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Abstract
This paper proposes a two-phase deep reinforcement learning approach, for hedging variable annuity
contracts with both GMMB and GMDB riders, which can address model miscalibration in Black-Scholes
financial and constant force of mortality actuarial market environments. In the training phase, an infant
reinforcement learning agent interacts with a pre-designed training environment, collects sequential
anchor-hedging reward signals, and gradually learns how to hedge the contracts. As expected, after a
sufficient number of training steps, the trained reinforcement learning agent hedges, in the training envi-
ronment, equally well as the correct Delta while outperforms misspecified Deltas. In the online learning
phase, the trained reinforcement learning agent interacts with the market environment in real time, col-
lects single terminal reward signals, and self-revises its hedging strategy. The hedging performance of the
further trained reinforcement learning agent is demonstrated via an illustrative example on a rolling basis
to reveal the self-revision capability on the hedging strategy by online learning.

Keywords: Two-phase deep reinforcement learning; Variable annuities hedging; Training phase; Sequential anchor-hedging
reward signals; Online learning phase; Single terminal reward signals; Hedging strategy self-revision.

1. Introduction
Variable annuities are long-term life products, in which policyholders participate in financial
investments for profit sharing with insurers. Various guarantees are embedded in these con-
tracts, such as guaranteed minimum maturity benefit (GMMB), guaranteed minimum death
benefit (GMDB), guaranteed minimum accumulation benefit (GMAB), guaranteed minimum
income benefit (GMIB), and guaranteed minimum withdrawal benefit (GMWB). According to
the Insurance Information Institute in 2020, the sales of variable annuity contracts in the United
States have amounted to, on average, 100.7 billion annually, from 2016 to 2020.
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Due to their popularity in the market and their dual-risk bearing nature, valuation and risk
management of variable annuities have been substantially studied in the literature. By the risk-
neutral option pricing approach, to name a few, (Milevsky & Posner 2001) studied the valuation
of the GMDB rider; valuation and hedging of the GMMB rider under the Black-Scholes (BS) finan-
cial market model were covered in Hardy (2003); the GMWB rider was extensively investigated
by Milevsky & Salisbury (2006), Dai et al. (2008), and Chen et al. (2008); valuation and hedging
of the GMMB rider were studied in Cui et al. (2017) under the Heston financial market model;
valuation of the GMMB rider, together with the feature that a contract can be surrendered before
its maturity, was examined by Jeon & Kwak (2018), in which optimal surrender strategies were
also provided. For a comprehensive review of this approach, see Feng (2018).

Valuation and risk management of variable annuities have recently been advanced via various
approaches as well. Trottier et al. (2018) studied the hedging of variable annuities in the presence
of basis risk based on a local optimisationmethod. Chong (2019) revisited the pricing and hedging
problem of equity-linked life insurance contracts utilising the so-called principle of equivalent
forward preferences. Feng & Yi (2019) compared the dynamic hedging approach to the stochastic
reserving approach for the risk management of variable annuities. Moenig (2021a) investigated
the valuation and hedging problem of a portfolio of variable annuities via a dynamic programming
method. Moenig (2021b) explored the impact of market incompleteness on the policyholder’s
behaviour. Wang & Zou (2021) solved the optimal fee structure for the GMDB and GMMB riders.
Dang et al. (2020) and (2022) proposed and analysed efficient simulation methods for measuring
the risk of variable annuities.

Recently, state-of-the-art machine learning methods have been deployed to revisit the valu-
ation and hedging problems of variable annuities at a portfolio level. Gan (2013) proposed a
three-step technique, by (i) selecting representative contracts with clustering method, (ii) pric-
ing these contracts with Monte Carlo (MC) simulation, and (iii) predicting the value of the whole
portfolio based on the values of representative contracts with kriging method. To further boost
the efficiency and the effectiveness of selecting and pricing the representative contracts, as well
as valuating the whole portfolio, various methods at each of these three steps have been pro-
posed. For instance, Gan & Lin (2015) extended the ordinary kriging method to the universal
kriging method; Hejazi & Jackson (2016) used a neural network as the predictive model to valuate
the whole portfolio; Gan & Valdez (2018) implemented the generalised beta of the second kind
method instead of the kriging method to capture the non-Gaussian behaviour of the market price
of variable annuities. See also, Gan (2018), Gan & Valdez (2020), Gweon et al. (2020), Liu & Tan
(2020), Lin & Yang (2020), Feng et al. (2020), and Quan et al. (2021) for recent developments in
this three-step technique. Similar idea has also been applied to the calculation of Greeks and risk
measures of a portfolio of variable annuities; see Gan & Lin (2017), Gan & Valdez (2017), and Xu
et al. (2018). All of the above literature applying the machine learning methods involve the super-
vised learning, which requires a pre-labelled dataset (in this case, it is the set of fair prices of the
representative contracts) to train a predictive model.

Other than valuating and hedging variable annuities, supervised learning methods have also
been applied to different actuarial contexts. Wüthrich (2018) used a neural network for the chain-
ladder factors in the chain-ladder claim reserving model to include heterogeneous individual
claim features. Gao &Wüthrich (2019) applied a convolutional neural network to classify drivers
using their telematics data. Cheridito et al. (2020) estimated the risk measures of a portfolio of
assets and liabilities with a feedforward neural network. Richman & Wüthrich (2021) and Perla
et al. (2021) studied the mortality rate forecasting problem, where Richman & Wüthrich (2021)
extended the traditional Lee-Carter model to multiple populations using a neural network, while
Perla et al. (2021) applied deep learning techniques directly on a time-series data of mortality
rate. Hu et al. (2022) modified the loss function in tree-based models to improve the predictive
performance when applying to imbalanced datasets which are common in the insurance practice.
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Meanwhile, a flourishing sub-field in machine learning, called the reinforcement learning (RL),
has been skyrocketing and has proved its powerfulness in various tasks; see Silver et al. (2017), and
the references therein. Contrary to the supervised learning, the RL does not require a pre-labelled
dataset for training. Instead, in the RL, an agent interacts with an environment, by sequentially
observing states, taking, as well as revising, actions, and collecting rewards. Without possessing any
prior knowledge of the environment, the agent needs to explore the environment while exploit the
collected reward signals, for learning. For a representative monograph of RL, see Sutton & Barto
(2018); for its broad applications in economics, game theory, operations research, and finance, see
the recent survey paper by Charpentier et al. (2021).

The mechanism of RL resembles how a hedging agent hedges any contingent claim dynam-
ically. Indeed, the hedging agent could not know any specifics of the market environment, but
could only observe states from the environment1 , take a hedging strategy, and learn from reward
signals to progressively improve the hedging strategy. However, in the context of hedging, if an
insurer builds a hedging agent based on a certain RLmethod, called RL agent hereafter, and allows
this infant RL agent to interact and learn from the market environment right away, the insurer
could bear enormous financial loss while the infant RL agent is still exploring the environment
before it could effectively exploit the reward signals. Moreover, provided that the insurer could
not know any specifics of the market environment as well, they could not supply any informa-
tion derived from theoretical models to the infant RL agent, and thus, the agent could only obtain
the reward signals via the realised terminal profit and loss, based on the realised net liability and
hedging portfolio value; these signals should not be effective for an infant RL agent to learn from
the market environment.

To resolve these two issues above, we propose a two-phase (deep) RL approach, which is com-
posed of a training phase and an online learning phase. In the training phase, based on their best
knowledge of the market, the insurer constructs a training environment. An infant RL agent
is then designated to interact and learn from this training environment for a period of time.
Comparing to putting the infant RL agent in the market environment right away, the infant RL
agent could be supplied by more information derived from the constructed training environment,
such as the net liabilities before any terminal times. In this paper, we propose that the RL agent
collects anchor-hedging reward signals during the training phase. After the RL agent is experi-
enced with the training environment, in the online learning phase, the insurer finally designates
the trained RL agent in the market environment. Again, since no theoretical model for the mar-
ket environment is available to the insurer, the trained RL agent could only collect single terminal
reward signals in this phase. In this paper, an illustrative example is provided to demonstrate the
hedging performance using this approach.

