ON GAUSSIAN AND GEODESIC GURVATURE OF RIEMANNIAN MANIFOLDS

HANSKLAUS RUMMLER

Introduction. In [1], S. S. Chern gave a very elegant and simple proof of the Gauss-Bonnet formula for closed (i.e. compact without boundary) oriented Riemannian manifolds of even dimension:

$$
\int_{M} \Omega=c \chi(M) .
$$

Here, c is a suitable constant depending on the dimension of M and Ω is an n-form ($n=\operatorname{dim} M$) which may be calculated from its curvature tensor. W. Greub gave a coordinate-free description of this integrand Ω (cf. [4]).

Chern generalized his result in [2] to smooth polyhedral regions G with boundary ∂G :

$$
\int_{G} \Omega+\int_{\nu(\partial G)} \Pi=c \chi(G, \partial G)
$$

Here, Π is a (n -1)-form on the unit sphere bundle E over M and $\nu: \partial G \rightarrow E$ is the outer unit normal field on the boundary ∂G of G. Now, $\Omega=n K d V_{n}$, where $d V_{n}$ is the oriented Riemannian volume on M and K is a smooth function on M, which may be considered as Gaussian curvature. In the same way, $\nu^{*} \Pi=\kappa d V_{n-1}$, where $d V_{n-1}$ is the induced volume on ∂G. The function κ is then uniquely determined and corresponds to the geodesic curvature in the case $n=2$, where ∂G is a curve. The aim of this article is to define the geodesic curvature for any oriented hypersurface in an even-dimensional oriented Riemannian manifold-without using the sphere bundle for this definitionand to state and prove the Gauss-Bonnet formula for compact regions with smooth boundary:

$$
\int_{\partial G} \kappa d V_{n-1}+n \int_{G} K d V_{n}=c_{n-1} \chi(G, \partial G)
$$

Here, $c_{n-1}=2 \pi^{m} /(m-1)$! is the volume of the unit $(n-1)$-sphere and χ is the Euler-characteristic. The constants n and c_{n-1} appear in the formula to simplify notation in the definition of K and κ.

Part 1 of this article defines K and κ in terms of the Riemannian connexion and curvature tensor. Part 2 proves the Gauss-Bonnet formula. To do so, we

Received December 8, 1972 and in revised form, March 14, 1973. This research was supported by NRC Grant A-3018.
use Chern's idea to work with the unit sphere bundle. Furthermore we use details of Greub's proof in [4].

1. Gaussian and geodesic curvature and the Gauss-Bonnet formula.

Throughout this paragraph, M denotes an oriented Riemannian manifold of dimension $n=2 m$, with 2 -co- and 2 -contravariant curvature tensor R, regarded as 2 -form on M with values in $\Lambda^{2} T M$ ($T M$ the tangent bundle of M). To avoid unnecessary minus-signs, let us make the following sign-convention for R : If M is the n-sphere of radius r in Euclidean $(n+1)$-space, its curvature tensor is given by

$$
R\left(x ; u_{1}, u_{2}\right)=+\frac{1}{r^{2}} u_{1} \wedge u_{2} \quad \text { for } x \in M, u_{1}, u_{2} \in T_{x} M
$$

(This corresponds to the form $-\Lambda$ in [4]!) R induces an n-form R^{m} on M, with values in the line bundle $\Lambda^{n} T M$: define for $u_{1}, \ldots, u_{n} \in T_{x} M$

$$
R^{m}\left(x ; u_{1}, \ldots, u_{n}\right):=\frac{1}{2^{m} m!} \sum_{\sigma \in S_{n}} \epsilon_{\sigma} R\left(x ; u_{\sigma_{1}}, u_{\sigma_{2}}\right) \wedge \ldots \wedge R\left(x ; u_{\sigma_{n-1}}, u_{\sigma_{n}}\right)
$$

Here, S_{n} is the symmetric group of permutations of n objects, and ϵ_{σ} is the sign of $\sigma \in S_{n}$.

