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Image registration is often a required step for correlative analysis, which involves aligning two or more 

mono- or multi- modal image data to relate functional properties and other material characteristics. In this 

study, a deep learning approach is explored to enable real-time automatic image registration without 

human intervention. We train a deep convoluted neural network (CNN) to extract important features from 

X-ray and electron beam (e-beam) microscopic images, and predict the affine transformation parameters 

such as rotation, scaling and shifts on x- and y- axes between a pair of fixed and moving images. 

The goal of mage registration is either finding a coordinate transformation matrix H that aligns a pairs of 

images globally,[1] or predicting a non-rigid deformation field φ for aligning features with changes in 

geometry locally.[2] Coordinate transformation matrix H is often needed to align data with different field 

of views (FOVs), while deformable registration assumes FOVs are the same but needs local adjustments. 

Due to resolution limits and specimen preparation difference between X-ray and e-beam measurements, 

aligning images from the two often involves finding the scaling, translation, and rotation factors, which 

are the parameters in transformation matrix H and the main focus of this study. Traditionally, intensity- 

and feature- based approaches have been applied to finding this coordinate transform matrix . Intensity-

based approach is straightforward, in which the algorithm stops updating H when minimum pixel intensity 

difference is reached,[3] while feature-based approach generally has better performance in handling 

images with acceptable difference in contrast, signal to noise ratio (S/R) and field of view difference, 

because it solves H directly using coordinates of similar features identified by feature detectors such as 

SIFT (scale invariant feature transform) and ORB (Oriented FAST and Rotated BRIEF).[4] 

Convoluted neural networks (CNNs) have excelled at various computer vision tasks including feature 

classification, object detection and segmentation.[5] In this work, we utilize two-headed CNN 

architecture, that takes as input two images and predicts the parameters of the affine transformation. Thus, 

solely using the two images as input, the CNN can learn how to solve the registration problem. Image 

augmentation is also utilized to obtain a trained CNN model that is more tolerant of noise or blurring 

effect from both mono- or multi- modal measurement.[6] 

Figure 1 illustrates the initial performance of the trained model on the test dataset. These testing images, 

also known as “Target” images, are generated by applying the known transformation on the image data 

(shown in Figure 2). These known transformations are also normalized and standardized using their 

average and standard deviation value for CNN training purposes. Figure 1 suggests a larger difficulty in 

training the rotation and scaling parameter because larger prediction variation is observed among all the 

parameters. This is also reflected on transformed transmission electron microscopic (TEM) image as 

shown in Figure 2, where the transformed image (Data-tform) zooms in a bit more than the target image. 

This result demonstrates the potential of using deep learning to predict affine transformation, and the 

likelihood of estimating real-time alignment once the CNN is trained, which allows multimodal alignment 

during data collection and systematic correlative microscopic analysis for large dataset. 
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Figure 1. Figure 1. Parameter predictions of the trained CNN. Given a pair of test images, CNN predicts 

four parameters: angle of rotation, scaling fraction, shifts on both x- and y- axes. Correlation plots for 

training and testing dataset are shown where the ground truth and predicted values are plotted on x- and 

y- axis, respectively. A guided black line with y = x is also plotted For each parameter, both target and 

predicted values are standardized before CNN training. It helps the network to consider the impact from 

each parameter evenly. 
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Figure 2. Figure 2. Image transformation using CNN predicted value. Target (left), Data (middle), and 

Data-tform (right) is fixed, moving, and registered image, respectively. Scale bar in data image is 5 µm. 
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