All RL methods can be classified into either MC or temporal-difference (TD) learning. As a TD
method shall be employed in this paper, in both the training and online learning phases, the fol-
lowing RL literature review focuses on the latter method. Sutton (1984) and (1988) first introduced
the TD method for prediction of value function. Based upon their works, Watkins (1989) and
Watkins & Dayan (1992) proposed the well-known Q-learning for finite state and action spaces.
Since then, the Q-learning has been improved substantially, in Hasselt (2010) for the Double Q-
learning, and in Mnih et al. (2013), as well as Mnih et al. (2015), for the deep Q-learning which
allows infinite state space. Any Q-learning approaches, or in general tabular solutionmethods and
value function approximation methods, are only applicable to finite action space. However, in the
context of hedging, the action space is infinite. Instead of discretising the action space, proximal
policy optimisation (PPO) by Schulman et al. (2017), which is a policy gradient method, shall be
applied in this paper; our section 3.4 shall provide its self-contained review.

1Note that a “state” in this paper, in line with the terminologies of Markov decision processes, refers to observable
metrics from the environment to be a proxy of a true state with unobservable but desirable features. See sections 2.3.2 and 7.1
for more details.
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To the best of our knowledge, this paper is the first work to implement the RL algorithms
with online learning to hedge contingent claims, particularly variable annuities. Contrary to Xu
(2020) and Carbonneau (2021), in which both adapted the state-of-the-art DH approach in Bühler
et al. (2019), this paper is in line with the recent works by Kolm & Ritter (2019) and Cao et al.
(2021), while extends with actuarial components. We shall outline the differences between the
RL and DH approaches throughout sections 3 and 4, as well as Appendices A and B. Kolm &
Ritter (2019) discretised the action space and implemented RL algorithms for finitely many pos-
sible actions; however, as mentioned above, this paper does not discretise the action space but
adapts the recently advanced policy gradient method, namely, the PPO. Comparing with Cao et al.
(2021), in addition to the actuarial elements, this paper puts forward online learning to self-revise
the hedging strategy.

In the illustrative example, we assume that the market environment is the BS financial and con-
stant force of mortality (CFM) actuarial markets, and the focus is on contracts with both GMMB
and GMDB riders. Furthermore, we assume that the model of the market environment being pre-
sumed by the insurer, which shall be supplied as the training environment, is also the BS and the
CFM, but with a different set of parameters. That is, while the insurer constructs correct dynamic
models of the market environment for the training environment, the parameters in the model of
the market environment are not the same as those in the market environment. Section 2.4 shall
set the stage of this illustrative example and shall show that, if the insurer forwardly implements,
in the market environment, the incorrect Delta hedging strategy based on their presumed model
of the market environment, then its hedging performance for the variable annuities is worse than
that by the correct Delta hedging strategy based on the market environment. In sections 4 and
6, this illustrative example shall be revisited using the two-phase RL approach. As we shall see in
section 6, the hedging performance of the RL agent is even worse than that of the incorrect Delta,
at the very beginning of hedging in real time. However, delicate analysis shows that, with a fair
amount of future trajectories (which are different from simulated scenarios, with more details in
section 6), the hedging performance of the RL agent becomes comparable with that of the correct
Delta within a reasonable amount of time. Therefore, the illustrative example addresses model
miscalibration issue in hedging variable annuity contracts with GMMB and GMDB riders in BS
financial and CFM actuarial market environments, which is common in practice.

This paper is organised as follows. Section 2 formulates the continuous hedging problem for
variable annuities, reformulates it to the discrete and Markov setting, and motivates as well as
outlines the two-phase RL approach. Section 3 discusses the RL approach in hedging variable
annuities and provides a self-contained review of RL, particularly the PPO, which is a TD pol-
icy gradient method, while section 5 presents the implementation details of the online learning
phase. Sections 4 and 6 revisit the illustrative example in the training and online learning phases,
respectively. Section 7 collates the assumptions of utilising the two-phase RL approach for hedg-
ing contingent claims, as well as their implications in practice. This paper finally concludes and
comments on future directions in section 8.

2. Problem Formulation and Motivation
2.1. Classical hedging problem andmodel-based approach
We first review the classical hedging problem for variable annuities and its model-based solution
to introduce some notations and to motivate the RL approach.

2.1.1. Actuarial and financial market models
Let (�,F , P) be a rich enough complete probability space. Consider the current time t = 0 and fix
T > 0 as a deterministic time in the future. Throughout this paper, all time units are in year.
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There are one risk-free asset and one risky asset in the financial market. Let Bt and St , for
t ∈ [0, T], be the time-t values of the risk-free asset and the risky asset, respectively. Let G(1) ={
G(1)t

}
t∈[0,T] be the filtration which contains all financial market information; in particular, both

processes B= {Bt}t∈[0,T] and S= {St}t∈[0,T] areG(1)-adapted.
There areN policyholders in the actuarial market. For each policyholder i= 1, 2, . . . ,N, denote

T(i)xi as their random future lifetime, who is of age xi at the current time 0. Define, for each
i= 1, 2, . . . ,N, and for any t ≥ 0, J(i)t = 1{T(i)xi >t}, be the corresponding time-t jump value gen-

erated by the random future lifetime of the i-th policyholder; that is, if the i-th policyholder
survives at some time t ∈ [0, T], J(i)t = 1; otherwise, J(i)t = 0. Let G(2) =

{
G(2)t

}
t∈[0,T] be the fil-

tration which contains all actuarial market information; in particular, all single-jump processes
J(i) =

{
J(i)t
}
t∈[0,T], for i= 1, 2, . . . ,N, areG(2)-adapted.

Let F= {Ft}t∈[0,T] be the filtration which contains all actuarial and financial market informa-
tion; that is, F=G(1) ∨G(2). Therefore, the filtered probability space is given by (�,F , F, P).

2.1.2. Variable annuities with guaranteed minimum maturity benefit and guaranteed minimum death
benefit riders

At the current time 0, an insurer writes a variable annuity contract to each of these N pol-
icyholders. Each contract is embedded with both GMMB and GMDB riders. Assume that all
these N contracts expire at the same fixed time T. In the following, fix a generic policyholder
i= 1, 2, . . . ,N.

At the current time 0, the policyholder deposits F(i)0 into their segregated account to purchase
ρ(i) > 0 shares of the risky asset; that is, F(i)0 = ρ(i)S0. Assume that the policyholder does not revise
the number of shares ρ(i) throughout the effective time of the contract.

For any t ∈
[
0, T(i)xi ∧ T

]
, the time-t segregated account value of the policyholder is given by

F(i)t = ρ(i)Ste−m(i)t , where m(i) ∈(0, 1) is the continuously compounded annualised rate at which
the asset-value-based fees are deducted from the segregated account by the insurer. For any t ∈(
T(i)xi ∧ T, T

]
, the time-t segregated account value F(i)t must be 0; indeed, if the policyholder dies

before the maturity, i.e. T(i)xi < T, then, due to the GMDB rider of a minimum guarantee G(i)D > 0,

the beneficiary inherits max
{
F(i)
T(i)xi

,G(i)D

}
, which can be decomposed into F(i)

T(i)xi
+
(
G(i)D − F(i)

T(i)xi

)
+
,

at the policyholder’s death time T(i)xi right away. Due to the GMMB rider of a minimum guarantee
G(i)M > 0, if the policyholder survives beyond the maturity, i.e. T(i)xi > T, the policyholder acquires
max

{
F(i)T ,G(i)M

}
at the maturity, which can be decomposed into F(i)T +

(
G(i)M − F(i)T

)
+.