The oriented Riemannian volume on M is a map $d V_{n}=e^{*}: \Lambda^{n} T M \rightarrow \mathbf{R}$, linear on each fibre. It is determined by the property $\left\langle e^{*}, e_{1} \wedge \ldots \wedge e_{n}\right\rangle=1$ for any positively oriented orthonormal basis e_{1}, \ldots, e_{n} of $T_{x} M$.

Definition. Let e_{1}, \ldots, e_{n} be an orthonormal basis of $T_{x} M$, and denote by $e_{1}{ }^{*}, \ldots, e_{n}{ }^{*}$ the dual basis. Then the Gaussian curvature of M at x is defined by

$$
K(x):=\frac{1}{2^{m} m!}\left\langle e_{1}^{*} \wedge \ldots \wedge e_{n}^{*}, R^{m}\left(e_{1}, \ldots, e_{n}\right)\right\rangle
$$

(The choice of the constant factor is not the usual one; it is, however, useful in our context.)

Now fix an orthonormal basis e_{1}, \ldots, e_{n} of $T_{x} M$, and select $2 p$ pairwise different indices $j_{1}, \ldots, j_{2 p}(1 \leqq p \leqq m) . e_{j_{1}}, \ldots, e_{j_{2 p}}$ span a $2 p$-dimensional subspace of $T_{x} M$, and for a sufficiently small neighbourhood U of 0 in that subspace, $\exp _{x}(U)$ is a $2 p$-dimensional submanifold of an open neighbourhood of x in M. We denote it by $M_{j_{1}} \cdots_{j_{2} p}$ or M_{J}, if J denotes the $2 p$-tuple $J=$ $\left(j_{1}, \ldots, j_{2 p}\right)$ and call it the submanifold spanned by $e_{j_{1}}, \ldots, e_{j_{2} p} . M_{J}$ shall be endowed with the induced Riemannian metric. In particular, it has a welldefined Gaussian curvature at x.

Lemma. The Gaussian curvature of M_{J} at x is

$$
K_{J}(x)=\frac{1}{2^{p} p!}\left\langle e_{j_{1}}^{*} \wedge \ldots \wedge e_{j_{2 p}}^{*}, R^{p}\left(e_{j_{1}}, \ldots, e_{j_{2} p}\right)\right\rangle
$$

Proof. Denote the curvature tensor of M_{J} by $\widetilde{R} . \Lambda^{2 p} T_{x} M_{J}$ may be regarded as a one-dimensional subspace of $\Lambda^{2 p} T_{x} M$, and if $p_{*}: \Lambda^{2 p} T_{x} M \rightarrow \Lambda^{2 p} T_{x} M_{J}$ denotes the map induced by the orthogonal projection $T_{x} M \rightarrow T_{x} M_{J}$, one checks that

$$
\widetilde{R}^{p}\left(e_{j_{1}}, \ldots, e_{j_{2 p}}\right)=p_{*} R^{p}\left(e_{j_{1}}, \ldots, e_{j_{2 p}}\right) .
$$

(To do so, one needs the fact that M_{J} is geodesic at x, i.e. it contains the geodesics passing through x in directions $e_{j_{1}}, \ldots, e_{j_{2 p}}$.) Now the lemma follows, because $\left(T_{x} M_{J}\right)^{*}$ can be regarded as a subspace of $\left(T_{x} M\right)^{*}, e_{j_{1}}{ }^{*}, \ldots, e_{j_{2 p}}{ }^{*}$ being the dual basis to $e_{j_{1}}, \ldots, e_{j_{2} p}$.

Before defining the geodesic curvature, we introduce some notational conventions: For $p, r \in \mathbf{N}, p \leqq r$, denote by $A\binom{r}{p}$ the set of ordered p-tuples $\left(i_{1}, \ldots, i_{p}\right)$ with $1 \leqq i_{1}<\ldots<i_{p} \leqq r$, and for $I \in A\binom{\tau}{p}$ let $J(I)$ be the complementary $(r-p)$-tuple in

$$
\begin{aligned}
A\left({ }_{r-p}^{\tau}\right): J=\left(j_{1}, \ldots, j_{r-p}\right), 1 & \leqq j_{1}<\ldots<j_{r-p} \leqq r, \\
\left\{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{r-p}\right\} & =\{1, \ldots, r\} .
\end{aligned}
$$

If $p=r, J(I)$ is not defined since $A\binom{r}{r}=\emptyset!$ For $I \in A\binom{r}{p}$ and real numbers $\lambda_{i_{1}}, \ldots, \lambda_{i_{p}}$ set $\lambda_{I}:=\lambda_{i_{1}} \ldots \lambda_{i_{p}}$.

