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Abstract

We consider the three-dimensional sloshing problem on a triangular prism whose angles
with the sloshing surface are of the form π/2q, where q is an integer. We are interested in
finding a two-term asymptotic expansion of the eigenvalue counting function. When both
angles are π/4, we compute the exact value of the second term. As for the general case,
we conjecture an asymptotic expansion by constructing quasimodes for the problem and
computing the counting function of the related quasi-eigenvalues. These quasimodes come
from solutions of the sloping beach problem and correspond to two kinds of waves, edge
waves and surface waves. We show that the quasi-eigenvalues are exponentially close to real
eigenvalues of the sloshing problem. The asymptotic expansion of their counting function is
closely related to a lattice counting problem inside a perturbed ellipse where the perturba-
tion is in a sense random. The contribution of the angles can then be detected through that
perturbation.

2020 Mathematics Subject Classification: 35P20 (Primary), 35P05 (Secondary)

1. Introduction
1.1. The Steklov and sloshing problems

Let �⊂R
n be a bounded domain with boundary � and let ρ ∈ L∞(�, R) be a non-

negative weight function. The Steklov problem with weight ρ consists of finding all
solutions u ∈ H1(�) and σ ∈R of the problem{

�u = 0 in �,

∂νu = σρu on �,
(1·1)

where �=∑n
i=1 ∂

2
xi

and ∂ν denotes the exterior normal derivative on the boundary. The
classical Steklov problem consists in having ρ ≡ 1 on �.
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Fig. 1. Example of domain � with α= β = π
4 .

Our main interest is the sloshing problem. Given a partition of the boundary � = �N � �S,
the sloshing problem consists of solving (1·1) with ρ ≡ 0 on �N and ρ ≡ 1 on �S. It is a
mixed Steklov–Neumann boundary problem describing the oscillations of an ideal fluid in a
tank shaped like � with walls �N and free surface (or sloshing surface) �S. The admissible
values of σ are called the sloshing eigenvalues.

1.2. Our problem

Let � ⊂R
2 be a triangle with a side S = [0, L] × {0} of length L making angles α at (0,

0) and β at (L, 0) with the other sides. We denote the union of those two other sides by W .
Given M > 0, we consider the sloshing problem on the triangular prism �=� × [0, M] ⊂
R

3 with sloshing surface �S = S × [0, M] and walls

�N = (W × [0, M]) ∪ (� × {0}) ∪ (� × {M}).
All this notation is summarised in Figure 1 where the sloshing surface is shaded in grey.

The sloshing problem on � consists of finding functions  :�→C such that⎧⎪⎨
⎪⎩
�= 0 in �,

∂ν= 0 on �N ,

∂ν= σ on �S,

(1·2)

for some σ ∈R. It is a mixed Steklov–Neumann boundary problem describing the oscilla-
tions of an ideal fluid in a tank shaped like �. The sloshing eigenvalues correspond to the
eigenvalues of the Dirichlet-to-Neumann map DN : H1/2(�S) → H−1/2(�S) which maps a
function u to ∂ν ũ, where ũ is the solution to⎧⎪⎨

⎪⎩
�ũ = 0 in �,

∂ν ũ = 0 on �N ,

ũ = u on �S.

It is a positive semi-definite self-adjoint operator with compact resolvent. As such, its
eigenvalues form a discrete sequence

0 = σ0 <σ1 ≤ σ2 ≤ · · · ↗ ∞
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accumulating at infinity. By separating variables (see [7, lemma 2·1]), it is sufficient to
consider functions of the form

(x, y, z) = cos(λnz)ϕ(x, y)

with λn = nπ/M, where ϕ :�→R satisfies⎧⎪⎨
⎪⎩
�ϕ = λ2

nϕ in �,

∂νϕ = 0 on W ,

∂νϕ = σϕ on S .

(1·3)

We are interested in the asymptotic expansion of the eigenvalue counting function

N(σ ) := #{j ∈N0 : σj <σ }.
From [1], we know that

N(σ ) = LM

4π
σ 2 + o(σ 2).

This asymptotic does not capture the contribution from the angles α and β. Our goal is to
find a suitable second term in the asymptotic expansion for N(σ ) which reveals how both
angles affect the counting function. We will be more particularly interested in the case where
α = π/2q and β = π/2r for some integers q and r greater or equal to 1, but not both 1.

Remark 1·1. The case α = β = π/2 obviously does not result in a triangular prism and
would actually give rise to an unbounded domain. However, the asymptotic behaviour
of the sloshing eigenvalues should only depend on a neighbourhood of the sloshing sur-
face. This intuition is supported by the following computation. Consider the cuboid �=
[0, L] × [0, R] × [0, M] ⊂R

3 with the sloshing surface corresponding to y = R. As above,
we can separate variables to get eigenfunctions of the form cos(λnz)ϕ(x, y) with ϕ satisfying
(1·3). We can then separate variables again in the x direction to get eigenfunctions of the
form

(x, y, z) = cos
(mπ

L
x
)

cos
(nπ

M
z
)

Y(y),

where m and n are non-negative integers and the function Y satisfies Y ′(0) = 0, Y ′(R) =
σY(R) and

Y ′′

Y
=
(mπ

L

)2 +
(nπ

M

)2 =:μ2.

It follows that Y(y) = cosh (μy) and the eigenvalue is given by σ =μ tanh (μR). As m or
n gets large, so does μ, and tanh (μR) converges to 1 exponentially fast. Hence, σ =μ+
O(μe−μR) and the dependance of the eigenvalues on R is exponentially small as μ→ ∞.
The eigenvalue counting function is then given by

N(σ ) =
{

(m, n) ∈N
2
0 :
(mπ

σL

)2 +
( nπ

σM

)2
< 1

}
+ o(σ ) = LM

4π
σ 2 + L + M

2π
σ + o(σ ).

This last expression comes from estimates on the Gauss circle problem (see [16] for
example). Therefore, the asymptotic behaviour of N(σ ) does not depend on R.
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Remark 1·2. We expect that the asymptotic behaviour of the sloshing eigenvalues should
only depend on a neighbourhood of the sloshing surface. Therefore, the results we will show
on the asymptotic behaviour of N(σ ) should also be valid in the more general case where
W is a piecewise smooth curve y = w(x) with w(0) = w(L) = 0, w(x)< 0 for x ∈ (0, L), and
making the same angles α and β with S .

1.3. Motivation

The sloshing problem has its origins in hydrodynamics (see [13, chapter 9] for example).
It describes the oscillations of an ideal fluid on the surface of a container, such as coffee in
a cup. Modern results and references on the sloshing problem can be found in [10, 11].

There has been recent interest into the Steklov problem (1·1), see [9] for a survey on
the problem. The Steklov eigenvalues correspond to the eigenvalues of the Dirichlet-to-
Neumann map which is often referred to as the voltage-to-current map. It is very closely
related to the Calderòn problem [5] upon which lies electrical impedance tomography, used
in geophysical and medical imaging.

If ∂� and ρ are smooth, the Dirichlet-to-Neumann operator is a pseudodifferential oper-
ator of order one and one can use pseudodifferential techniques to study its spectrum [8,
12, 17, 18]. However, whenever ∂� is not smooth (in the presence of corners for example),
those techniques fail and other approaches have to be considered. The simplest example of�
with a non-smooth boundary is a cuboid in R

n. The eigenvalue counting function on cuboids
has been studied in [7] where it was shown that it admits a two-term asymptotic where the
second term accounts for the (n − 2)-dimensional facets of the cuboid, e.g. the length of the
edges in a regular cube. However, in the case of a cuboid, all the angles between the facets
are the same right angles. Changing the angles should change the asymptotic and that is
what we wish to quantify.

The problem we are considering stems from the work of Levitin, Parnovski, Polterovich
and Sher in [14, 15]. In both papers, their goal is to understand how angles inside a two
dimensional curvilinear polygon affect its Steklov or sloshing eigenvalues. They started off
by considering the same triangles � as we described in 1·2. Their goal was then to solve⎧⎪⎨

⎪⎩
�u = 0 in �,

∂νu = 0 on W ,

∂νu = σu on S .

(1·4)

This problem is exactly like the problem (1·3) with n = 0. They were able to show the
following.

THEOREM 1·3. (Levitin, Parnovski, Polterovich, Sher [14]). Suppose that 0<α ≤ β <
π/2. Then the following asymptotic expansion holds for the eigenvalues of problem (1·4) as
k → ∞:

σkL = π

(
k − 1

2

)
− π2

8

(
1

α
+ 1

β

)
+ o(1).

A key idea of their proof was to reduce the problem to angles of the form π/2q for q ∈N,
which are referred to as exceptional angles. They then used domain monotonicity to show the
result for arbitrary angles α and β by bounding them from above and below by exceptional
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angles. Considering these exceptional angles allowed them to compute explicitly solutions
from the sloping beach problem emanating from each corner which they glued together to
obtain approximate solutions of (1·4) called quasimodes. Through careful analysis of the
quasimodes, they were able to show that the related quasi-eigenvalues were close to real
eigenvalues of problem (1·4) and approximated all of them.

We now aim to generalise their approach to three dimensions. By separating variables, we
can bring everything back to two dimensions, but we are now solving for solutions of the
Helmholtz equation with different eigenvalues λ2

n rather than for harmonic functions.

1.4. Main results

Our first result concerns the case where α = β = π/4 and is obtained by finding explicitly
the eigenfunctions.

THEOREM 1·4. The eigenvalue counting function of problem (1·2) with α = β = π/4 is
given by

N(σ ) = LM

4π
σ 2 +

L + M
(

2
√

2 + 1
)

2π
σ + o(σ ).

For other values of α and β, we were unable to find the eigenfunctions explicitly and
resorted to new methods. Our idea is to construct quasimodes that are approximate solutions
of problem (1·2). More specifically, our quasimodes will satisfy the eigenvalue condition on
the sloshing surface, but rather than satisfy the Neumann condition on the walls, the normal
derivative will decay exponentially with respect to their eigenvalue σ . Hence, the quasi-
modes will be very close to being eigenfunctions and we should expect the error between
quasi-eigenvalues and real eigenvalues of the problem to converge to zero as they get large.
We will use two kinds of quasimodes that we refer to as edge waves and surface waves.
Their construction is presented in Section 3. Let Ne(σ ) and Ns(σ ) be the counting functions
for the eigenvalues of the edge waves and surface waves respectively. Our main results pro-
vide the asymptotic expansion of these counting functions. Before stating them, we need to
introduce some quantities.