2.1.3. Net liability of insurer
The liability of the insurer thus has two parts. The liability from the GMMB rider at the maturity
for the i-th policyholder, where i= 1, 2, . . . ,N, is given by

(
G(i)M − F(i)T

)
+ if the i-th policyholder

survives beyond the maturity, and is 0 otherwise. The liability from the GMDB rider at the death

time T(i)xi for the i-th policyholder, where i= 1, 2, . . . ,N, is given by
(
G(i)D − F(i)

T(i)xi

)
+
if the i-th

policyholder dies before the maturity, and is 0 otherwise. Therefore, at any time t ∈ [0, T], the
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future gross liability of the insurer accumulated to the maturity for these N contracts is given by

N∑
i=1

⎛
⎝(G(i)M − F(i)T

)
+ J(i)T + BT

BT(i)xi

(
G(i)D − F(i)

T(i)xi

)
+
1{T(i)xi <T}J

(i)
t

⎞
⎠ .

Denote VGL
t , for t ∈ [0, T], as the time-t value of the discounted (via the risk-free asset B) future

gross liability of the insurer; if the liability is 0, the value will be 0.
From the asset-value-based fees collected by the insurer, a portion, known as the rider charge,

is used to fund the liability due to the GMMB and GMDB riders; the remaining portion is
used to cover overhead, commissions, and any other expenses. From the i-th policyholder,
where i= 1, 2, . . . ,N, the insurer collects m(i)e F(i)t J(i)t as the rider charge at any time t ∈ [0, T],
where m(i)e ∈(0,m(i)]. Therefore, the cumulative future rider charge to be collected, from any
time t ∈ [0, T] onward, till the maturity, by the insurer from these N policyholders, is given
by
∑N

i=1
∫ T
t m(i)e F(i)s J(i)s (BT/Bs) ds. Denote VRC

t , for t ∈ [0, T], as its time-t discounted (via the
risk-free asset B) value; if the cumulative rider charge is 0, the value will be 0.

Hence, due to these N variable annuity contracts with both GMMB and GMDB riders, for any
t ∈ [0, T], the time-t net liability of the insurer for these N contracts is given by Lt =VGL

t −VRC
t ,

which is Ft-measurable.
One of the many ways to set the rate m(i) ∈(0, 1) for the asset-value-based fees, and the

rate m(i)e ∈(0,m(i)] for the rider charge, for i= 1, 2, . . . ,N, is based on the time-0 net liabil-
ity of the insurer for the i-th policyholder. More precisely, m(i) and m(i)e are determined via
L(i)0 =VGL,(i)

0 −VRC,(i)
0 = 0, where VGL,(i)

0 and VRC,(i)
0 are the time-0 values of, respectively, the

discounted future gross liability and the discounted cumulative future rider charge, of the insurer
for the i-th policyholder.

2.1.4. Continuous hedging and hedging objective
The insurer aims to hedge this dual-risk bearing net liability via investing in the financial market.
To this end, let T̃ be the death time of the last policyholder; that is, T̃ =maxi=1,2,...,N T(i)xi , which is
random.

While the net liability Lt is defined for any time t ∈ [0, T], as the difference between the val-
ues of discounted future gross liability and discounted cumulative future rider charge, Lt = 0
for any t ∈

(
T̃ ∧ T, T

]
. Indeed, if T̃ < T, then, for any t ∈

(
T̃ ∧ T, T

]
, one has T(i)xi < t ≤ T for all

i= 1, 2, . . . ,N, and hence, the future gross liability accumulated to the maturity, and the cumu-
lative rider charge from time T̃ onward are both 0 so are their values. Therefore, the insurer only
hedges the net liability Lt , for any t ∈

[
0, T̃ ∧ T

]
.

Let Ht be the hedging strategy, i.e. the number of shares of the risky asset being held by the
insurer, at time t ∈ [0, T). Hence, Ht = 0, for any t ∈

[
T̃ ∧ T, T

)
. Let H be the admissible set of

hedging strategies, which is defined by

H= {H = {Ht}t∈[0,T) : (i)H is F-adapted, (ii)H ∈R, P×L-a.s., and

(iii) for any t ∈
[
T̃ ∧ T, T

)
, Ht = 0

}
,

whereL is the Lebesgue measure onR. The condition (ii) indicates that there is not any constraint
on the hedging strategies.

Let Pt be the time-t value, for t ∈ [0, T], of the insurer’s hedging portfolio. Then, P0 = 0, and
together with the rider charges collected from the N policyholders, as well as the withdrawal
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for paying the liabilities due to the beneficiaries’ inheritance from those policyholders who have
already been dead, for any t ∈(0, T],

Pt =
∫ t

0
(Ps −HsSs)

dBs
Bs

+
∫ t

0
HsdSs +

N∑
i=1

∫ t

0
m(i)e F(i)s J(i)s ds−

N∑
i=1

(
G(i)D − F(i)

T(i)xi

)
+
1{T(i)xi ≤t<T},

which obviously depends on {Hs}s∈[0,t).
As in Bertsimas et al. (2000), the insurer’s hedging objective function at the current time 0

should be given by the root-mean-square error (RMSE) of the terminal profit and loss (P&L),
which is, for any H ∈H,

√
EP
[(
PT̃∧T − LT̃∧T

)2].
If the insurer has full knowledge of the objective probability measure P, and hence the correct
dynamics of the risk-free asset and the risky asset in the financial market, as well as the cor-
rect mortality model in the actuarial market, the optimal hedging strategy, being implemented
forwardly, is given by minimising the RMSE of the terminal P&L:

H∗ = argmin
H∈H

√
EP
[(
PT̃∧T − LT̃∧T

)2].

2.2. Pitfall of model-based approach
However, having correct model is usually not the case in practice. Indeed, the insurer, who is the
hedging agent above, usually has little information regarding the objective probability measure
P and hence easily misspecifies the financial market dynamics and the mortality model, which
will in turn yield a poor performance from the supposedly optimal hedging strategy when it is
implemented forwardly in the future. Section 2.4 outlines such an illustrative example which shall
be discussed throughout the remaining of this paper.

To rectify this, we propose a two-phase (deep) RL approach to solve an optimal hedging strategy.
In this approach, an RL agent, which is not the insurer themselves but is built by the insurer
to hedge on their behalf, does not have any knowledge of the objective probability measure P,
the financial market dynamics, and the mortality model; section 2.5 shall explain this approach
in details. Before that, in the following section 2.3, the classical hedging problem shall first be
reformulated with aMarkov decision process (MDP) in a discrete time setting so that RLmethods
can be implemented. The illustrative example outlined in section 2.4 shall be revisited using the
proposed two-phase RL approach in sections 4 and 6.

In the remaining of this paper, unless otherwise specified, all expectation operators shall be
taken with respect to the objective probability measure P and denoted simply as E[·].

2.3. Discrete and Markov hedging
2.3.1. Discrete hedging and hedging objective
Let t0, t1, . . . , tn−1 ∈ [0, T), for some n ∈N, be the time when the hedging agent decides the
hedging strategy, such that 0= t0 < t1 < · · ·< tn−1 < T. Denote also tn = T.