Next consider an oriented hypersurface N of $M . N$ has an upper unit normal field ν. For $x \in N$, define $L_{x}: T_{x} N \rightarrow T_{x} N$ by $L_{x}(u):=D_{u} \nu$, where D is the Levi-Civita connexion on $M . \mathrm{L}_{x}$ is the so-called Weingarten map, which is self-adjoint with respect to the induced metric on N (see [6]). Therefore there exists an orthonormal basis e_{1}, \ldots, e_{n-1} of $T_{x} N$, consisting of eigenvectors of L_{x}. Denote the respective eigenvalues by $\lambda_{1}, \ldots, \lambda_{n-1}$.

Definition. With the foregoing notations, the geodesic curvature of N at x is defined by

$$
\kappa_{N}(x): \left.=\sum_{k=0}^{m-1}\binom{m-1}{k}^{-1} \sum_{I \in A}^{\substack{n-1 \\ n-1-2 k}} \right\rvert\, \lambda_{I} K_{J(I)}(x) .
$$

(Note that for $k=0, I=(1, \ldots, n-1)$ and that $J(I)$ is not defined. So the term for $k=0$ is simply $\lambda_{1} \ldots \lambda_{n-1}$!)

This definition reduces to the usual one in the case $n=2$, where N is an oriented curve on a surface. More generally, the eigenvalues λ_{i} can be interpreted as geodesic curvatures of certain curves on surfaces: Take a smooth curve γ in N, passing through x in direction e_{i}, and attach to its points the geodesics passing through it in direction ν. This yields a surface $M_{\nu, \gamma}$ whose tangent space at x is spanned by $\nu(x)$ and e_{i}. Endow $M_{\nu, \gamma}$ with the induced Riemannian metric and orient it by requiring $\left(\nu(x), e_{i}\right)$ to represent the orientation at x. Then, if γ is oriented by its tangent vector e_{i} at x, λ_{i} is the geodesic curvature of γ at x, regarded as curve on the surface $M_{\nu, \gamma}$. We leave the verification to the reader.

Now, let G be a compact domain in M, with smooth boundary ∂G, and denote by ν the outwards pointing unit normal field on ∂G. (Recall that M is oriented!) It can be extended to a vector field $\hat{\nu}$ on G with a single singularity. The index of this singularity does not depend on the particular extension, but only on ν, and hence on G. We define the Euler-characteristic of $(G, \partial G)$ by

$$
\chi(G, \partial G):=\operatorname{index}(\hat{\nu}) .
$$

In this definition, ν can be replaced by any tangent field on ∂G without zeroes. Such tangent fields exist, because ∂G has odd dimension.

Theorem (Gauss-Bonnet formula). Let M be an oriented Riemannian manifold of even dimension $n=2 m$, and G a compact domain in M with smooth boundary ∂G, oriented by the outwards pointing normal field. Then

$$
\int_{\partial G}{ }_{\partial \partial} d V_{n-1}+n \int_{G} K d V_{n}=c_{n-1} \chi(G, \partial G) .
$$

Here, $d V_{n}$ and $d V_{n-1}$ denote the oriented Riemannian volume on M and ∂G, respectively, and $c_{n-1}=2 \pi^{m} /(m-1)$! is the volume of the unit $(n-1)$ sphere.
2. The proof of the Gauss-Bonnet formula. Denote by (E, p, M) the unit sphere bundle over M, whose fibre at x is the unit sphere S_{x} in the tangent space $T_{x} M$.

