} \frac{(2k+1)!}{k!} \lambda^{k} \langle e^{*}, 2(k+1)(Dv)^{2(k+1)} \wedge R^{m-1-k} - (Dv)^{2k} \wedge R^{m-k} \rangle.$$

(Note our sign-convention for R!) Since (2) and (3) hold for any local differentiable section v in E, (3) determines $d\varphi_{\lambda}$ uniquely:

(4)
$$d\varphi_{\lambda} = \sum_{k=0}^{m-1} \frac{(2k+1)!}{k!} \lambda^{k} \langle e^{*}, 2(k+1) V^{2(k+1)} \wedge (R \circ H)^{m-1-k} - V^{2k} \wedge (R \circ H)^{m-k} \rangle.$$

Comparing the coefficients of λ^k in φ_{λ} and $d\varphi_{\lambda}$ leads to the definition

(5)
$$\varphi_k := \langle e^*, J \wedge V^{2k+1} \wedge (R \circ H)^{m-1-k} \rangle, \quad 0 \leq k \leq m-1,$$

and the relation

(6)
$$\mathrm{d}\varphi_k = \langle e^*, 2(k+1) V^{2(k+1)} \wedge (R \circ H)^{m-1-k} - V^{2k} \wedge (R \circ H)^{m-k} \rangle.$$

Now set

(7)
$$\varphi := \sum_{k=0}^{m-1} \frac{1}{2^k k! \binom{m-1}{k}} \varphi_{m-1-k}$$

Let us integrate φ over a fibre in the bundle (E, φ, M) : The integrals of the terms containing $R \circ H$ vanish, because $H(T_v(S_x)) = 0$ for $x \in M$, $v \in S_x$. So we obtain

(8)
$$\int_{S_x} \varphi = \int_{S_x} \varphi_{m-1} = \int_{S_x} \langle e^*, J \wedge V^{n-1} \rangle = \int_{S_x} dV_{n-1} = c_{n-1}$$

From (5) and (6) we find that

$$d\varphi = \frac{-1}{2^{m-1}(m-1)!} \langle e^*, (R \circ H)^m \rangle = \frac{-1}{2^{m-1}(m-1)!} p^* \langle e^*, R^m \rangle$$

and our definition of the Gaussian curvature turns this into

(9)
$$d\varphi = -np^*(KdV_n).$$

If N is any oriented hypersurface in M with upper normal field ν , the (n-1)-form $\nu^* \varphi$ on N can be written as

(10)
$$\nu^* \varphi = \tilde{\kappa}_N d V_{n-1},$$

where $\tilde{\kappa}_N$ is a well-defined smooth function on N.

Now it is easy to prove the theorem with $\tilde{\kappa}_{\partial G}$ instead of $\kappa_{\partial G}$: Extend the outwards pointing normal field ν on ∂G to a unit vector field $\hat{\nu}: G - x_0 \to E$ with a singularity of index $\chi := \chi(G, \partial G)$ at $x_0 \in G$. $\hat{\nu}(G)$ is an *n*-dimensional submanifold of E with boundary $\partial \hat{\nu}(G) = \nu(\partial G) - \chi S_{x_0}$. Hence, by Stokes' Theorem, and (8), (9), (10),

$$-n \int_{G} K dV_{n} = \int_{\hat{v}(G)} d\varphi = \int_{v(\partial G)} \varphi - \chi \int_{S_{x_{0}}} \varphi = \int_{\partial G} \tilde{\kappa}_{\partial G} dV_{n-1}$$
$$- c_{n-1}\chi.$$

Our proof will be completed, if we can show $\tilde{\kappa}_N = \kappa_N$, for any oriented hypersurface N in M with upper normal field ν . Fix a point $x \in N$ and set $e_0 := \nu(x)$, and let e_1, \ldots, e_{n-1} be any positively oriented orthonormal basis of T_xN . Then, by definition,

(11)

$$\tilde{\kappa}_{N}(x) = \nu^{*}\varphi(e_{1}, \ldots, e_{n-1}) \\
= \sum_{k=0}^{m-1} \frac{1}{2^{k}k!\binom{m-1}{k}} \nu^{*}\varphi_{m-1-k}(e_{1}, \ldots, e_{n-1}).$$

To express $\nu^* \varphi_{m-1-k}(e_1, \ldots, e_{n-1})$, let us write

$$e_{0,I}^* = e_{0,i_1...i_r}^* := e_0^* \wedge e_{i_1}^* \wedge \ldots \wedge e_{i_r}^*$$
 for $I = (i_1, \ldots, i_r)_{i_r}$

634

and similarly

$$R_{J}^{k} = R_{j_{1}...j_{2k}}^{k} = R^{k}(e_{j_{1}}, \ldots, e_{j_{2k}}),$$

$$L_{x, I} = L_{x, i_{1}...i_{r}} = L_{x}(e_{i_{1}}) \wedge \ldots \wedge L_{x}(e_{i_{r}}),$$

where $L_x: T_x N \to T_x N$ is the Weingarten map as defined above. Recall also the definition of the index set $A\binom{r}{p}$ for $0 \leq p \leq r$ and the map

$$J: A\binom{r}{p} \to A\binom{r}{r-p}.$$

Thus we have

$$\nu^{*}\varphi_{m-1-k}(e_{1},\ldots,e_{n-1}) = \frac{1}{(2k)!(n-1-2k)!} \sum_{i_{1},\ldots,i_{n-1}} \langle e_{0,i_{1}\ldots,i_{n-1}}^{*}, e_{0} \wedge L_{x,i_{1}\ldots,i_{n-1}-2k} \\ = \sum_{I \in A \binom{n-1}{(n-1-2k)}} \langle e_{0,I,J(I)}^{*}, e_{0}^{*} \wedge L_{x,I} \wedge R_{J(I)}^{k} \rangle.$$

Now take as e_1, \ldots, e_{n-1} the eigenvectors of L_x , with respective eigenvalues $\lambda_1, \ldots, \lambda_{n-1}$. Then we obtain

$$\nu^{*}\varphi_{m-1-k}(e_{1},\ldots,e_{n-1}) = \sum_{I \in A} \sum_{\substack{n-1 \\ (n-1-2k)}} \lambda_{I} \langle e_{J(I)}^{*}, R_{J(I)}^{k} \rangle$$
$$= 2^{k}k! \sum_{I \in A} \sum_{\substack{n-1 \\ (n-1-2k)}} \lambda_{I} K_{J(I)}(x),$$

according to the lemma. Inserting this in (11) shows $\tilde{\kappa}_N = \kappa_N$. In particular, κ_N is a smooth function, which is not immediately clear from its definition.

References

- 1. S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. 45 (1944), 747-752.
- On the curvatura integra in a Riemann manifold, Ann. of Math. 46 (1945), 674–684.
 On curvature and characteristic classes of a Riemann manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955), 117-126.
- 4. W. H. Greub, Zur Theorie der linearen Uebertragungen, Ann. Acad. Sci. Fenn. Ser. A. I. 346 (1964), 3-32.
- 5. Multilinear algebra (Springer, Berlin, Heidelberg, New York, 1967),
- 6. N. J. Hicks, Notes on differential geometry (Van Nostrand, New York, 1965).
- 7. H. Holmann and H. Rummler, Differentialformen, Bibliographisches Institut, Mannheim, 1972.

University of Toronto, Toronto, Ontario