Let tñ be the first time (right) after the last policyholder dies or all contracts expire, for some
ñ= 1, 2, . . . , n, which is random; that is, tñ =min

{
tk, k= 1, 2, . . . , n : tk ≥ T̃

}
, and when T̃ > T,

by convention, min ∅ = tn. Therefore,Ht = 0, for any t = tñ, tñ+1, . . . , tn−1. With a slight abuse of
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notation, the admissible set of hedging strategies in discrete time is

H= {
H = {Ht}t=t0,t1,...,tn−1 : (i) for any t = t0, t1, . . . , tn−1, Ht is Ft-measurable,

(ii) for any t = t0, t1, . . . , tn−1, Ht ∈R, P-a.s., and

(iii) for any t = tñ, tñ+1, . . . , tn−1, Ht = 0
}
;

again, the condition (ii) emphasises that no constraint is imposed to the hedging strategies.
While the hedging agent decides the hedging strategy at the discrete time points, the actuar-

ial and financial market models are continuous. Hence, the net liability Lt =VGL
t −VRC

t is still
defined for any time t ∈ [0, T] as before. Moreover, if t ∈ [tk, tk+1

)
, for some k= 0, 1, . . . , n− 1,

Ht =Htk ; thus, P0 = 0, and, if t ∈(tk, tk+1
]
, for some k= 0, 1, . . . , n− 1,

Pt =
(
Ptk −HtkStk

) Bt
Btk

+HtkSt +
N∑
i=1

∫ t

tk
m(i)e F(i)s J(i)s

Bt
Bs

ds

−
N∑
i=1

Bt
BT(i)xi

(
G(i)D − F(i)

T(i)xi

)
+
1{tk<T(i)xi ≤t<T}. (1)

For any H ∈H, the hedging objective of the insurer at the current time 0 is
√
E
[(
Ptñ − Ltñ

)2].
Hence, the optimal discrete hedging strategy, being implemented forwardly, is given by

H∗ = argmin
H∈H

√
E
[(
Ptñ − Ltñ

)2]= argmin
H∈H

E
[(
Ptñ − Ltñ

)2] . (2)

2.3.2. Markov decision process
An MDP can be characterised by its state space, action space, Markov transition probability, and
reward signal. In turn, these derive the value function and the optimal value function, which are
equivalently known as, respectively, the objective function and the value function, in optimisation
as in the previous sections. In the remaining of this paper, we shall adapt the MDP language.

• (State) Let X be the state space in Rp, where p ∈N. Each state in the state space represents
a possible observation with p features in the actuarial and financial markets. Denote Xtk ∈X
as the observed state at any time tk, where k= 0, 1, . . . , n; the state should minimally include
an information related to the number of surviving policyholders

∑N
i=1 J

(i)
tk , and the term to

maturity T − tk, in order to terminate the hedging at time tñ, which is the first time when∑N
i=1 J

(i)
tñ = 0, or which is when T − tñ = 0. The states (space) shall be specified in sections 4

and 5.
• (Action) Let A be the action space in R. Each action in the action space is a possible hedging

strategy. Denote Htk
(
Xtk
) ∈A as the action at any time tk, where k= 0, 1, . . . , n− 1, which

is assumed to be Markovian with respect to the observed state Xtk ; that is, given the cur-
rent state Xtk , the current action Htk

(
Xtk
)
is independent of the past states Xt0 , Xt1 , . . . , Xtk−1 .

In the sequel, for notational simplicity, we simply write Htk to represent Htk
(
Xtk
)
, for

k= 0, 1, . . . , n− 1. If the feature of the number of surviving policyholders
∑N

i=1 J
(i)
tk = 0,

for k= 0, 1, . . . , n− 1, in the state Xtk , then Htk = 0; in particular, for any tk, where k=
ñ, ñ+ 1, . . . , n− 1, the hedging strategy Htk = 0.

• (Markov property) At any time tk, where k= 0, 1, . . . , n− 1, given the current state Xtk and
the current hedging strategy Htk , the transition probability distribution of the next state
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Xtk+1 in the market is independent of the past states Xt0 , Xt1 , . . . , Xtk−1 and the past hedging
strategies Ht0 ,Ht1 , . . . ,Htk−1 ; that is, for any Borel set B ∈ B(X ),

P
(
Xtk+1 ∈ B|Htk , Xtk ,Htk−1 , Xtk−1 , . . . ,Ht1 , Xt1 ,Ht0 , Xt0

)= P
(
Xtk+1 ∈ B|Htk , Xtk

)
. (3)

• (Reward) At any time tk, where k= 0, 1, . . . , n− 1, given the current state Xtk in the mar-
ket and the current hedging strategy Htk , a reward signal Rtk+1

(
Xtk ,Htk , Xtk+1

)
is received, by

the hedging agent, as a result of transition to the next state Xtk+1 . The reward signal shall
be specified after introducing the (optimal) value function below. In the sequel, occasion-
ally, for notational simplicity, we simply write Rtk+1 to represent Rtk+1

(
Xtk ,Htk , Xtk+1

)
, for

k= 0, 1, . . . , n− 1.
• (State, action, and reward sequence) The states, actions (which are hedging strategies herein),

and reward signals form an episode, which is sequentially given by:{
Xt0 ,Ht0 , Xt1 , Rt1 ,Ht1 , Xt2 , Rt2 ,Ht2 , . . . , Xtñ−1 , Rtñ−1 ,Htñ−1 , Xtñ , Rtñ

}
.

• (Optimal value function) Based on the reward signals, the value function, at any time tk,
where k= 0, 1, . . . , n− 1, with the state x ∈X , is defined by, for any hedging strategies
Htk ,Htk+1 , . . . ,Htn−1 ,

V
(
tk, x;Htk ,Htk+1 , . . . ,Htn−1

)=E

[n−1∑
l=k

γ tl+1−tkRtl+1

∣∣∣Xtk = x

]
, (4)

where γ ∈ [0, 1] is the discount rate; the value function, at the time tn = T with the state x ∈X ,
is defined by V(tn, x)= 0. Hence, the optimal discrete hedging strategy, being implemented
forwardly, is given by

H∗ = argmax
H∈H

E

[n−1∑
k=0

γ tk+1Rtk+1

∣∣∣X0 = x

]
. (5)

In turn, the optimal value function, at any time tk, where k= 0, 1, . . . , n− 1, with the state
x ∈X , is

V∗ (tk, x)=V
(
tk, x;H∗

tk ,H
∗
tk+1

, . . . ,H∗
tn−1

)
, and V∗ (tn, x)= 0. (6)

• (Reward engineering) To ensure the hedging problem being reformulated with the MDP, the
value functions, given by that in (5), and the negative of that in (2), should coincide; that is,

E

[n−1∑
k=0

γ tk+1Rtk+1

∣∣∣X0 = x

]
= −E

[(
Ptñ − Ltñ

)2] . (7)

Hence, two possible constructions for the reward signals are proposed as follows; each choice
of the reward signals shall be utilised in one of the two phases in the proposed RL approach.

− (Single terminal reward) An obvious choice is to only have a reward signal from the
negative squared terminal P&L; that is, for any time tk,

Rtk+1 =
⎧⎨
⎩

−(Ptñ − Ltñ
)2 if k= ñ− 1,

0 otherwise.
(8)

Necessarily, the discount rate is given as γ = 1.
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Table 1. Contract characteristics.

Parameter Value

Expiration date T 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Minimum guarantee at maturity GM 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Minimum guarantee at death GD 100

− (Sequential anchor-hedging reward) A less obvious choice is via telescoping the RHS of
Equation (7), that

−E
[(
Ptñ − Ltñ

)2]= −E

⎡
⎣ñ−1∑

k=0

((
Ptk+1 − Ltk+1

)2 − (Ptk − Ltk
)2)+ (P0 − L0)2

⎤
⎦ .