For $v \in E$, the Levi-Civita connexion D on M defines a decomposition of the tangent space

$$
T_{v} E=H_{v} E \oplus V_{v} E
$$

into horizontal and vertical part. The horizontal part, $H_{v} E$, is isomorphic to $T_{p(v)} M$, the isomorphism being given by the derivative of p at $v, p_{*}: T_{v} E \rightarrow$ $T_{p(v)} M$. We therefore regard p_{*} as the projection of $T_{v} E$ onto its horizontal part and write $H:=p_{*}$. The vertical part can be identified with the subspace v^{\perp} of $T_{p(v)} M$, and we denote by $V: T_{v} E \rightarrow T_{p(v)} M$ the corresponding projection map.

If $v: U \rightarrow E$ is a differentiable section (U an open subset of M), for its derivative $v_{*}: T U \rightarrow T E$ and its covariant derivative $D v: T U \rightarrow T M$ the following relations hold:

$$
\begin{equation*}
V \circ v_{*}=D v, \quad H \circ v_{*}=\mathrm{id} . \tag{1}
\end{equation*}
$$

On the fibre product $T E \times_{E} T E$ we define the alternating bilinear bundle map ("Alternating bilinear" means alternating and R-bilinear on each fibre.)

$$
\begin{aligned}
W: & =V \wedge V: T E \times_{E} T E \rightarrow \Lambda^{2} T M \\
\text { over } p: E & \rightarrow M, \text { i.e., } W\left(w_{1}, w_{2}\right)=2 V\left(w_{1}\right) \wedge V\left(w_{2}\right) \in \Lambda^{2} T_{p(v)} M \text { for } v \in E
\end{aligned}
$$

$w_{1}, w_{2} \in T_{v} E$. In the same way,

$$
R \circ H:=R \circ\left(H \times{ }_{p} H\right): T E \times{ }_{E} T E \rightarrow \Lambda^{2} T M
$$

is an alternating bilinear bundle map over $p: E \rightarrow M$.
Following the main ideas of [4], we construct for $\lambda \in \mathbf{R}$ the alternating ($n-1$)-linear bundle map

$$
\Phi_{\lambda}:=V \wedge(\lambda W+R \circ H)^{m-1}: T E \times_{E} \ldots \times_{E} T E \rightarrow \Lambda^{n-1} T M .
$$

Here, the "exterior power" is defined as

$$
(\lambda W+R \circ H)^{m-1}:=\frac{1}{(m-1)!}(\lambda W+R \circ H) \wedge \ldots \wedge(\lambda W+R \circ H)
$$

and the binomial formula holds:

$$
(\lambda W+R \circ H)^{m-1}=\sum_{k=0}^{m-1} \lambda^{k} W^{k} \wedge(R \circ H)^{m-1-k}
$$

(See [4].)
For fixed $v \in E, \varphi_{\lambda}(v):=\left\langle e^{*}, v \wedge \Phi_{\lambda}\right\rangle$ is a well-defined alternating $(n-1)$ form on $T_{v} E$, i.e. φ_{λ} is an $(n-1)$-form on the manifold E, depending on the parameter λ. With the inclusion map $J: E \rightarrow T M$, we can write

$$
\varphi_{\lambda}=\left\langle e^{*}, J \wedge \Phi_{\lambda}\right\rangle
$$

From (1) we obtain for any local differentiable section v in E the relation

$$
\begin{equation*}
v^{*}\left(\varphi_{\lambda}\right)=\left\langle e^{*}, v \wedge D v \wedge(\lambda D v \wedge D v+R)^{m-1}\right\rangle \tag{2}
\end{equation*}
$$

Greub proved in [4] the formula

$$
\begin{align*}
& d\left\langle e^{*}, v \wedge D v \wedge(\lambda D v \wedge D v+R)^{m-1}\right\rangle \\
& \quad=\sum_{k=0}^{m-1} \frac{(2 k+1)!}{k!} \lambda^{k}\left\langle e^{*}, 2(k+1)(D v)^{2(k+1)} \wedge R^{m-1-k}\right. \tag{3}\\
& \left.\quad-(D v)^{2 k} \wedge R^{m-k}\right\rangle
\end{align*}
$$