Let α = π/2q and β = π/2r. Define

θα(t) = −
q−1∑
j=1

arctan

(√
1 − t2 sin jπ

q

1 − cos jπ
q

)
.

and define similarly θβ by substituting q by r. Furthermore, let να,β = qr mod 2 and κα,β

be 0 if q and r share the same parity, and 1/2 otherwise. Then, we prove the following two
theorems.

THEOREM 1·5. The counting function Ne(σ ) for the edge waves quasi-eigenvalues
satisfies the following asymptotic expansion:

Ne(σ ) = να,β
Mσ

π
+

� q
2 −1�∑
m=0

Mσ

π sin(2m + 1)α
+

� r
2 −1�∑
�=0

Mσ

π sin(2�+ 1)β
+ O(1).
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THEOREM 1·6. The counting function Ns(σ ) for the surface waves quasi-eigenvalues
satisfies the following asymptotic expansion:

Ns(σ ) = LM

4π
σ 2 + L − M

2π
σ + κα,βM

π
σ + Mσ

π2

(∫ 1

0
[θα(t) + θβ (t)] dt

)
+ o(σ ).

Ideally, these quasi-eigenvalues would correspond to the real eigenvalues of the slosh-
ing problem. We will show that for every quasi-eigenvalue, there is a sloshing eigenvalue
exponentially close to it. Indeed, if we denote by {σ̃j}j∈N0 the set of our quasi-eigenvalues
arranged in ascending order, then Lemma 5·1 implies the following.

LEMMA 1·7. There exist positive constants C and c such that for every j ∈N0, there exists
k(j) ∈N0 such that ∣∣σ̃j − σk(j)

∣∣≤ Ce−cσ̃j .

Hence, by showing that all but finitely many values of k(j) can be chosen distinctly, we
can show that N(σ ) is bounded from below by the sum of our quasi-eigenvalue counting
functions.

THEOREM 1·8. The eigenvalue counting function N(σ ) of problem (1·2) satisfies

N(σ ) ≥ Ne(σ ) + Ns(σ ) + o(σ ).

However, we will not be able to show that there is a quasi-eigenvalue close to every real
eigenvalue of the sloshing problem, which would show that N(σ ) ≤ Ne(σ ) + Ns(σ ) + o(σ ).
This leads us the conjecture the following.

CONJECTURE 1·9. The eigenvalue counting function N(σ ) of problem (1·2) is given by

N(σ ) = Ne(σ ) + Ns(σ ) + o(σ ).

Note that when α = β = π/2 or α = β = π/4, this coincides with what we got in Remark
1·1 and what we show in Theorem 1·4. Although we are not able to prove Conjecture 1·9
for other angles, we provide numerical evidence supporting it in Section 5.3. As men-
tioned above, this conjecture hinges on showing that there is a quasi-eigenvalue next to
each sloshing eigenvalue. This motivates the next definition and our second conjecture.

Definition 1·10. We say that the sequence of quasi-eigenvalues σ̃j is asymptotically com-
plete if we can choose the function k in Lemma 1·7 in a way that there exists integers N > 0
and J ∈Z, such that for any j>N, k(j) = j + J.

This definition is inspired by the similar definition in [14], but without the “quasi-
frequency gap” condition.

CONJECTURE 1·11. The set of all edge wave and surface wave quasi-eigenvalues is
asymptotically complete.

Note that Conjecture 1·11 implies Conjecture 1·9. We also support Conjecture 1·11 with
numerical evidence in Section 5.3. A priori, the integer J in the definition of asymptotic
completeness can be of any sign. Moreover, it appears from our numerical experiments that
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Fig. 2. Reflections of � along �N to get �̃.

the larger q and r are, the larger J gets. Finding the specific value of J is a separate issue, but
it is clear that it depends on both angles.

Both our conjectures are only valid for angles of the form π/2q. At the moment, we are
unable to deal with arbitrary angles, see Section 5.2.

1.5. Our approach

Firstly, in Section 2, we compute explicitly the eigenfunctions and eigenvalues for the case
where α = β = π/4. From those computations, we show Theorem 1·4. Then, in Section 3,
using solutions coming from the theory of the sloping beach problem, we construct quasi-
modes for any angles α = π/2q and β = π/2r. These solutions arise in two forms that we
refer to as edge waves and surface waves, corresponding to the discrete and continuous parts
of the spectrum of the sloping beach problem (see [19]). Using these quasimodes, we find
suitable asymptotic formulas for Ne and Ns in Section 4, showing Theorems 1·5 and 1·6.
Counting the eigenvalues coming from edge wave solutions is straightforward. However,
counting the eigenvalues coming from surface wave solutions is more involved and we
reduce the problem to that of counting integer points in a randomly perturbed ellipse. We
discuss the theory of quasimodes and show Theorem 1·8 in Section 5, as well as provide
numerical evidence of Conjectures 1·9 and 1·11.

2. Explicit computation of the case α = β = π/4

Consider the cuboid �̃= [−L/2, L/2]2 × [0, M]. Let �̃S ⊂ ∂�̃ denote the four faces of
the cuboid with area LM and let �̃N ⊂ ∂�̃ denote the two faces of the cuboid with area L2. If
 :�→R is a solution of (1·2), then the function ̃ : �̃→R obtained by reflecting evenly
 along a rectangular part of �N three times satisfies⎧⎪⎨

⎪⎩
�̃= 0 in �̃,

∂ν̃= 0 on �̃N ,

∂ν̃= σ̃ on �̃S.

(2·1)

We illustrate these reflections in Figure 2 (note that we changed the position of the origin O
from Figure 1). Conversely, if ̃ is a solution of (2·1) that is symmetric along both planes
spanned by the rectangular parts of �N , then = ̃|� is a solution of (1·2). Therefore,
solving (1·2) is equivalent to finding solutions with even symmetries along these planes.
In other words, the functions must be invariant under the change of variables (x, y) �→ (y, x)

https://doi.org/10.1017/S0305004121000712 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000712


546 J. MAYRAND, C. SENÉCAL AND S. ST–AMANT

Table 1. Eigenfunctions ϕ(x, y) obtained by separation of variables that are symmetric
with respect to y = x and y = −x

Eigenfunction ϕ Conditions on χ and n Eigenvalue

cosh
(
λn√

2
x
)

cosh
(
λn√

2
y
)

n ≥ 0 λn√
2

tanh
(
λn

2
√

2
L
)

sinh
(
λn√

2
x
)

sinh
(
λn√

2
y
)

n> 0 λn√
2

coth
(
λn

2
√

2
L
)

cos(χx) cosh

(√
χ2 + λ2

ny

)

+ cos(χy) cosh

(√
χ2 + λ2

nx

)
n ≥ 0

√
χ2 + λ2

n tanh

(√
χ2 + λ2

n
L

2

)

= −χ tan
χL

2

−χ tan χL
2

sin(χx) sinh

(√
χ2 + λ2

ny

)
n ≥ 0

√
χ2 + λ2

n coth

(√
χ2 + λ2

n
L

2

)

= χ cot
χL

2

χ cot χL
2

+ sin(χy) sinh

(√
χ2 + λ2

nx

)
xy n = 0

2

L

and (x, y) �→ (−y, −x). Finding such solutions is much easier since we can separate variables
completely.

Let λn = nπ/M for n ∈N0. The corresponding eigenfunctions then take the form

̃(x, y, z) = ϕ(x, y) cos(λnz),

where ϕ(x, y) is given by one of the functions in Table 1. One can check that all these
eigenfunctions satisfy ϕ(x, y) = ϕ(y, x) = ϕ(−y, −x).

Let N(i)(σ ) be the number of eigenvalues of problem 1·2 smaller than σ corresponding
to eigenfunctions in the ith line of Table 1 for i = 1, . . . , 5. First, since there is only one
function of type 5, N(5)(σ ) = O(1). Second, since the hyperbolic tangents and cotangents
quickly converge to 1, we have

N(1)(σ ) = N(2)(σ ) =
√

2M

π
σ + O(1).

We can rewrite the third condition on χ and n as

χ = π

L

(
− 2

π
arctan

[√
1 + (λn/χ)2 tanh

(√
χ2 + λ2

n
L

2

)]
+ 2m

)
(2·2)

for m ∈N0. Similarly, the fourth condition is given by

χ = π

L

(
− 2

π
arctan

[√
1 + (λn/χ)2 coth

(√
χ2 + λ2

n
L

2

)]
+ (2m + 1)

)
, (2·3)

where again m ∈N0. We only consider the positive solutions of χ as the negative solu-
tions give rise to the same eigenfunctions. When m = 0, equation (2·2) admits no solution
χ > 0. Notice that the hyperbolic tangents and cotangents quickly converge to 1 as σ =
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χ2 + λ2

n + O(e−σ ) gets big, and hence the solutions of both equations (2·2) and (2·3) are
exponentially close to the solutions of

χ = π

L

(
m − 2

π
arctan

√
1 + (λn/χ)2

)

for m ∈N. The eigenvalues are given by σ =√χ2 + λ2
n + O(e−σ ) and so

σ 2 =
⎛
⎝
(

m − 2
π

arctan
√

1 + (λn/χ)2
)
π

L

⎞
⎠

2

+
(nπ

M

)2 + O(e−σ ).

Moreover, we have

arctan
√

1 + (λn/χ)2 = − arctan
√

1 − (λn/σ )2 + π

2
+ O(e−σ ).

By plugging this relation into the previous equation and including the π/2 into the inte-
ger m, it follows that the eigenvalues σ of type 3 and 4 are exponentially close to the
solutions of

σ 2 =
⎛
⎝
(

m + 2
π

arctan
√

1 − (λn/σ )2
)
π

L

⎞
⎠

2

+
(nπ

M

)2
(2·4)

for m ≥ 0 and n ≥ 0. In Section 4, we show how to count the number of solutions of such an
equation. Theorem 1·4 then follows from those calculations.