Therefore, when L0 = P0, another possible construction for the reward signal is, for any
time tk,

Rtk+1 =
⎧⎨
⎩
(
Ptk − Ltk

)2 − (Ptk+1 − Ltk+1

)2 if k= 0, 1, . . . , ñ− 1,

0 otherwise.
(9)

Again, the discount rate is necessarily given as γ = 1. The constructed reward in (9) out-
lines an anchor-hedging scheme. First, note that, at the current time 0, when L0 = P0, there
is no local hedging error. Then, at each future hedging time before the last policyholder
dies and before the maturity, the hedging performance is measured by the local squared
P&L, i.e.

(
Ptk − Ltk

)2, which serves as an anchor. At the next hedging time, if the local
squared P&L is smaller than the anchor, it will be rewarded, i.e. Rtk+1 > 0; however, if the
local squared P&L becomes larger, it will be penalised, i.e. Rtk+1 < 0.

2.4. Illustrative example
The illustrative example below demonstrates the poor hedging performance by the Delta hedging
strategy when the insurer miscalibrates the parameters in the market environment. We consider
that the insurer hedges a variable annuity contract, with both GMMB and GMDB riders, of a
single policyholder, i.e. N = 1, with the contract characteristics given in Table 1.

The market environment follows the Black-Scholes (BS) in the financial part and the constant
force of mortality (CFM) in the actuarial front. The risk-free asset earns a constant risk-free inter-
est rate r> 0 that, for any t ∈ [0, T], dBt = rBtdt, while the value of the risky asset evolves as a
geometric Brownian motion that, for any t ∈ [0, T], dSt =μStdt + σStdWt , where μ is a constant
drift, σ > 0 is a constant volatility, and W = {Wt}t∈[0,T] is the standard Brownian motion. The
random future lifetime of the policyholder Tx has a CFM ν > 0; that is, for any 0≤ t ≤ s≤ T,
the conditional survival probability P(Tx,> s|Tx > t)= e−ν(s−t). Moreover, the Brownian motion
W in the financial market and the future lifetime Tx in the actuarial market are independent.
Table 2 summarises the parameters in the market environment. Note that the risk-free interest
rate, the risky asset initial price, the initial age of the policyholder, and the investment strategy of
the policyholder are observable by the insurer.

Based on their best knowledge of the market, the insurer builds a model of the market environ-
ment. Suppose that the model happens to be the BS and the CFM as the market environment, but
the insurermiscalibrates the parameters. Table 3 lists these parameters in the model of the market
environment. In particular, the risky asset drift and volatility, as well as the force of mortality con-
stant, are different from those in the market environment. For the observable parameters, they are
the same as those in the market environment.
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Table 2. Parameters setting of market environment.

(a) Black-Scholes financial market
Parameter Value

Risk-free interest rate r 0.02
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Risky asset initial price S0 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Risky asset driftμ −0.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Risky asset volatility σ 0.4

(b) Constant force of mortality actuarial market
Parameter Value

Initial number of policyholders N 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initial age of policyholders x 20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Constant force of mortality ν 0.03
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Investment strategy of policyholders ρ 1.19

Table 3. Parameters setting of model of market environment,
with bolded parameters being different from those in market
environment.

(a) Black-Scholes financial market
Parameter Value

Risk-free interest rate r 0.02
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Risky asset initial price S0 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Risky asset driftμ 0.08
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Risky asset volatility σ 0.2

(b) Constant force of mortality actuarial market
Parameter Value

Initial number of policyholders N 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initial age of policyholders x 20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Constant force of mortality ν 0.02
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Investment strategy of policyholders ρ 1.19

At any time t ∈ [0, T], the value of the hedging portfolio of the insurer is given by (17), with
N = 1, in which the values of the risky asset and the single-jump process follow the market envi-
ronment with the parameters in Table 2. At any time t ∈ [0, T], the value of the net liability of the
insurer is given by (16), withN = 1, in both the market environment and its model; for its detailed
derivations, we defer it to section 4.1, as the model of the market environment, with multiple
homogeneous policyholders for effective training, shall be supplied as the training environment.
Since the parameters in the model of the market environment (see Table 3) are different from
those in the market environment (see Table 2), the net liability evaluated by the insurer using the
model is different from that of the market environment. There are two implications. Firstly, the
Delta hedging strategy of the insurer using the parameters in Table 3 is incorrect, while the correct
Delta hedging strategy should use the parameters in Table 2. Secondly, the asset-value-based feem
and the rider chargeme given in Table 4, which are determined by the insurer based on the time-0
value of their net liability by Table 3 via the method in section 2.1.3, are mispriced. They would
not lead to zero time-0 value of their net liability in the market environment which is based on
Table 2.

To evaluate the hedging performance of the incorrect Delta strategy by the insurer in the
market environment for the variable annuity of contract characteristics in Table 1, 5,000 market
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Table 4. Fee structures derived from model of market
environment.

Parameter Value

Rate for asset-value-based feem 0.02
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rate for rider chargeme 0.019

Table 5. Summary statistics of empirical distributions of realised terminal P&Ls by different Delta strategies.

Terminal P&L of hedging strategy Mean Median Std. Dev. VaR90 VaR95 TVaR90 TVaR95 R̂MSE

Correct Delta −0.24 −0.14 2.96 −4.00 −5.59 −5.99 −7.22 2.97


Incorrect Delta −1.25 −0.22 3.41 −6.27 −8.80 −9.24 −11.05 3.63

(a) (b)

Figure 1. Empirical density and cumulative distribution functions of realised terminal P&Ls by different Delta strategies.

scenarios using the parameters in Table 2 are simulated to realise terminal P&Ls. For compari-
son, the terminal P&Ls by the correct Delta hedging strategy are also obtained. Figure 1 shows
the empirical density and cumulative distribution functions of the 5,000 realised terminal P&Ls
by each Delta hedging strategy, while Table 5 outlines the summary statistics of the empirical
distributions, in which R̂MSE is the estimated RMSE of the terminal P&L similar to (2).

In Figure 1(a), the empirical density function of realised terminal P&Ls by the incorrect Delta
hedging strategy is depicted to be more heavy-tailed on the left than that by the correct Delta strat-
egy. In fact, the terminal P&L by the incorrect Delta hedging strategy is stochastically dominated
by that by the correct Delta strategy in the first-order; see Figure 1(b). Table 5 shows that the ter-
minal P&L by the incorrect Delta hedging strategy has a mean and a median farther from zero,
a higher standard deviation, larger left-tail risks in terms of Value-at-Risk and Tail Value-at-Risk,
and a larger RMSE than that by the correct Delta strategy.

These observations conclude that, even in a market environment as simple as the BS and the
CFM, the incorrect Delta hedging strategy based on the miscalibrated parameters by the insurer
does not perform well when it is being implemented forwardly. In general, the hedging perfor-
mance of model-based approaches depends crucially on the calibration of parameters for the
model of the market environment.

2.5. Two-phase reinforcement learning approach
In an RL approach, at the current time 0, the insurer builds an RL agent to hedge on their
behalf in the future. The agent interacts with a market environment, by sequentially observing
states, taking, as well as revising, actions, which are the hedging strategies, and collecting rewards.
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Without possessing any prior knowledge of the market environment, the agent needs to, explore
the environment while exploit the collected reward signals, for effective learning.

An intuitive proposition would be allowing an infant RL agent to learn directly from such mar-
ket environment, like the one in section 2.4, moving forward. However, recall that the insurer
actually does not know any exact market dynamics in the environment and thus is not able to
provide any theoretical model for the net liability to the RL agent. In turn, the RL agent could
not receive any sequential anchor-hedging reward signal in (9) from the environment, but instead
receives the single terminal reward signal in (8). Since the rewards, except the terminal one, are
all zero, the infant RL agent would learn ineffectively from such sparse rewards, i.e. the RL agent
shall take a tremendous amount of time to finally learn a nearly optimal hedging strategy in the
environment. Most importantly, while the RL agent is exploring and learning from the environ-
ment, which is not a simulated one, the insurer could suffer from huge financial burden due to
any sub-optimal hedging performances.