(Note our sign-convention for $R!$) Since (2) and (3) hold for any local differentiable section v in E, (3) determines $d \varphi_{\lambda}$ uniquely:

$$
\begin{align*}
d \varphi_{\lambda}=\sum_{k=0}^{m-1} \frac{(2 k+1)!}{k!} \lambda^{k}\left\langle e^{*}, 2(k+1) V^{2(k+1)} \wedge(R \circ H)^{m-1-k}\right. & \tag{4}\\
& \left.-V^{2 k} \wedge(R \circ H)^{m-k}\right\rangle
\end{align*}
$$

Comparing the coefficients of λ^{k} in φ_{λ} and $d \varphi_{\lambda}$ leads to the definition

$$
\begin{equation*}
\varphi_{k}:=\left\langle e^{*}, J \wedge V^{2 k+1} \wedge(R \circ H)^{m-1-k}\right\rangle, \quad 0 \leqq k \leqq m-1 \tag{5}
\end{equation*}
$$

and the relation

$$
\begin{equation*}
\mathrm{d} \varphi_{k}=\left\langle e^{*}, 2(k+1) V^{2(k+1)} \wedge(R \circ H)^{m-1-k}-V^{2 k} \wedge(R \circ H)^{m-k}\right\rangle \tag{6}
\end{equation*}
$$

Now set

$$
\begin{equation*}
\varphi:=\sum_{k=0}^{m-1} \frac{1}{2^{k} k!\binom{m-1}{k}} \varphi_{m-1-k} . \tag{7}
\end{equation*}
$$

Let us integrate φ over a fibre in the bundle (E, p, M) : The integrals of the terms containing $R \circ H$ vanish, because $H\left(T_{v}\left(S_{x}\right)\right)=0$ for $x \in M$, v $\in S_{x}$. So we obtain

$$
\begin{equation*}
\int_{S_{x}} \varphi=\int_{S_{x}} \varphi_{m-1}=\int_{S_{x}}\left\langle e^{*}, J \wedge V^{n-1}\right\rangle=\int_{S_{x}} d V_{n-1}=c_{n-1} \tag{8}
\end{equation*}
$$

From (5) and (6) we find that

$$
d \varphi=\frac{-1}{2^{m-1}(m-1)!}\left\langle e^{*},(R \circ H)^{m}\right\rangle=\frac{-1}{2^{m-1}(m-1)!} p^{*}\left\langle e^{*}, R^{m}\right\rangle
$$

and our definition of the Gaussian curvature turns this into

$$
\begin{equation*}
d \varphi=-n p^{*}\left(K d V_{n}\right) \tag{9}
\end{equation*}
$$

If N is any oriented hypersurface in M with upper normal field ν, the ($n-1$)form $\nu^{*} \varphi$ on N can be written as

$$
\begin{equation*}
\nu^{*} \varphi=\tilde{\kappa}_{N} d V_{n-1} \tag{10}
\end{equation*}
$$

where $\tilde{\kappa}_{N}$ is a well-defined smooth function on N.
Now it is easy to prove the theorem with $\tilde{\kappa}_{\partial G}$ instead of $\kappa_{\partial G}$: Extend the outwards pointing normal field ν on ∂G to a unit vector field $\hat{\nu}: G-x_{0} \rightarrow E$ with a singularity of index $\chi:=\chi(G, \partial G)$ at $x_{0} \in G . \hat{\nu}(G)$ is an n-dimensional submanifold of E with boundary $\partial \hat{\nu}(G)=\nu(\partial G)-\chi S_{x_{0}}$. Hence, by Stokes' Theorem, and (8), (9), (10),

$$
-n \int_{G} K d V_{n}=\int_{\hat{\nu}(G)} d \varphi=\int_{\nu(\partial G)} \varphi-\chi \int_{S_{x_{0}}} \varphi=\int_{\partial G} \tilde{\kappa}_{\partial G} d V_{n-1}
$$

$-c_{n-1} \chi$.
Our proof will be completed, if we can show $\tilde{\kappa}_{N}=\kappa_{N}$, for any oriented hypersurface N in M with upper normal field ν. Fix a point $x \in N$ and set $e_{0}:=\nu(x)$, and let e_{1}, \ldots, e_{n-1} be any positively oriented orthonormal basis of $T_{x} N$. Then, by definition,

$$
\begin{align*}
\tilde{\kappa}_{N}(x) & =\nu^{*} \varphi\left(e_{1}, \ldots, e_{n-1}\right) \\
& =\sum_{k=0}^{m-1} \frac{1}{2^{k} k!\binom{m-1}{k}} \nu^{*} \varphi_{m-1-k}\left(e_{1}, \ldots, e_{n-1}\right) . \tag{11}
\end{align*}
$$