It is important to note the behaviour of the eigenfunctions in Table 1. We can ignore
the solution xy as it doesn’t contribute significantly to N(σ ). The first two functions are
concentrated in the corners of the square [−L/2, L/2]2. Hence, the corresponding solutions
 on � are concentrated on the edges of the sloshing surface that have length M. It makes
sense to call such solutions edge waves. On the other hand, the third and fourth solutions
are concentrated on the edge of the square [−L/2, L/2]2 where they oscillate. Therefore,
the corresponding solutions  on � oscillate on the whole sloshing surface, but vanish fast
inside �. In contrast to the edge waves, we refer to those solutions as surface waves.

Hence, in order to approximate solutions on a domain � with angles α = π/2q and β =
π/2r, we have to consider both kinds of waves. In the next section, we show how to construct
these solutions for each type of wave.

3. Construction of quasimodes

In order to approximate solutions of the sloshing problem, we are going to glue together
solutions of a similar problem emanating from both corners. The functions we obtain are
not exactly eigenfunctions for our problem. Nonetheless, they give rise to eigenvalues that
should be close to the actual eigenvalues. We refer to them as quasi-eigenvalues. We discuss
the theory of quasimodes in Section 5. The functions we use arise from the solutions of the
sloping beach problem which has both discrete and continuous spectrum (see [4] and [19]).
We construct quasimodes coming from both parts of the spectrum. We refer to the solutions
corresponding to the discrete part of the spectrum as edge waves since they will generate
quasimodes concentrated on the edges of the prism �. In analogy, we refer to the solutions
corresponding to the continuous part of the spectrum as surface waves since the resulting
quasimodes will oscillate on the whole sloshing surface �S and decay exponentially inside
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Fig. 3. The angular sector Sα .

�. Lemmas 3·1 and 3·6 will confirm the behaviours of the edge wave and surface wave
quasimodes respectively.

Note that although the spectrum corresponding to surface waves is continuous, the result-
ing quasi-eigenvalues will be discrete, since we will get “gluing” conditions in order for our
resulting approximate solutions to be sufficiently smooth.

3.1. Sloping beach problem

Consider the angular sector Sα = {−α ≤ θ ≤ 0} in the xy-plane as illustrated in Figure 3
and let �α = Sα × [0, M] be a sloping beach domain. The water surface is given by IS =
I1 × [0, M] and the bottom of the beach is given by IN = I2 × [0, M] where I1 = {θ = 0}
and I2 = {θ = −α}. The sloping beach problem corresponds to finding a velocity potential
 :�α →R such that  is harmonic inside �α , satisfies Neumann boundary conditions on
IN and the Steklov boundary condition ∂ν= σ on IS. By separating variables, we get that
= ϕ(x, y) cos λnz with λn = nπ/M and ϕ satisfying⎧⎪⎨

⎪⎩
�ϕ = λ2

nϕ in Sα ,

∂νϕ = 0 on I2,

∂νϕ = σϕ on I1.

(3·1)

We will create an approximate solution of (1·3) by using solutions from the sloping beach
problem (3·1) coming from each corner of �. These solutions will need to meet smoothly
and give rise to the same eigenvalue. This gluing condition will then determine the possible
quasi-eigenvalues.

3.2. Edge wave solutions of the sloping beach problem

Let 0<α ≤ π/2 and n ∈N0. The edge wave solutions of the sloping beach problem (3·1)
given by Ursell [19] are as follows. For 0 ≤ m ≤ π/4α − 1/2, m ∈Z, let

ϕnm(x, y) = e−λn(x cos α−y sin α) +
m∑

j=1

Ajm

(
e−λn(x cos(2j−1)α+y sin(2j−1)α) (3·2)

+ e−λn(x cos(2j+1)α−y sin(2j+1)α)
)

,
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where Ajm = (−1)j∏j
r=1

tan (m−r+1)α
tan (m+r)α . One can check that ϕnm solves (3·1) with

σnm = λn sin (2m + 1)α. (3·3)

Note that if n = 0, we get the constant solution and we can ignore it. In other words, there
are no edge waves in the two-dimensional sloshing problem. We are particularly interested
in the case where α = π/2q, in which case π/4α − 1/2 = (q − 1)/2. In order to study these
solutions, we need some estimates on ϕnm and its derivatives.

LEMMA 3·1. Let α = π/2q for an integer q ≥ 1. There exist positive constants C and c
such that the following estimates hold for all (x,y) in Sα .

(i) For 0 ≤ m< (q − 1)/2,

|ϕnm(x, y)| ≤ Ce−cλnx (3·4)

and ∣∣∇(x,y)ϕnm(x, y)
∣∣≤ Cλne−cλnx; (3·5)

(ii) If q is odd, then for m = (q − 1)/2,∣∣ϕnm(x, y) − Ammeλny
∣∣≤ Ce−cλnx (3·6)

and ∣∣∇(x,y)
(
ϕnm(x, y) − Ammeλny)∣∣≤ Cλne−cλnx. (3·7)

Proof. We will abuse notation slightly when using C and c throughout the proof, but they
will always denote positive constants depending only on the angle α.

The first estimate (3·4) will follow from showing that for each exponential in (3·2), the
same estimate holds. Since y ≤ 0 and 0 ≤ (2j + 1)α < π/2 for j<π/4α, the estimate clearly
holds for the first and third terms in (3·2). It remains to show that for all 1 ≤ j< (q − 1)/2,

x cos(2j − 1)α + y sin(2j − 1)α ≥ cx (3·8)

for some c> 0. The condition on j obviously only makes sense as long as q ≥ 4. We can
rewrite (2j − 1)α = jπ/q − π/2q as π/2 − (q − 2j + 1)π/2q to get

x cos(2j − 1)α + y sin(2j − 1)α = x sin
(q − 2j + 1)π

2q
+ y cos

(q − 2j + 1)π

2q
.

Since y ∈ Sα , we have −x tan α ≤ y ≤ 0 and hence

x cos(2j − 1)α + y sin(2j − 1)α ≥ x sin
(q − 2j + 1)π

2q
− x cos

(q − 2j + 1)π

2q
tan

π

2q

≥
(

sin
(q − 2j + 1)π

2q
− sin

π

2q

)
x

where we used that cos (q − 2j + 1)/2q< cos π/2q since q − 2j ≥ 1. The constant before x
in that last expression is strictly positive and therefore (3·8) holds.

The estimate (3·5) follows from (3·4) since differentiating each term in (3·2) with respect
to x or y introduces only a factor of at most λn.
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Now if q is odd and m = (q − 1)/2, we have (2m + 1)α = π/2 and hence the last term in
the sum defining ϕnm is given by Ammeλny. By the previous calculations, all the other terms
satisfy similar estimates to 3·4 and 3·5. The sum of those terms is precisely ϕnm(x, y) −
Ammeλny, and hence both (3·6) and (3·7) hold.

3.3. Edge wave quasimodes

We use the edge wave solutions of the sloping beach problem to construct solutions for
the sloshing problem. To do so, we aim to glue together solutions coming from each corner.
Notice that if a solution vanishes quickly outside its corresponding corner, we don’t need
to glue a solution coming from the other corner since it’ll simply correspond to the zero
solution near the other corner. However, if a solution does not vanish, then we have to be
careful since there might not be a solution coming from the other corner for that eigenvalue.

Let α = π/2q and β = π/2r. Denote by ϕαnm (respectively ϕβnm) the edge wave solution of
the sloping beach problem coming from angle α with eigenvalue σαnm = λn sin(2m + 1)α for
0 ≤ m< (q − 1)/2.

If q is even, every ϕαnm(x, y) vanishes exponentially fast outside the corner α by
Lemma 3·1, and therefore we can consider them as quasimodes individually. The same
applies if r is even for the solutions coming from angle β that are given in� by ϕβn�(L − x, y)

with eigenvalue σβn� = λn sin(2�+ 1)β for 0 ≤ � < (r − 1)/2.
If q is odd, then as above the solution ϕαnm is a valid quasimode as long as m �= (q − 1)/2.

However, when m = (q − 1)/2, by Lemma 3·1, the solution ϕαnm tends to Aαmm on the surface
y = 0 with a corresponding eigenvalue λn. In order to get a valid quasimode, there should
be a non-zero solution coming from the corner β with the same eigenvalue. This is only
possible if r is also odd. In that case, we consider the quasimode

ψn(x, y) = Aβ��ϕ
α
nm(x, y) + Aαmmϕ

β
n�(L − x, y) − AαmmAβ��e

λn , (3·9)

where �= (r − 1)/2. The last term is present so that we can control |∂νψn| on W . We will
use a similar trick for the surface wave quasimodes.

In short, given n ∈N, we constructed �q/2� and �r/2� quasimodes coming from the
corners α and β respectively, as well as an additional quasimode if both q and r are odd.

Remark 3·2. Interestingly, our resulting edge wave quasimodes on the whole domain �
oscillate only along the edges of length M, but not those of length L. The computations of
Section 2 confirm that this phenomenon occurs when α = β = π/4. It should also hold for
all the other triangular prisms and is motivated by the fact that the sloping beach problem
has a single edge wave solution when α = π/2 given by eλny, which is constant along the
sloshing edge I1. Hence, one could expect there to be solutions oscillating along an edge of
length L if the wall adjacent to it met the sloshing surface at an angle smaller than π/2.

3.4. Surface wave solutions of the sloping beach problem

Let us now construct surface wave solutions of the sloping beach problem. To do so, we
generalise the method used in [14]. By rescaling in the z variable and by setting μ := λn/σ ,
the problem (3·1) is equivalent to solving⎧⎪⎨

⎪⎩
�ϕ =μ2ϕ in Sα ,

∂νϕ = 0 on I2,

∂νϕ = ϕ on I1.

(3·10)
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However, recall that we are still solving to find the possible values of σ and although it
doesn’t appear in the last formulation, it is actually hidden in μ.

Let ξ = −π/q, and for a, b ∈R, let ga,b denote the function

ga,b(x, y) = ex cos(a)+y sin(a)ei
√

1−μ2(x cos(b)+y sin(b)).

We define operators A and B by their action on ga,b and extend them linearly to linear
combinations of such functions. We set

(Aga,b)(x, y) := ex cos(−a+ξ )+y sin(−a+ξ )ei
√

1−μ2(x cos(−b+ξ )+y sin(−b+ξ )) = g−a+ξ ,−b+ξ (x, y)

and

(Bga,b)(x, y) := Ca,bex cos(a)−y sin(a)ei
√

1−μ2(x cos(b)−y sin(b)) = Ca,bg−a,−b(x, y),

where

Ca,b = sin a + i
√

1 −μ2 sin b − 1

sin a + i
√

1 −μ2 sin b + 1
.