In view of this, we propose that the insurer should first designate the infant RL agent to interact
and learn from a training environment, which is constructed by the insurer based on their best
knowledge of the market, for example, the model of the market environment in section 2.4. Since
the training environment is known to the insurer (but is unknown to the RL agent), the RL agent
can be supplied by a net liability theoretical model, and consequently learn from the sequential
anchor-hedging reward signal in (9) of the training environment. Therefore, the infant RL agent
would be guided by the net liability to learn effectively from the local hedging errors. After inter-
acting and learning from the training environment for a period of time, in order to gauge the
effectiveness, the RL agent shall be tested for its hedging performance in simulated scenarios from
the same training environment. This first phase is called the training phase.

Training Phase:

(i) The insurer constructs the MDP training environment.
(ii) The insurer builds the infant RL agent which uses the PPO algorithm.
(iii) The insurer assigns the RL agent in the MDP training environment to interact and learn

for a period of time, during which the RL agent collects the anchor-hedging reward signal
in (9).

(iv) The insurer deploys the trained RL agent to hedge in simulated scenarios from the same
training environment and documents the baseline hedging performance.

If the hedging performance of the trained RL agent in the training environment is satisfactory,
the insurer should then proceed to assign it to interact and learn from the market environment.
Since the training and market environments are usually different, such as having different param-
eters as in section 2.4, the initial hedging performance of the trained RL agent in the market
environment is expected to diverge from the fine baseline hedging performance in the training
environment. However, different from an infant RL agent, the trained RL agent is experienced so
that the sparse reward signal in (8) should be sufficient for the agent to revise the hedging strat-
egy, from the nearly optimal one in the training environment to that in the market environment,
within a reasonable amount of time. This second phase is called the online learning phase.

Online Learning Phase:

(v) The insurer assigns the RL agent in the market environment to interact and learn in real
time, during which the RL agent collects the single terminal reward signal in (8).

These summarise the proposed two-phase RL approach. Figure 2 depicts the above sequence
clearly. There are several assumptions underneath this two-phase RL approach in order to apply
it effectively to a hedging problem of a contingent claim; as they involve specifics in later sections,
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(b)

(a)

Figure 2. The relationship among insurer, RL agent, MDP training environment, and market environment of the two-phase
RL approach.

we collate their discussions and elaborate their implications in practice in section 7. In the fol-
lowing section, we shall briefly review the training essentials of RL in order to introduce the PPO
algorithm. For the details of online learning phase, we defer them until section 5.

3. Review of Reinforcement Learning
3.1. Stochastic action for exploration
One of the fundamental ideas in RL is that, at any time tk, where k= 0, 1, . . . , n− 1, given the
current stateXtk , the RL agent does not take a deterministic actionHtk but extends it to a stochastic
action, in order to explore the MDP environment and in turn learn from the reward signals. The
stochastic action is sampled through a so-called policy, which is defined below.

Let P(A) be a set of probability measures over the action space A; each probability measure
μ (·) ∈P(A) maps a Borel set A ∈ B(A) to μ

(
A
) ∈ [0, 1]. The policy π(·) is a mapping from the

state space X to the set of probability measures P(A); that is, for any state x ∈X , π(x)=μ (·) ∈
P(A). The value function and the optimal value function, at any time tk, where k= 0, 1, . . . , ñ− 1,
with the state x ∈X , are then generalised as, for any policy π(·),

V(tk, x; π(·))=E

⎡
⎣ñ−1∑

l=k
Rtl+1

∣∣∣Xtk = x

⎤
⎦ , V∗ (tk, x)= sup

π(·)
V(tk, x; π(·)) ; (10)
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at any time tk, where k= ñ, ñ+ 1, . . . , n− 1, with the state x ∈X , for any policy π(·),
V(tk, x; π(·))=V∗ (tk, x)= 0. In particular, if P(A) contains only all Dirac measures over the
action space A, which is the case in the DH approach of Bühler et al. (2019) (see Appendix A for
more details), the value function and the optimal value function reduce to (4) and (6). With this
relaxed setting, solving the optimal hedging strategy H∗ boils down to finding the optimal policy
π∗(·).

3.2. Policy approximation and parameterisation
As the hedging problem has the infinite action space A, tabular solution methods for problems
of finite state space and finite action space (such as Q-learning), or value function approximation
methods for problems of infinite state space and finite action space (such as deep Q-learning) are
not suitable. Instead, a policy gradient method is employed.

To this end, the policy π(·) is approximated and parametrised by the weights θp in an artificial
neural network (ANN); in turn, denote the policy by π

(·; θp). The ANNNp
(·; θp) (to be defined in

(11) below) takes a state x ∈X as the input vector and output parameters of a probability measure
in P(A). In the sequel, the set P(A) contains all Gaussian measures (see, for example, Wang et al.
2020 and Wang & Zhou 2020), in which each has a mean c and a variance d2, which depend on
the state input x ∈X and the ANN weights θp. Therefore, for any state x ∈X ,

π
(
x; θp

)=μ
(·; θp)∼Gaussian

(
c
(
x; θp

)
, d2
(
x; θp

))
,

where
(
c
(
x; θp

)
, d2
(
x; θp

))=Np
(
x; θp

)
.

With such approximation and parameterisation, solving the optimal policy π∗ further boils
down to finding the optimal ANN weights θ∗

p . Hence, denote the value function and the optimal

value function in (10) by V
(
tk, x; θp

)
and V

(
tk, x; θ∗

p

)
, for any tk, where k= 0, 1, . . . , ñ− 1, with

x ∈X . However, the (optimal) value function still depends on the objective probability measure
P, the financial market dynamics, and the mortality model, which are unknown to the RL agent.
Before formally introducing the policy gradientmethods to tackle this issue, we shall first explicitly
construct the ANNs for the approximated policy, as well as for an estimate of the value function
(to prepare the algorithm of policy gradient method to be reviewed below).

3.3. Network architecture
As alluded above, in this paper, the ANN involves two parts, which are the policy network and the
value function network.

3.3.1. Policy network

Let Np be the number of layers for the policy network. For l= 0, 1, . . . ,Np, let d
(l)
p be the dimen-

sion of the l-th layer, where the 0-th layer is the input layer; the 1, 2, . . . ,
(
Np − 1

)
-th layers are

hidden layers; the Np-th layer is the output layer. In particular, d(0)p = p, which is the number of
features in the actuarial and financial parts, and d(Np)

p = 2, which outputs the mean c and the vari-
ance d2 of the Gaussianmeasure. The policy networkNp :Rp →R2 is defined as, for any x ∈Rp,

Np(x)=
(
W(Np)

p ◦ψ ◦W(Np−1)
p ◦ψ ◦W(Np−2)

p ◦ · · · ◦ψ ◦W(1)
p

)
(x) , (11)

where, for l= 1, 2, . . . ,Np, the mapping W(l)
p :Rd(l−1)

p →Rd(l)p is affine, and the mapping

ψ :Rd(l)p →Rd(l)p is a componentwise activation function. Let θp be the parameter vector of the
policy network and in turn denote the policy network in (11) byNp

(
x; θp

)
, for any x ∈Rp.
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Figure 3. An example of policy and value function artificial neural networks with a shared hidden layer and a non-shared
hidden layer.

3.3.2. Value function network
The value function network is constructed similarly as in the policy network, except that all sub-
scripts p (policy) are replaced by v (value). In particular, the value function networkNv :Rp →R
is defined as, for any x ∈Rp,

Nv(x)=
(
W(Nv)

v ◦ψ ◦W(Nv−1)
v ◦ψ ◦W(Nv−2)

v ◦ · · · ◦ψ ◦W(1)
v

)
(x) , (12)

which models an approximated value function V̂ (see section 3.4 below). Let θv be the parameter
vector of the value function network and in turn denote the value function network in (12) by
Nv(x; θv), for any x ∈Rp.