To express $\nu^{*} \varphi_{m-1-k}\left(e_{1}, \ldots, e_{n-1}\right)$, let us write

$$
e_{0, I}^{*}=e_{0, i_{1} \ldots i_{r}}^{*}:=e_{0}^{*} \wedge e_{i_{1}}^{*} \wedge \ldots \wedge e_{i_{r}}^{*} \quad \text { for } \quad I=\left(i_{1}, \ldots, i_{r}\right),
$$

and similarly

$$
\begin{aligned}
& R_{J}^{k}=R_{j_{1} \ldots j_{2 k}}^{k}=R^{k}\left(e_{j_{1}}, \ldots, e_{j_{2 k}}\right) \\
& L_{x, I}=L_{x, i_{1} \ldots i_{r}}=L_{x}\left(e_{i_{1}}\right) \wedge \ldots \wedge L_{x}\left(e_{i_{r}}\right)
\end{aligned}
$$

where $L_{x}: T_{x} N \rightarrow T_{x} N$ is the Weingarten map as defined above. Recall also the definition of the index set $A\binom{r}{p}$ for $0 \leqq p \leqq r$ and the map

$$
J: A\binom{\tau}{p} \rightarrow A\left(\begin{array}{c}
\tau-p
\end{array}\right) .
$$

Thus we have

$$
\begin{aligned}
& \nu^{*} \varphi_{m-1-k}\left(e_{1}, \ldots, e_{n-1}\right) \\
& \\
& \quad=\frac{1}{(2 k)!(n-1-2 k)!} \sum_{i_{1}, \ldots, i_{n-1}}\left\langle e_{0, i_{1} \ldots i_{n-1}}^{*}, e_{0} \wedge L_{x, i_{1} \ldots i_{n-1-2 k}} \quad \wedge R_{i_{n-2 k} \ldots i_{n-1}}^{k}\right\rangle \\
& \\
& \quad=\sum_{I \in A\binom{n-1}{n-1-2 k}}\left\langle e_{0, I, J(I)}^{*}, e_{0}^{*} \wedge L_{x, I} \wedge R_{J(I)}^{k}\right\rangle .
\end{aligned}
$$

Now take as e_{1}, \ldots, e_{n-1} the eigenvectors of L_{x}, with respective eigenvalues $\lambda_{1}, \ldots, \lambda_{n-1}$. Then we obtain

$$
\begin{aligned}
\nu^{*} \varphi_{m-1-k}\left(e_{1}, \ldots, e_{n-1}\right) & =\sum_{I \in A}^{\substack{n-1 \\
n-1-2 k\\
)}} \lambda_{I}\left\langle e_{J(I)}^{*}, R_{J(I)}^{k}\right\rangle \\
& =2^{k} k!\sum_{I \in A\binom{n-1}{n-1-2 k}} \lambda_{I} K_{J(I)}(x),
\end{aligned}
$$

according to the lemma. Inserting this in (11) shows $\tilde{\kappa}_{N}=\kappa_{N}$. In particular, κ_{N} is a smooth function, which is not immediately clear from its definition.

References

1. S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. 45 (1944), 747-752.
2. - On the curvatura integra in a Riemann manifold, Ann. of Math. 46 (1945), 674-684.
3. -—— On curvature and characteristic classes of a Riemann manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955), 117-126.
4. W. H. Greub, Zur Theorie der linearen Uebertragungen, Ann. Acad. Sci. Fenn. Ser. A. I. 346 (1964), 3-32.
5. -_Multilinear algebra (Springer, Berlin, Heidelberg, New York, 1967),
6. N. J. Hicks, Notes on differential geometry (Van Nostrand, New York, 1965).
7. H. Holmann and H. Rummler, Differentialformen, Bibliographisches Institut, Mannheim, 1972.

University of Toronto, Toronto, Ontario