For an arbitrary function u on Sα , we define its Steklov defect by

SD(u) := (∂νu − u)|I1
.

Note that SD(u) = 0 if and only if u satisfies the Steklov condition on I1 with eigenvalue
1. By simple calculations, one can show that these operators have the following useful
properties.

PROPOSITION 3·3. Let g be as above. We have:

(i) (g −Ag)|I2 = 0;

(ii) ∂ν(g +Ag)|I2 = 0;

(iii) SD(g +Bg) = 0.

We will use these properties to construct a suitable function on Sα . Let f0(x, y) =
eye−i

√
1−μ2x, i.e. f0 is given by g π

2 ,π . For 1 ≤ m ≤ 2q − 1, we construct the functions

fm =
{
Afm−1 if m is odd,

Bfm−1 if m is even.

Finally, we let

vα =
2q−1∑
m=0

fm.

The function vα is our main interest. In fact, it is a solution of (3·10)!

THEOREM 3·4. The function vα as defined above satisfies �vα =μ2vα in Sα , the
Neumann condition on I2 and SD(vα) = 0. In other words, it is a solution of (3·10).
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Proof. First off, we can see that for any choice of a, b ∈R, we have

�ga,b =
[
μ2 + 2i

√
1 −μ2 cos(a − b)

]
ga,b.

Since f0 = g π
2 ,π , we have �f0 =μ2f0. Both A and B act on ga,b by scaling and modifying

the coefficients a and b, but keep the value of |a − b| unchanged. Then since fm is obtained
by consecutively applying A and B on f0, we also have �fm =μ2fm for all m. By linearity,
it then follows that �vα =μ2vα .

For the Neumann condition, we see that we can write vα as

vα =
q−1∑
m=0

(f2m + f2m+1)=
q−1∑
m=0

(f2m +Af2m)

and therefore, by Proposition 3·3,

∂νvα|I2
=

q−1∑
m=0

∂ν(f2m +Af2m)|I2 = 0.

It remains to show that SD(vα) = 0. We now write vα as

vα = f0 +
q−1∑
m=1

(f2m−1 + f2m) + f2q−1 = f0 +
q−1∑
m=1

(f2m−1 +Bf2m−1) + f2q−1

and therefore, by Proposition 3·3 and linearity of the Steklov defect,

SD(vα) = SD(f0) + SD(f2q−1).

Since f0 = eye−i
√

1−μ2x, we easily see that SD(f0) = 0. Let us now show that SD(f2q−1) = 0.
For any choice of a and b,

(BA)ga,b = C−a+ξ ,−b+ξga−ξ ,b−ξ .

Hence, since f2q−1 =A(BA)q−1f0 =A(BA)q−1g π
2 ,π , we get

f2q−1 =A
⎡
⎣
⎛
⎝q−1∏

j=1

C− π
2 +jξ ,−π+jξ

⎞
⎠ g π

2 −(q−1)ξ ,π−(q−1)ξ

⎤
⎦= γ (ξ )gqξ− π

2 ,qξ−π , (3·11)

where

γ (ξ ) :=
q−1∏
j=1

C− π
2 +jξ ,−π+jξ .

Since ξ = −π/q, we get f2q−1 = γ (ξ )g− 3π
2 ,−2π = γ (ξ )eyei

√
1−μ2x and thus SD(f2q−1) = 0.

It follows that SD(vα) = 0.
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In the previous proof, we started to compute f2q−1. Moving forward, we will need its exact
expression.

LEMMA 3·5. The function f2q−1 is given by γ (ξ )eyei
√

1−μ2x where

γ (ξ ) = (−1)q−1 exp

⎡
⎣2i

q−1∑
j=1

arctan

(√
1 −μ2 sin jπ

q )

cos jπ
q − 1

)⎤⎦ .

The expression of f2q−1 follows from (3·11). Moreover,

γ (ξ)=
q−1∏
j=1

sin
(
−π

2 − jπ
q

)
+ i
√

1 −μ2 sin
(
−π − jπ

q

)
− 1

sin
(
−π

2 − jπ
q

)
+ i
√

1 −μ2 sin
(
−π − jπ

q

)
+ 1

=
q−1∏
j=1

− cos jπ
q + i
√

1 −μ2 sin jπ
q − 1

− cos jπ
q + i
√

1 −μ2 sin jπ
q + 1

= (−1)q−1
q−1∏
j=1

cos jπ
q + i
√

1 −μ2 sin jπ
q − 1

cos jπ
q − i
√

1 −μ2 sin jπ
q − 1

,

where we have reordered the terms in the numerator by j �→ q − j to get the last expression.
The denominator is the complex conjugate of the numerator. Therefore, |γ (ξ )| = 1 and

arg γ (ξ ) = (q − 1)π +
q−1∑
j=1

2 arctan

(√
1 −μ2 sin jπ

q

cos jπ
q − 1

)
.

The claim readily follows.

LEMMA 3·6. There exist positive constants C and c such that for all (x, y) ∈ Sα ,

vα(x, y) = eye−i
√

1−μ2x + γ (ξ )eyei
√

1−μ2x + vd
α(x, y),

with ∣∣∣vd
α(x, y)
∣∣∣+ ∣∣∣∇(x,y)v

d
α(x, y)
∣∣∣≤ Ce−cx. (3·12)

In particular, on the boundary I1 the solution vα(x, y) takes the form

vα(x) = e−i
√

1−μ2x + γ (ξ )ei
√

1−μ2x + decaying exponentials.

As in the proof of Lemma 3·1, we will abuse notation throughout the proof when using C
and c, but they again denote positive constants depending only on the angle α.

The function vd
α is given by

∑2q−2
m=1 fm. Therefore, it suffices to show that each of these fm

satisfies the same estimate as (3·12). For each such fm,

|fm| = Fmex cos(a)+y sin(a)

for some constant Fm > 0 and a = ±(π/2 + jπ/q) where j ∈ {1, . . . , q − 1}, resulting from
the successive applications of A and B. By periodicity, it is equivalent that a either takes
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values of the form π/2 + jπ/q or 3π/2 − jπ/q for 1 ≤ j ≤ �j/2�. If a = π/2 + jπ/q, then
sin(a) ≥ 0 and cos(a)< 0. Therefore, since y ≤ 0 by definition of Sα , we get

|fm| ≤ Fmex cos(a) = Ce−cx

for C = Fm and c = − cos(a). Now if a = 3π/2 − jπ/q, then

x cos(a) + y sin(a) = x cos

(
3π

2
− jπ

q

)
+ y sin

(
3π

2
− jπ

q

)

= −x sin
jπ

q
− y cos

jπ

q

≤ −x sin
jπ

q
+ x cos

jπ

q
tan

π

2q
,

where we used in the last line that y ≥ −x tan α by definition of Sα . Since cos jπ/q<
cos π/2q, it follows that |fm| ≤ Ce−cx for C = Fm and

c = sin
jπ

q
− sin

π

2q
> 0.

Combining our estimates on fm for 1 ≤ m ≤ 2q − 2, we can find positive constants C and c
such that

∣∣vd
α(x, y)
∣∣≤ Ce−cx. Now by computing explicitly the derivatives of ga,b, one can

show that ∣∣∂xga,b
∣∣+ ∣∣∂yga,b

∣∣≤ 4
∣∣ga,b
∣∣

and hence given our previous estimates on the functions fm in vd
α , we can find positive con-

stants C and c such that
∣∣∇(x,y)vd

α(x, y)
∣∣≤ Ce−cx. Combining both estimates on vd

α yields the
result.

3.5. Surface wave quasimodes

We can now use the surface wave solutions of the sloping beach problem to construct
approximate solutions (quasimodes) for the sloshing problem on �. Let σ be a real scaling
factor. We consider the functions vα(σx) and vβ (σ (L − x)) corresponding to solutions of the
sloping beach problem starting off from the angles α and β respectively. Let vp

α and vd
α cor-

respond to the principal part and decaying parts of vα on the boundary I1 (as in Lemma 3·6).
In order for the sloping beach solutions to meet smoothly on S , we want their principal parts
to match. Therefore, we look for σ such that

vp
α(σx) = Qvp

β (σ (L − x)). (3·13)

for some non-zero Q ∈C. We call this the quantisation condition. It fixes the values of σ and
leads to the quasimodes on � given by

gσ (x, y) = vα(σx, σy) + Qvd
β (σ (L − x), σy) = Qvβ (σ (L − x), σy) + vd

α(σx, σy). (3·14)

Notice that gσ satisfies �gσ =μ2σ 2gσ = λ2
ngσ in � and ∂νgσ = σgσ on S , but ∂νgσ �=

0 on W and hence it is not exactly a solution of (1·3). However, we have ∂νvα = 0 on
the side making the angle α with S , as well as ∂νvβ = 0 on the side making the angle β.
The error term in ∂νgσ on each side of W therefore comes from the decaying part of the
solution coming from the other side, which vanishes exponentially by Lemma 3·6. Hence,
the solution gσ is very close to being a solution of (1·3).
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4. Counting of quasi-eigenvalues

Let Ne and Ns denote the counting functions for the edge wave and surface wave quasi-
eigenvalues respectively. The total counting function for quasi-eigenvalues then becomes
Ne + Ns.

4.1. Counting the edge wave quasi-eigenvalues

Recall that for 0 ≤ m< (q − 1)/2 the quasi-eigenvalue of the edge wave quasimode
ϕαnm(x, y) coming from the corner α is σαnm = (nπ )/M sin(2m + 1)α. Therefore, the eigen-
value counting function for one such quasimode is given by

#{n ∈N : σαnm <σ } = Mσ

π sin(2m + 1)α
+ O(1).

For 0 ≤ � < (r − 1)/2, we have a similar expression for the eigenvalue counting function of
each edge wave quasimode ϕβn�(L − x, y) coming from the corner β.