3.3.3. Shared layers structure
Since the policy and value function networks should extract features from the input state vec-
tor in a similar manner, they are assumed to share the first few layers. More specifically, let
Ns
(
<min

{
Np,Nv

})
be the number of shared layers for the policy and value function networks;

for l= 1, 2, . . . ,Ns,W
(l)
p =W(l)

v =W(l)
s , and hence, for any x ∈Rp,

Np
(
x; θp

)= (W(Np)
p ◦ψ ◦W(Np−1)

p ◦ · · · ◦ψ ◦W(Ns+1)
p ◦ψ ◦W(Ns)

s ◦ · · · ◦ψ ◦W(1)
s

)
(x) ,

Nv(x; θv)=
(
W(Nv)

v ◦ψ ◦W(Nv−1)
v ◦ · · · ◦ψ ◦W(Ns+1)

v ◦ψ ◦W(Ns)
s ◦ · · · ◦ψ ◦W(1)

s

)
(x) .

Let θ be the parameter vector of the policy and value function networks. Figure 3 depicts such
a shared layers structure.
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3.4. Proximal policy optimisation: a temporal-difference policy gradient method
A policy gradient method entails that, starting from initial ANN weights θ(0), and via interacting
with the MDP environment to observe the states and collect the reward signals, the RL agent
gradually updates the ANN weights, by the (stochastic) gradient ascent on a certain surrogate
performance measure defined for the ANN weights. That is, at each update step u= 1, 2, . . . ,

θ(u) = θ(u−1) + α ̂∇θJ (u−1)
(
θ(u−1)

)
, (13)

where the hyperparameter α ∈ [0, 1] is the learning rate of the RL agent, and, based on the expe-
rienced episode(s), ̂∇θJ (u−1)

(
θ(u−1)

)
is the estimated gradient of the surrogate performance

measure J (u−1)(·) evaluating at θ = θ(u−1).
REINFORCE, which is pioneered byWilliams (1992), is aMonte Carlo policy gradient method,

which updates the ANNweights by each episode. As this paper applies a temporal-difference (TD)
policy gradient method, we relegate the review of REINFORCE to Appendix B, where the Policy
Gradient Theorem, the foundation of any policy gradient methods, is presented.

PPO, which is pioneered by Schulman et al. (2017), is a TD policy gradient method, which
updates the ANNweights by a batch ofK ∈N realisations. At each update step u= 1, 2, . . . , based
on the ANN weights θ(u−1), and thus the policy π

(
·; θ(u−1)

p
)
, the RL agent experiences E(u) ∈N

realised episodes for the K realisations.

• If E(u) = 1, the episode is given by
{
. . . , x(u−1)

t
K(u)s

, h(u−1)
t
K(u)s

, x(u−1)
t
K(u)s +1

, r(u−1)
t
K(u)s +1

, h(u−1)
t
K(u)s +1

,

. . . , x(u−1)
t
K(u)s +K−1

, r(u−1)
t
K(u)s +K−1

, h(u−1)
t
K(u)s +K−1

, x(u−1)
t
K(u)s +K

, r(u−1)
t
K(u)s +K

, . . .
}
,

where K(u)s = 0, 1, . . . , ñ− 1, such that the time tK(u)s
is when the episode is initiated in this

update, and h(u−1)
tk , for k= 0, 1, . . . , ñ− 1, is the time tk realised hedging strategy being

sampled from the Gaussian distribution with the mean c
(
x(u−1)
tk ; θ(u−1)

p
)
and the variance

d2
(
x(u−1)
tk ; θ(u−1)

p
)
; necessarily, ñ−K(u)s ≥K.

• If E(u) = 2, 3, . . . , the episodes are given by
{
. . . , x(u−1,1)

t
K(u)s

, h(u−1,1)
t
K(u)s

, x(u−1,1)
t
K(u)s +1

, r(u−1,1)
t
K(u)s +1

, h(u−1,1)
t
K(u)s +1

,

. . . , x(u−1,1)
tñ(1)−1

, r(u−1,1)
tñ(1)−1

, h(u−1,1)
tñ(1)−1

, x(u−1,1)
tñ(1)

, r(u−1,1)
tñ(1)

}
,

{
x(u−1,2)
t0 , h(u−1,2)

t0 , x(u−1,2)
t1 , r(u−1,2)

t1 , h(u−1,2)
t1 ,

. . . , x(u−1,2)
tñ(2)−1

, r(u−1,2)
tñ(2)−1

, h(u−1,2)
tñ(2)−1

, x(u−1,2)
tñ(2)

, r(u−1,2)
tñ(2)

}
,

. . . ,
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{
x
(
u−1,E(u)−1

)
t0 , h

(
u−1,E(u)−1

)
t0 , x

(
u−1,E(u)−1

)
t1 , r

(
u−1,E(u)−1

)
t1 , h

(
u−1,E(u)−1

)
t1 ,

. . . , x
(
u−1,E(u)−1

)
t
ñ(E

(u)−1)−1
, r
(
u−1,E(u)−1

)
t
ñ(E

(u)−1)−1
, h
(
u−1,E(u)−1

)
t
ñ(E

(u)−1)−1
, x
(
u−1,E(u)−1

)
t
ñ(E

(u)−1)
, r
(
u−1,E(u)−1

)
t
ñ(E

(u)−1)

}
,

{
x
(
u−1,E(u)

)
t0 , h

(
u−1,E(u)

)
t0 , x

(
u−1,E(u)

)
t1 , r

(
u−1,E(u)

)
t1 , h

(
u−1,E(u)

)
t1 ,

. . . , x
(
u−1,E(u)

)
t
K(u)f −1

, r
(
u−1,E(u)

)
t
K(u)f −1

, h
(
u−1,E(u)

)
t
K(u)f −1

, x
(
u−1,E(u)

)
t
K(u)f

, r
(
u−1,E(u)

)
t
K(u)f

, . . .

}
,

where K(u)f = 1, 2, . . . , ñ
(
E(u)

)
, such that the time tK(u)f

is when the last episode is finished (but

not necessarily terminated) in this update; necessarily, ñ(1) −K(u)s +∑E(u)−1
e=2 ñ(e) +K(u)f =K.

The surrogate performance measure of PPO consists of three components. In the following, fix an
update step u= 1, 2, . . . .

Inspired by Schulman et al. (2015), in which the time-0 value function difference between
two policies is shown to be equal to the expected advantage, together with importance sampling
and KL divergence constraint reformulation, the first component in the surrogate performance
measure of PPO is given by:

• if E(u) = 1,

L(u−1)
CLIP

(
θp
)=E

⎡
⎢⎣K(u)s +K−1∑

k=K(u)s

min
{
q(u−1)
tk Â(u−1)

θ
(u−1)
p ,tk

, clip
(
q(u−1)
tk , 1− ε, 1+ ε

)
Â(u−1)
θ
(u−1)
p ,tk

}⎤⎥⎦ ,

where the importance sampling ratio q(u−1)
tk = φ

(
H(u−1)
tk

; X(u−1)
tk

,θp
)