If q and r are both odd, we constructed another edge wave quasimode with eigenvalue
nπ/M. Hence, if we let να,β := qr mod 2, the total eigenvalue counting function for the
edge wave quasimodes is given by

Ne(σ ) = να,β
Mσ

π
+

� q
2 −1�∑
m=0

Mσ

π sin(2m + 1)α
+

� r
2 −1�∑
�=0

Mσ

π sin(2�+ 1)β
+ O(1)

which is precisely the statement of Theorem 1·5.
An interesting thing to note is that the expression for Ne only depends on the angles and

M, the length of the side where the angles are on �. It does not depend on L. This makes
sense since the solutions mainly live along the side of length M by Lemma 3·1.

4.2. Finding the surface wave quasi-eigenvalues

Suppose that α = π/2q and β = π/2r. By Lemma 3·6, the principal part of vα(σx) is
given by

vp
α(σx) = e−i

√
1−μ2σx + γ (ξ )ei

√
1−μ2σx,

where we can write γ (ξ ) = (−1)q−1e2iθα for

θα(n, σ ) =
q−1∑
j=1

arctan

(√
1 −μ2 sin jπ

q

cos jπ
q − 1

)
= −

q−1∑
j=1

arctan

⎛
⎜⎝
√

1 − ( nπ
σM

)2 sin jπ
q

1 − cos jπ
q

⎞
⎟⎠ . (4·1)

We have substituted μ= nπ/σM in the last equation. We have similar expressions for vβ .
Since multiplying vα and vβ by constants still results in solutions of (3·10), we consider
rather the functions Vα and Vβ where

Vα(x) =
{

e−iθαvα(x) if q is odd,

ie−iθαvα(x) if q is even,

with Vβ defined similarly. Notice that if q is odd, then the principal part of Vα is given by

Vp
α(x) = 2 cos

(√
1 −μ2x + θα

)
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and if q is even,

Vp
α(x) = 2 sin

(√
1 −μ2x + θα

)
.

The quantisation condition (3·13) then becomes

Vα(σx) = ±Vβ (σ (L − x))

which reduces to solving√
1 −
( nπ

σM

)2
σL = −(θα + θβ ) + (m − κα,β )π (4·2)

for m ∈Z and

κα,β =

⎧⎪⎨
⎪⎩

0 if q and r have the same parity,

1

2
otherwise.

We can rewrite this equation as

σ 2 =
(

(m − κα,β − 1
π

(θα + θβ ))π

L

)2

+
(nπ

M

)2
. (4·3)

It is important to keep in mind that θα and θβ depend on σ and this is what makes the
equation difficult to solve. In the case where α = β = π/4, notice that equation (4·3) coin-
cides with the equation (2·4) that we obtained from exact computation of the eigenfunctions.
When κα,β = 0, the trivial solution m = 0 and σ = nπ/M corresponds to the constant solu-
tion and we can ignore it. We wish to restrict ourselves to positive values of m but since
−(θα + θβ ) ≥ 0, we see that m can take negative values in (4·2). However, there is only a
finite number of such solutions.

LEMMA 4·1. There is at most a finite number of pairs (m,n) with m ≤ 0 ≤ n such that
(4·2) admits a nontrivial solution. Furthermore, for all m> 0 and n ≥ 0, there exists a unique
solution σm,n of (4·2).

Proof. First, we show the case α = β = π/2q. For n ∈N0, consider the functions
fn : [nπ/M, ∞) →R defined by

fn(σ ) = 1

π

(√
1 −
( nπ

σM

)2
σL + 2θα(n, σ )

)
.

Notice that fn(nπ/M) = 0 and fn(σ ) tends to infinity as σ → ∞. Moreover, we can write

f ′
n(σ ) = 1

π

√
1 − ( nπ

σM

)2
⎛
⎝L − 2

(nπ

M

)2 q−1∑
j=1

αj

σ 3
[
1 + α2

j

(
1 − ( nπ

σM

)2)]
⎞
⎠ (4·4)

with αj = sin jπ
q /1 − cos jπ

q > 0. When σ increases, the value of the sum strictly decreases
and tends to zero. Hence, even if f ′

n(σ )< 0 for some values, it is eventually positive and
tends to L/π with the derivative vanishing at most once. When n gets sufficiently large, so
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does σ , and the derivative is positive for all values of σ . In fact, when σ → nπ/M+, the
expression in parentheses in (4·4) behaves like

L − 2

σ

q−1∑
j=1

αj

which is positive for σ sufficiently large. Hence there exists n0 such that f ′
n(σ )> 0 for all

σ > nπ/M and n> n0.
We see that σ is a solution of (4·2) corresponding to given integers m and n if and only

if fn(σ ) = m. From the previous calculations, there is only a finite number of fn which take
negative values and the set f −1

n ((−∞, 0]) is bounded since fn tends to infinity as σ → ∞. If
fn takes negative values, it can then only take a finite number of negative integer values, and
since its derivative vanishes exactly once, fn can be a given negative integer at most twice.
Therefore, the set

∞⋃
n=0

f −1
n (Z<0)

is finite and the first part of the lemma follows since we ignore the solutions with σ = nπ/M
and m = 0. The second part of the lemma follows from the fact that f ′

n(σ )> 0 whenever
fn(σ )> 0 and that fn tends to infinity.

The proof with α �= β is similar. Indeed, we only need to change one θα by θβ + κα,β

in the definition of fn(σ ). It is straightforward to see that f ′
n(σ ) is eventually positive for

all n sufficiently big and since fn (nπ/M)= κα,β , there is still a finite number of negative
solutions.

4.3. Counting the surface wave quasi-eigenvalues

Now that we know how to find the surface wave quasi-eigenvalues, we can count them in
order to prove Theorem 1·6.

We know from Lemma 4·1 that there is only a finite number of solutions corresponding to
non-positive values of m. They contribute O(1) to the counting function and we can ignore
them. Therefore, we restrict ourselves to solutions corresponding to m> 0 and n ≥ 0. We
also know that for each such pair (m,n), there exists a unique solution of (4·2). We denote it
by σm,n. Let σ > 0 and consider the set

Eσ =
{

(x, y) ∈R
2 :
( xπ

σL

)2 +
( yπ

σM

)2
< 1

}
.

We have

#{(m, n) ∈ Eσ ∩ (N×N0)} = LM

4π
σ 2 + L − M

2π
σ + o(σ ) (4·5)

where the error term o(σ ) comes from known estimates on the Gauss circle problem (see
[16] for example). Suppose that (m, n) ∈ Eσ and let d> 0 be the horizontal distance between
(m,n) and the boundary ellipse of Eσ , i.e.

d = xn − m
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where xn is the positive solution to (xnπ/σL)2 + (nπ/σM)2 = 1. From equation (4·3), we
see that σm,n <σ if and only if

m + f (n, σm,n)< xn

or equivalently d> f (n, σm,n) where

f (n, σ ) = −κα,β − 1

π
(θα(n, σ ) + θβ (n, σ )).

Notice that f (n, σ ) only depends on n/σ and can hence be written as f (n/σ ). We will use
both notations. Therefore, counting the surface wave eigenvalues is equivalent (up to O(1))
to counting the total number of integer points (m, n) ∈ Eσ with m> 0 and n ≥ 0 to which we
subtract the points such that d ≤ f (n, σm,n). Denote by Ns−(σ ) the number of such points, i.e.

Ns−(σ ) = #{(m, n) ∈ Eσ ∩ (N×N0) : d ≤ f (n, σm,n)}.
From equation (4·5), it then follows that

Ns(σ ) = LM

4π
σ 2 + L − M

2π
σ − Ns−(σ ) + o(σ )

and therefore proving Theorem 1·6 is equivalent to proving the following.

THEOREM 4·2. The counting function Ns−(σ ) satisfies

Ns−(σ ) = Mσ

π

∫ 1

0
f (t) dt + o(σ ).

We start by giving an heuristic for this result. Let σm,n be such that (m, n) ∈ Eσ but σm,n ≥
σ . We expect σm,n to be relatively close to σ in a way that f (n, σm,n) should be close to
f (n, σ ). For simplicity of the argument, suppose that f (n, σm,n) = f (n, σ ). The boundary of
the ellipse Eσ in the first quadrant of the (x,y) plane can be given by the curve

τσ (t) =
(
σL

π

√
1 −
( tπ

σM

)2
, t

)
.

for t ∈ [0, Mσ/π]. Let γσ : [0, σM/π] be the curve

γσ (t) = τσ (t) − (f (t, σ ), 0).

Then, the integer points in Eσ in the region bounded by γσ , τσ and the x-axis are precisely
those such that d ≤ f (n, σm,n), i.e. those that contribute to Ns−(σ ). It is then reasonable to
expect that the area of this region should be a good approximation for the number of integer
points within it. The area is given by

∫ Mσ
π

0
f
( t

σ

)
dt = Mσ

π

∫ 1

0
f (t) dt.

However, it could be that this approximation is not good at all since we took the area of
a very thin strip which could miss all the integer points. For this estimate to be good, we
need to show that the integer points are well-behaved, in the sense that they are evenly or
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uniformly distributed across this strip. To do so, we will rely on Weyl’s equidistribution
theorem.

In order to simplify the expressions, we now assume that L = M = π and α = β. However,
the proofs will hold for all values. We will need the following two lemmas.

LEMMA 4·3. For all m such that xn − q + 1 ≤ m ≤ xn and all 0 ≤ n ≤ σ , the estimate

f

(
n

σm,n

)
= f
( n

σ

)
+ o(1)

holds uniformly in m and n as σ → ∞.

Proof. Since 0 ≤ f (t) ≤ q − 1 from equation (4·1) for all t ∈ [0, 1], and

σm,n =
(

m + f

(
n

σm,n

))2

+ n2

it follows that

(xn − q + 1)2 + n2 ≤ σ 2
m,n ≤ (xn + q − 1)2 + n2

for m satisfying xn − q + 1 ≤ m ≤ xn. Expanding each side and using the fact that σ 2 =
x2

n + n2 yields

σ 2 − 2(q − 1)xn + (q − 1)2 ≤ σ 2
m,n ≤ σ 2 + 2(q − 1)xn + (q − 1)2.

Since ±2(q − 1)xn + (q − 1)2 = O(σ ), it follows that σ 2
m,n = σ 2 + O(σ ) and hence

σm,n = σ + O(1).

Therefore,

n

σm,n
= n

σ + O(1)
= n

σ
+ O
( n

σ 2

)
.

Since 0 ≤ n ≤ σ , we get that

n

σm,n
= n

σ
+ O

(
1

σ

)

uniformly in n (and m). Since f is uniformly continuous, it follows that, as σ → ∞,

f

(
n

σm,n

)
= f

(
n

σ
+ O

(
1

σ

))
= f
( n

σ

)
+ o(1).

LEMMA 4·4. Fix K ∈N and let h ∈Z with h �= 0. Then

lim
σ→∞

K

σ

∑
rσ
K ≤n< (r+1)σ

K

exp
(

2π ih
√
σ 2 − n2

)
= 0

for all 0 ≤ r ≤ K − 2.

https://doi.org/10.1017/S0305004121000712 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000712


560 J. MAYRAND, C. SENÉCAL AND S. ST–AMANT

To prove this lemma, we will need the following theorem from van der Corput [20] on
bounding exponential sums.

THEOREM 4·5 (van der Corput [20]). Let F : I →R be a C2 function on an interval I
with λ≤ ∣∣F′′(x)

∣∣≤ αλ. Then∑
n∈I

exp (2π iF(n)) � α |I| λ1/2 + λ−1/2,

where the implied constant is absolute.

Proof of Lemma 4·4. The following proof is inspired by a proof provided to us by Zeev
Rudnick. We apply Theorem 4·5 with I = [rσ/K, (r + 1)σ/K) and F(x) = h

√
σ 2 − x2. We

have

F′′(x) = − hσ 2(
σ 2 − x2

)3/2 .

Since σ 2 − x2 ≤ σ 2, we have

|h|
σ

≤ ∣∣F′′(x)
∣∣ .

On the other hand, since r ≤ K − 2, we have σ − x>σ − (r + 1)σ/K ≥ σ/K and hence

∣∣F′′(x)
∣∣= |h| σ 2

((σ − x)(σ + x))3/2
≤ |h| σ 2(

σ 2

K

)3/2 = K3/2 |h|
σ

.

Fixing h and applying Theorem 4·5 with λ= |h|/σ and α = K3/2 yields∑
n∈I

exp (2π iF(n)) �h K3/2 σ

K

1√
σ

+ √
σ = √

σ
(√

K + 1
)

.

It follows that

K

σ

∑
n∈I

exp
(

2π ih
√
σ 2 − n2

)
�h

K3/2 + K√
σ

which tends to 0 as σ → ∞.
Denote by dn(σ ) the distance between xn (the positive solution of σ 2 = x2

n + n2) and the
closest integer point (m,n) satisfying m2 + n2 <σ 2. This distance is precisely the fractional
part of

√
σ 2 − n2. From Weyl’s equidistribution theorem, Lemma 4·4 is equivalent to the

following lemma which will enable us to prove Theorem 4·2.

LEMMA 4·6. Fix K ∈N. Then, for any interval [α, β] ⊂ [0, 1] and for all 0 ≤ r ≤ K − 2,

lim
σ→∞

K

σ
#

{
n ∈
[

rσ

K
,

(r + 1)σ

K

)
: dn(σ ) ∈ [α, β]

}
= β − α.

Proof of Theorem 4·2. We wish to estimate

Ns−(σ ) =
∑

(m,n)∈Eσ

1
{
xn − m ≤ f (n, σm,n)

}
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since σm,n <σ if and only if xn − m> f (n, σm,n). Since f is bounded by q − 1, we have
that

1
{
xn − m ≤ f (n, σm,n)

}= 0

for all m such that m< xn − q + 1. Hence,

Ns−(σ ) =
�σ�∑
n=0

�xn�∑
m=�xn−q+1�

1
{
xn − m ≤ f (n, σm,n)

}
.

From Lemma 4·3, for the values of n and m present in the sum, we can find a function h(σ )
which goes to zero as σ → ∞ such that

1 {xn − m ≤ f (n, σ ) − h(σ )} ≤ 1
{
xn − m ≤ f (n, σm,n)

}≤ 1 {xn − m ≤ f (n, σ ) + h(σ )} .
(4·6)

This motivates us to rather estimate the quantity

S(σ ) :=
�σ�∑
n=0

�xn�∑
m=�xn−q+1�

1 {xn − m ≤ f (n, σ )} .

Writing m = �xn� − r, this is equivalent to

�σ�∑
n=0

�xn�−�xn−q+1�∑
r=0

1 {xn − �xn� ≤ f (n, σ ) − r} .

Since 0 ≤ xn − �xn�< 1, we see that

1 {xn − �xn� ≤ f (n, σ ) − r} =

⎧⎪⎨
⎪⎩

1 if r ≤ �f (n, σ )� − 1

1 {xn − �xn� ≤ f (n, σ ) − r} if r = �f (n, σ )�
0 if r> �f (n, σ )� + 1.

Since f is strictly decreasing, it takes integer values at most q − 1 times. With a small error,
we can therefore change the last condition to r ≥ �f (n, σ )� + 1. We then get

S(σ ) =
⎛
⎝ �σ�∑

n=0

�f (n, σ )� + 1 {xn − �xn� ≤ f (n, σ ) − �f (n, σ )�}
⎞
⎠+ O(1).

We now consider S(σ )/σ . We claim that

lim
σ→∞

S(σ )

σ
=
∫ 1

0
f (t) dt.

Rewriting f (n, σ ) as f (n/σ), the first term of S(σ ) yields

lim
σ→∞

1

σ

�σ�∑
n=0

⌊
f
( n

σ

)⌋
=
∫ 1

0
�f (t)� dt.
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Setting g (n/σ)= f (n/σ)− �f (n/σ)� and noticing that xn − �xn� = dn(σ ), it remains to
estimate

lim
σ→∞

1

σ

�σ�∑
n=0

1
{

dn(σ ) ≤ g
( n

σ

)}
.

Let ε > 0 and let K ∈N be such that 1
K < ε/3 and∣∣∣∣∣ 1K

K−1∑
r=0

g(xr) −
∫ 1

0
g(t) dt

∣∣∣∣∣< ε

3

for all choices of xr ∈ [r/K, (r + 1)/K
]
. Such a K exists since g is piecewise continuous.

Dividing [0, σ ] into K subintervals, we get that

1

σ

�σ�∑
n=0

1
{

dn(σ ) ≤ g
( n

σ

)}
≤ 1

K

K−1∑
r=0

K

σ
#

⎧⎪⎨
⎪⎩n ∈
[

rσ

K
,

(r + 1)σ

K

)
: dn(σ ) ≤ sup

x∈
[

r
K , r+1

K

] g(x)

⎫⎪⎬
⎪⎭ .

The reverse inequality holds with the supremum replaced with the infimum. When
r = K − 1, we can use the trivial bound

K

σ
#

⎧⎪⎨
⎪⎩n ∈
[

rσ

K
,

(r + 1)σ

K

)
: dn(σ ) ≤ sup

x∈
[

r
K , r+1

K

] g(x)

⎫⎪⎬
⎪⎭≤ 1.

However, when 0 ≤ r ≤ K − 2, we can use Lemma 4·6. Together, this yields

lim
σ→∞

1

σ

�σ�∑
n=0

1
{

dn(σ ) ≤ g
( n

σ

)}
≤ 1

K

K−2∑
r=0

sup
x∈
[

r
K , r+1

K

] g(x) + 1

K
<

∫ 1

0
g(t) dt + ε. (4·7)

Proceeding similarly with the reversed inequality, it follows that for all ε > 0,∣∣∣∣∣∣ lim
σ→∞

1

σ

�σ�∑
n=0

1
{

dn(σ ) ≤ g
( n

σ

)}
−
∫ 1

0
g(t) dt

∣∣∣∣∣∣< ε
and therefore

lim
σ→∞

S(σ )

σ
=
∫ 1

0
�f (t)� dt +

∫ 1

0
f (t) − �f (t)� dt =

∫ 1

0
f (t) dt.

Finally, we see that if we were to change f (n, σ ) for f (n, σ ) ± h(σ ) with h(σ ) going to 0
as σ → ∞ in the definition of S(σ ), the result would still hold since (4·7) holds from the fact
that for all y ∈ [0, 1],

lim
σ→∞

K

σ
#

{
n ∈
[

rσ

K
,

(r + 1)σ

K

)
: dn(σ ) ≤ y + o(1)

}
= y.

From (4·6), it then follows that

lim
σ→∞

Ns−(σ )

σ
=
∫ 1

0
f (t) dt
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so that

Ns−(σ ) = σ

∫ 1

0
f (t) dt + o(σ ).

5. Quasimode analysis and numerical evidence

The results we have presented are only approximate solutions of problem (1·2). However,
we will show that there is an actual eigenvalue of the problem near every quasi-eigenvalue
and our numerical experiments seem to agree with both our conjectures.

5.1. Analysis of the quasi-eigenvalues

For n ∈N0, let {σ̃ (n)
j }j∈N denote the set of quasi-eigenvalues (coming from both our

edge waves and surface waves solutions) indexed in ascending order for which the quasi-
modes solve �ϕ = λ2

nϕ in �, and let {σ (n)
k }k∈N denote the set of real eigenvalues (sloshing

eigenvalues) of problem (1·3). The following lemma is analogous to [14, lemma 2·6].

LEMMA 5·1. There exist positive constants C and c such that for every n ∈N0 and j ∈N,
there exists k ∈N such that ∣∣∣σ̃ (n)

j − σ
(n)
k

∣∣∣≤ Ce−cσ̃ (n)
j . (5·1)

In order to prove it, we need a preliminary result on our quasimodes. We denote by ϕσ a
quasimode with quasi-eigenvalue σ .

PROPOSITION 5·2. There exist positive constants C and c such that for any quasimode
ϕσ ,

|∂νϕσ | ≤ Ce−cσ

for all (x, y) ∈W .

Proof. Let us denote by Wα and Wβ the segments of W making angles α and β with S
respectively. We will again abuse notation when using C and c and we will use the fact that
C1σe−c1σx ≤ C2e−c2σ whenever x is bounded from below by a positive number.

Firstly, if ϕσ is an edge wave quasimode of the form ϕαnm with m �= (q − 1)/2, then
∂νϕσ = 0 on Wα . Moreover, by Lemma 3·1, since σ ≥ λn sin (π/2q), we can find C, c> 0
such that

|∂νϕσ | ≤ Ce−cσ

on Wβ . The same reasoning applies if ϕσ is an edge wave quasimode of the form ϕ
β
n� with

� �= (r − 1)/2.
Secondly, if ϕσ is the edge wave quasimode given by ψn as in (3·9), then on Wβ , we have

|∂νψn| =
∣∣∣∂ν (Aα��ϕαnm(x, y) − AαmmAβ��e

λny
)∣∣∣

since (∂νϕ
β
n�)|Wβ

= 0. Applying the estimate (3·7) from Lemma 3·1 to that last expression
yields |∂νψn| ≤ Ce−cσ on Wβ . A similar reasoning yields the same estimate on Wα , and
therefore on all W .
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Finally, if ϕσ = gσ is a surface wave quasimode given by equation (3·14), then by using
the second expression for gσ , we see that we have on Wβ

|∂νgσ | =
∣∣∣∂ν(vd

α(σx, σy))
∣∣∣

since (∂νvβ )|Wβ
= 0. The estimate on the gradient of vd

α in Lemma 3·6 gives us our desired
bound on Wβ . By using the first expression for gσ , we can do the same reasoning on Wα ,
showing that |∂νgσ | ≤ Ce−cσ everywhere on W .

In all our calculations, both C and c depend solely on the angles α and β. The claim then
follows.

Proof of Lemma 5·1. We will follow the argument laid out in [14, section 2·2] and slightly
adapt it to our case. We refer to [14] for further details of the argument.

Given one of our quasimodes ϕσ satisfying �ϕσ = λ2
nϕσ in � and ∂νϕσ = σϕσ on S ,

consider a function ησ that is solution of⎧⎪⎨
⎪⎩
�ησ = λ2

nησ in �,

∂νησ = ∂νϕσ on W ,

∂νησ = − (∫W ∂νϕσ
)
ψ on S ,

(5·2)

where ψ ∈ C∞(S) is a fixed function supported away from the the corners α and
β with

∫
S ψ = 1. The function ησ is the result of the Neumann-to-Dirichlet map

ND−λ2
n

: L2(∂�) → L2(∂�) when applied to the function

hσ =
{
∂νϕσ on W ,

− (∫W ∂νϕσ
)
ψ on S .

When n = 0, as mentioned in [14], such a solution ησ exists up to a constant and is therefore
unique if we demand that

∫
∂�
ησ = 0. Moreover, when acting on functions with mean-value

0 on S , ND0 is bounded. Now if n> 0, the operator ND−λ2
n

is well-defined since −λ2
n <

0 is not a Neumann eigenvalue of −� on � and it is a self-adjoint compact operator on
L2(∂�) [3]. Moreover, the operators ND−λ2

n
are uniformly bounded on L2(∂�) since their

eigenvalues decrease when n increases. This is due to the fact that ND−λ is the inverse of
the Dirichlet-to-Neumann map DN−λ whose eigenvalues are positive and strictly increasing
for λ in the interval (ε, ∞), see [2] or [6]. It follows from Proposition 5·2 that

‖ησ‖L2(S) ≤
∥∥∥ND−λ2

n
hσ
∥∥∥

L2(∂�)
≤ C ‖hσ‖L2(∂�) ≤ Ce−cσ , (5·3)

where the constants do not depend on n nor σ .
The function vσ := ϕσ − ησ satisfies �vσ = λ2

nvσ and its normal derivative vanishes on
W . Let DN−λ2

n
now denote the Dirichlet-to-Neumann map that takes f ∈ L2(S) and maps it

to (∂ν f̃ )|S where �f̃ = λ2
nf̃ in �, ∂ν f̃ = 0 on W , and f̃ = f on S . Then, by construction, we

have

DN−λ2
n
(vσ |S ) = (∂νvσ )|S .
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Since ∂νϕσ = σϕσ on S , for every quasi-eigenvalue σ we have∥∥∥DN−λ2
n
(vσ |S ) − σvσ

∥∥∥
L2(S)

= ‖∂νησ − σησ‖L2(S) ≤ Ce−cσ , (5·4)

where the last inequality follows from (5·3) and Proposition 5·2.
By rescaling, suppose now that ‖vσ‖L2(�S) = 1 and let (φ(n)

k )k≥0 be a complete set of

orthonormal eigenfunctions of DN−λ2
n

with eigenvalues σ (n)
k . Then, we can find coefficients

ak = (vσ , φk) such that
∑∞

k=0 a2
k = 1 and

vσ =
∞∑

k=0

akφk.

It follows from (5·4) that

∥∥∥DN−λ2
n
(vσ |S ) − σvσ

∥∥∥2
L2(S)

=
∞∑

k=0

a2
k

(
σ

(n)
k − σ

)2 ≤ Ce−2cσ

and since
∑∞

k=0 a2
k = 1, there must be a k such that (σ (n)

k − σ )2 ≤ Ce−2cσ and therefore

∣∣∣σ − σ
(n)
k

∣∣∣≤ Ce−cσ . (5·5)

Plugging σ = σ̃
(n)
j into (5·5) yields (5·1).

We now have all the tools to prove Theorem 1·8.

Proof of Theorem 1·8. We start by showing N(σ ) ≥ Ns(σ ) + o(σ ). In order to get this
estimate, we need to show that every surface wave quasi-eigenvalue is sufficiently isolated in
order for every actual eigenvalue given by Lemma 5·1 to be distinct. Denote the set of surface
wave quasi-eigenvalues that solve (1·3) for a given n by {σ (n)

j }j∈N. First of all, given n �= n′,

we know that the real eigenvalues corresponding to σ (n)
j and σ (n′)

j′ are distinct eigenvalues

of problem (1·2) for all j, j′ ∈N, since the corresponding eigenfunctions solve the equation
�u = λu in � for different values of λ. By distinct, we do not necessarily mean that the
eigenvalues are not equal, but rather that they correspond to different linearly independent
eigenfunctions.

Recall that σ > nπ/M is a quasi-eigenvalue of a surface wave ϕσ satisfying �ϕσ = λ2
nσ

if and only if

fn(σ ) = 1

π

(√
1 −
( nπ

σM

)2
σL + θα(n, σ ) + θβ (n, σ )

)
+ κα,β

is an integer (see Lemma 4·1 and its proof). Moreover, there exists n0 ∈N such that for
all n ≥ n0 the function fn :

[
nπ/M, ∞)→R is always positive and its derivative strictly

decreases and tends to L/π . Therefore, for n ≥ n0, the eigenvalues σ (n)
j satisfy

fn
(
σ

(n)
j

)
= j.
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By convexity of fn, it follows that∣∣∣σ (n)
j+1 − σ

(n)
j

∣∣∣≥ σ (n)
1 − nπ

M
, (5·6)

where fn(σ (n)
1 ) = 1. Since θα and θβ are both negative, we have

fn(x) ≤ hn(x) := 1

π

√
1 −
( nπ

xM

)2
xL + κα,β

for all x ≥ nπ/M. Letting

x1 =
√(

π(1 − κα,β )

L

)2

+
(nπ

M

)2
we see that hn(x1) = 1. Since hn is strictly increasing, it follows that fn(x)< 1 for all x< x1

and therefore σ (n)
1 ≥ x1. Consequently,

σ
(n)
1 − nπ

M
≥ x1 − nπ

M
≥ C

n
,

where C can be chosen independently of n. From (5·6), we get∣∣∣σ (n)
j+1 − σ

(n)
j

∣∣∣≥ C

n
.

Hence, using that σ (n)
j > nπ/M, Lemma 5·1 guarantees that given n sufficiently large the

real eigenvalue next to σ (n)
j is distinct for each j ∈N.

Now suppose that n isn’t large enough for the previous approach to apply. We know that
f ′
n tends to L/π and so there exists j(n)

0 ∈R such that

σ
(n)
j = π

L

(
j − j(n)

0

)
+ on(j).

Therefore, there exists a constant Cn such that for all j sufficiently large∣∣∣σ (n)
j+1 − σ

(n)
j

∣∣∣≥ Cn.

Since σ (n)
j ≥ Cj, Lemma 5·1 then guarantees that if j and j′ are sufficiently large, the sloshing

eigenvalues next to σ (n)
j and σ (n)

j′ are distinct as long as j �= j′.

In short, all the sloshing eigenvalues σ (n)
k given by Lemma 5·1 close to the surface wave

quasi-eigenvalues σ (n)
j are distinct as long as either n or j is sufficiently large. Thus, only a

finite number of such sloshing eigenvalues can be identical. Denote that number by P. Then,
we have

Ns(σ − Ce−cσ ) − P ≤ N(σ )

for all σ ≥ 0. Our knowledge of Ns(σ ) guarantees that Ns(σ − Ce−cσ ) = Ns(σ ) + o(σ ),
which yields N(σ ) ≥ Ns(σ ) + o(σ ).

Let us now consider the edge wave quasimodes. As in the case of the surface wave quasi-
eigenvalues, the sloshing eigenvalues given by Lemma 5·1 for different values of n have to
be distinct since the underlying eigenfunctions solve different equations inside �.
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We consider first the quasimodes ϕαnm and ϕβn� for n ∈N, 0 ≤ m< (q − 1)/2 and 0 ≤ � <
(r − 1)/2, with quasi-eigenvalues given by

σαnm = λn sin(2m + 1)α

and

σ
β
n� = λn sin(2�+ 1)β.

If there are values of m and � such that (2m + 1)r = (2�+ 1)q, then some quasi-eigenvalues
σαnm and σβn� have multiplicity 2 and we will deal with them afterwards. Suppose for now that
there are no such values of m and �. Then, there exists δ > 0 such that, given n, every edge
wave quasi-eigenvalue is spaced by δ and at distance at least δ from nπ/M. Lemma 5·1 then
guarantees that, except for maybe a finite number of them, all the real eigenvalues associated
to those edge wave quasi-eigenvalues are distinct, and distinct from the ones we recovered
close to the surface wave quasi-eigenvalues.

If q and r are both odd, we also have to consider the quasimodes ψn with eigenvalue
λn = nπ/M. Since σ (n)

1 − nπ/M ≥ C/n and each other edge wave quasi-eigenvalue σαnm or

σ
β
nm is at a distance at least δ from nπ/M, it follows from Lemma 5·1 that, except for maybe

a finite number of them, all the real eigenvalues close to a quasi-eigenvalue λn are distinct
from the ones we found previously.

Suppose now that there exist m0 < (q − 1)/2 and �0 < (r − 1)/2 such that (2m0 + 1)r =
(2�0 + 1)q. In other words, suppose that there are edge wave quasi-eigenvalues with mul-
tiplicity 2 since σαnm0

= σ
β
n�0

for all n ∈N. Let us show that the multiplicity guarantees
the presence of two distinct sloshing eigenvalues. Fix n ∈N and let ϕα , ϕβ and σ denote

respectively ϕαnm0
, ϕβn�0

and σαnm0
. Now let

vα = ϕα − ηα ,

where ηα is the solution of (5·2) for ϕσ = ϕα . Rescaling if need be, suppose further that vα
has unit norm in L2(S). Then, by (5·4) and [14, theorem 4.1], we can find a function wα such
that:

(i) wα is a linear combination of eigenfunctions of DN−λ2
n

with eigenvalues in the interval

[σ − √
Ce−cσ/2, σ + √

Ce−cσ/2];

(ii) ‖wα‖L2(S) = 1;

(iii) ‖vα − wα‖L2(S) ≤ 2
√

Ce−cσ/2(1 + oσ (1)).

Here, C and c are the same constants as in Lemma 5·1. Divide the boundary S into two parts
Sα = [0, L/2] × {0} and Sβ = (L/2, L] × {0}. Then, we have

‖wα‖L2(Sβ ) ≤ ‖ϕα‖L2(Sβ ) + ‖ηα‖L2(S) + ‖wα − vα‖L2(S) .

By Lemma 3·1, equation (5·4) and the definition of wα , each of the terms on the right-hand
side of the last equation vanish exponentially fast as σ (and therefore n) goes to infinity. It
follows that ‖wα‖L2(Sβ ) goes to 0 as n → ∞. We can repeat all of the previous construction
for the angle β to get a function wβ with the same properties as wα but with respect to vβ =
ϕβ − ηβ . By the same arguments as above,

∥∥wβ∥∥L2(Sα) goes to 0 as n → ∞ and therefore∥∥wβ∥∥L2(Sβ ) = ∥∥wβ∥∥L2(S) − ∥∥wβ∥∥L2(Sα)
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goes to 1 since
∥∥wβ∥∥L2(S) = 1. Both wα and wβ have unit norm in L2(S), but ‖wα‖L2(Sβ ) →

0 while
∥∥wβ∥∥L2(Sβ ) → 1. Thus, for n sufficiently large, the two functions must be lin-

early independent. It follows that there are at least two eigenfunctions of DN−λ2
n

with

eigenvalues in the interval [σ − √
Ce−cσ/2, σ + √

Ce−cσ/2]. For n sufficiently large, those
eigenvalues must be distinct from all the previous sloshing eigenvalues that we found pre-
viously. Therefore, there are indeed 2 distinct sloshing eigenvalues close to each edge wave
quasi-eigenvalue of multiplicity 2 that is sufficiently large.

Since the sloshing eigenvalues from Lemma 5·1 that are close to the edge wave and
surface wave quasimodes are distinct (except for maybe a finite number of them), we can
combine them using the same trick we used for comparing Ns and N. This yields

N(σ ) ≥ Ns(σ ) + Ne(σ ) + o(σ )

as claimed.

5.2. Discussion on quasimodes

We have shown that the counting function of our quasimodes bounds the real eigenvalue
counting function from below, but in order to prove Conjecture 1·9, we also need to prove
that it bounds it from above. This should require showing that our quasi-eigenvalues approx-
imate all the sloshing eigenvalues, which should be much more difficult to prove and require
new ideas. In dimension 2, it turns out that the quasimodes solve a Sturm–Liouville equation
on the sloshing part of the boundary. This fact was used in [14] to show that their quasi-
modes formed a complete set, and hence approximated every eigenfunction. Their method
could work in our case, but we were unable to find an analogous Sturm–Liouville equation
solved by our quasimodes. Furthermore, the presence of edge waves makes it even more
complicated.

We only considered the cases where the angles α and β were of the form π/2q. Note
that our construction of the edge wave quasimodes is valid for any angle smaller than π/2.
However, we used the fact that the angles were of the form π/2q to construct explicitly
the surface wave solutions of the sloping beach problem that we used in our quasimodes.
Indeed, if we were to repeat the steps in Section 3.4 for an arbitrary angle which is a rational
multiple of π , the iterations of the operators A and B would lead to solutions that blow up
at infinity and an analogous version of Lemma 3·6 would not hold. There might be a way
to remedy this, but we were unable to do so. Moreover, we are unsure how the counting
function behaves for arbitrary angles. In two dimensions, solutions due to Peters [17] allow
us to create quasimodes for arbitrary angles. Using the ideas of Peters in [18], it should
be possible to find similar solutions in three dimensions, which could lead to finding an
expression of N(σ ) for arbitrary angles.

5.3. Numerical evidence supporting Conjectures 1·9 and 1·11

We now present numerical evidence to support both our conjectures. Let� be the triangle
of angles α and β with side length L resulting from the separation of variable on � (as in
Figure 1). We used FreeFem++ to solve problem (1·3) using the finite element method. It
is a 2-d problem and hence much faster to solve than its 3-d counterpart of solving directly
problem (1·2) on all �.

https://doi.org/10.1017/S0305004121000712 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004121000712


Asymptotics of sloshing eigenvalues for a triangular prism 569

(a) (b)

Fig. 4. Value of S(σ ) compared to its conjectured limit indicated by the horizontal line.

For simplicity, we take L = M = π . We start by computing N(σ ) up to σ = 50 for
α = β = π/4 and α = π/4, β = π/6. In order to do so, we compute the first eigenvalues
corresponding to λn = n for sufficiently many n’s. We order and denote those eigenvalues
by σk(n). Note that from a theorem by Friedlander [6], the eigenvalue σk(n) gets larger as
n increases. Therefore, we only need to compute these eigenvalues until σ1(n)> 50 and
we can reduce the number of computed eigenvalues at each step in order to speed up the
computations.

Consider the function

S(σ ) := 1

σ

(
N(σ ) − LM

4π
σ 2
)

= 1

σ

(
N(σ ) − π

4
σ 2
)

.

Then, Conjecture 1·9 is equivalent to showing

lim
σ→∞ S(σ ) = Ns(1) + Ne(1) − π

4
,

where Ns and Ne are the expressions from Theorems 1·6 and 1·5 without the error terms.
The plots in Figure 4 show our estimated value of S(σ ) for 0 ≤ σ ≤ 50, as well as the value
of Ne(1) + Ns(1) − π/4 to which it should converge when σ tends to infinity.

When computing the eigenvalues numerically, we found that our quasi-eigenvalues
matched them quite accurately. We have an exact expression for the edge wave quasi-
eigenvalues from equation (3·3) and we can compute the surface wave quasi-eigenvalues
by solving equation (4·2) for different values of m (without forgetting that m can take neg-
atives values if n is small). We did so using the function FindRoot in Mathematica. Table 2
shows the first quasi-eigenvalues computed with Mathematica as well as the first slosh-
ing eigenvalues computed with FreeFEM++ for α = π/6, β = π/18. As we conjectured,
our quasi-eigenvalues seem to be asymptotically complete since they match the slosh-
ing eigenvalues starting from a certain index. We have shifted the table to highlight their
matching.
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Table 2. The first 125 quasi-eigenvalues (on the left) and sloshing eigenvalues (on the right) for
α = π/6, β = π/18

0.0000 1.8794 1.7365 3.4730 3.4730 4.6985 4.6913 6.0000 6.0427
0.1736 1.9101 1.8718 3.5000 3.5000 4.8231 4.8619 6.0777 6.0777
0.3473 2.0000 1.9101 3.5000 3.5000 4.8622 4.8622 6.1237 6.1284
0.5000 2.0000 1.9843 3.5000 3.6004 4.9277 4.9702 6.1284 6.1348
0.5000 0.0000 2.0000 1.9942 3.5945 3.6029 5.0000 5.0000 6.2513 6.2514
0.5000 0.1600 2.0838 2.0007 3.6466 3.6466 5.0000 5.0000 6.3680 6.3792
0.5209 0.1985 2.2574 2.0838 3.7588 3.6920 5.0000 5.0358 6.4250 6.4250
0.6946 0.3469 2.2981 2.2574 3.8203 3.7619 5.0358 5.1163 6.4638 6.4781
0.7660 0.3471 2.4311 2.3080 3.8302 3.8203 5.2095 5.2095 6.5000 6.5000
0.8682 0.5209 2.5000 2.3317 3.8739 3.8302 5.2133 5.2421 6.5000 6.5000
0.9397 0.6230 2.5000 2.4311 3.9939 3.9567 5.3623 5.3623 6.5000 6.5068
1.0000 0.6946 2.5000 2.4988 4.0000 3.9939 5.3831 5.3831 6.5628 6.5693
1.0000 0.7358 2.6047 2.5000 4.0000 4.0000 5.5000 5.5000 6.5779 6.5774
1.0000 0.8682 2.6057 2.6047 4.0000 4.0000 5.5000 5.5000 6.5839 6.5916
1.0419 0.8800 2.7784 2.6917 4.1458 4.1676 5.5000 5.5180 6.5986 6.5987
1.0761 1.0419 2.8191 2.7784 4.1676 4.2853 5.5567 5.5568 6.7490 6.7547
1.2155 1.0573 2.9217 2.7932 4.3256 4.3412 5.5712 5.5882 6.7723 6.7723
1.3892 1.1898 2.9520 2.9344 4.3412 4.3885 5.6382 5.6358 6.8944 6.8944
1.5000 1.2155 3.0000 2.9520 4.5000 4.5000 5.6508 5.6766 6.9459 6.9460
1.5000 1.3048 3.0000 2.9998 4.5000 4.5000 5.7304 5.7304 7.0000 7.0000
1.5000 1.3892 3.0000 3.0000 4.5000 4.5149 5.7353 5.7543 7.0000 7.0000
1.5321 1.4693 3.0642 3.0638 4.5149 4.5491 5.7819 5.7964 7.0000 7.0152
1.5501 1.5081 3.1257 3.0975 4.5817 4.5963 5.9040 5.9041 7.0524 7.0569
1.5628 1.5628 3.2993 3.1257 4.5963 4.6280 6.0000 6.0000 7.0895 7.0955
1.7365 1.6720 3.4414 3.2993 4.6885 4.6885 6.0000 6.0000 7.1196 7.1197
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