φ
(
H(u−1)
tk

; X(u−1)
tk

,θ(u−1)
p

) , in which

φ
(
·; X(u−1)

tk , θp
)

is the Gaussian density function with mean c
(
X(u−1)
tk ; θp

)
and vari-

ance d2
(
X(u−1)
tk ; θp

)
, the estimated advantage is evaluated at θp = θ

(u−1)
p and bootstrapped

through the approximated value function that

Â(u−1)
θ
(u−1)
p ,tk

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑K(u)s +K−1
l=k R(u−1)

tl+1
+ V̂

(
tK(u)s +K , X

(u−1)
t
K(u)s +K

; θ(u−1)
v

)
−V̂
(
tk, X

(u−1)
tk ; θ(u−1)

v
)

if K(u)s +K < ñ,∑ñ−1
l=k R(u−1)

tl+1
− V̂

(
tk, X

(u−1)
tk ; θ(u−1)

v
)

if K(u)s +K = ñ,

and the function clip
(
q(u−1)
tk , 1− ε, 1+ ε

)
=min

{
max

{
q(u−1)
tk , 1− ε

}
, 1+ ε

}
. The

approximated value function V̂ is given by the output of the value network, i.e.
V̂
(
tk, X

(u−1)
tk ; θ(u−1)

v
)

=Nv
(
X(u−1)
tk ; θ(u−1)

v
)
as defined in (12) for k= 0, 1, . . . , ñ− 1.
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• if E(u) = 2, 3, . . . ,

L(u−1)
CLIP

(
θp
)=E

⎡
⎢⎣ ñ(1)−1∑
k=K(u)s

min
{
q(u−1,1)
tk Â(u−1,1)

θ
(u−1)
p ,tk

, clip
(
q(u−1,1)
tk , 1− ε, 1+ ε

)
Â(u−1,1)
θ
(u−1)
p ,tk

}

+
E(u)−1∑
e=2

ñ(e)−1∑
k=0

min
{
q(u−1,e)
tk Â(u−1,e)

θ
(u−1)
p ,tk

, clip
(
q(u−1,e)
tk , 1− ε, 1+ ε

)
Â(u−1,e)
θ
(u−1)
p ,tk

}

+
K(u)f −1∑
k=0

min
{
q
(
u−1,E(u)

)
tk Â

(
u−1,E(u)

)
θ
(u−1)
p ,tk

, clip
(
q
(
u−1,E(u)

)
tk , 1− ε, 1+ ε

)
Â
(
u−1,E(u)

)
θ
(u−1)
p ,tk

}⎤⎥⎦ .

Similar to REINFORCE in Appendix B, the second component in the surrogate performance
measure of PPO minimises the loss between the bootstrapped sum of reward signals and the
approximated value function. To this end, define:

• if E(u) = 1,

L(u−1)
VF (θv)=E

⎡
⎢⎣K(u)s +K−1∑

k=K(u)s

(
Â(u−1)
θ
(u−1)
p ,tk

+ V̂
(
tk, X

(u−1)
tk ; θ(u−1)

v

)
− V̂

(
tk, X

(u−1)
tk ; θv

))2
⎤
⎥⎦ ;

• if E(u) = 2, 3, . . . ,

L(u−1)
VF (θv)=E

⎡
⎢⎣ ñ(1)−1∑
k=K(u)s

(
Â(u−1,1)
θ
(u−1)
p ,tk

+ V̂
(
tk, X

(u−1,1)
tk ; θ(u−1)

v

)
− V̂

(
tk, X

(u−1,1)
tk ; θv

))2

+
E(u)−1∑
e=2

ñ(e)−1∑
k=0

(
Â(u−1,e)
θ
(u−1)
p ,tk

+ V̂
(
tk, X

(u−1,e)
tk ; θ(u−1)

v

)
− V̂

(
tk, X

(u−1,e)
tk ; θv

))2

+
K(u)f −1∑
k=0

(
Â
(
u−1,E(u)

)
θ
(u−1)
p ,tk

+ V̂
(
tk, X

(
u−1,E(u)

)
tk ; θ(u−1)

v

)
− V̂

(
tk, X

(
u−1,E(u)

)
tk ; θv

))2
⎤
⎥⎦ .

Finally, to encourage the RL agent exploring the MDP environment, the third component in
the surrogate performance measure of PPO is the entropy bonus. Based on the Gaussian density
function, define

• if E(u) = 1,

L(u−1)
EN

(
θp
)=E

⎡
⎢⎣K(u)s +K−1∑

k=K(u)s

ln d
(
X(u−1)
tk ; θp

)⎤⎥⎦ ;
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• if E(u) = 2, 3, . . . ,

L(u−1)
EN

(
θp
)=E

⎡
⎢⎣ ñ(1)−1∑
k=K(u)s

ln d
(
X(u−1,1)
tk ; θp

)
+

E(u)−1∑
e=2

ñ(e)−1∑
k=0

ln d
(
X(u−1,e)
tk ; θp

)

+
K(u)f −1∑
k=0

ln d
(
X
(
u−1,E(u)

)
tk ; θp

)⎤⎥⎦ .

Therefore, the surrogate performance measure of PPO is given by:

J (u−1)(θ)= L(u−1)
CLIP

(
θp
)− c1L(u−1)

VF (θv)+ c2L(u−1)
EN

(
θp
)
, (14)

where the hyperparameters c1, c2 ∈ [0, 1] are the loss coefficients of the RL agent. Its estimated gra-
dient, based on theK realisations, is then computed via automatic differentiation; see, for example,
Baydin et al. (2018).

4. Illustrative Example Revisited: Training Phase
Recall that, in the training phase, the insurer constructs a model of the market environment for an
MDP training environment, while the RL agent, which does not know any specifics of this MDP
environment, observes states and receives the anchor-hedging reward signals in (9) from it and
hence gradually learns the hedging strategy by the PPO algorithm reviewed in the last section.
This section revisits the illustrative example in section 2.4 via the two-phase RL approach in the
training phase.

4.1. Markov decision process training environment
The model of the market environment is the BS and the CFM in the financial and the actuarial
parts. However, unlike the model following the market environment to write a single contract to a
single policyholder, for effective training, the insurer writes identical contracts toN homogeneous
policyholders in the training environment. Because of the homogeneity of the contracts and the
policyholders, for all i= 1, 2, . . . ,N, xi = x, ρ(i) = ρ, m(i) =m, G(i)M =GM , G(i)D =GD, m(i)e =me,
and F(i)t = Ft = ρSte−mt , for t ∈ [0, T].

At any time t ∈ [0, T], the future gross liability of the insurer accumulated to the matu-

rity is thus (GM − FT)+
∑N

i=1 J
(i)
T +∑N

i=1 e
r
(
T−T(i)x

)(
GD − FT(i)x

)
+ 1{T(i)x <T}J

(i)
t , and its time-t

discounted value is

VGL
t = e−r(T−t)EQ

[
(GM − FT)+

N∑
i=1

J(i)T
∣∣∣Ft

]

+EQ

[ N∑
i=1

e−r
(
T(i)x −t

)(
GD − FT(i)x

)
+ 1{T(i)x <T}J

(i)
t

∣∣∣Ft

]
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= e−r(T−t)EQ
[
(GM − FT)+ |Ft

] N∑
i=1

EQ
[
J(i)T
∣∣Ft
]

+
N∑
i=1

J(i)t EQ

[
e−r

(
T(i)x −t

)(
GD − FT(i)x

)
+ 1{T(i)x <T}

∣∣∣Ft

]
,

where the probability measure Q defined on (�,F) is an equivalent martingale measure with
respect to P. Herein, the probability measure Q is chosen to be the product measure of each
individual equivalent martingale measure in the actuarial or financial part, which implies the inde-
pendence among the Brownian motion W and the future lifetime T(1)x , T(2)x , . . . , T(N)x , clarifying
the first term in the second equality above. The second term in that equality is due to the fact that,
for i= 1, 2, . . . ,N, the single-jump process J(i) is F-adapted. Under the probability measureQ, all
future lifetime are identically distributed and have a CFM ν > 0, which are the same as those under
the probability measure P in section 2.4. Therefore, for any i= 1, 2, . . . ,N, and for any 0≤ t ≤
s≤ T, the conditional survival probability Q

(
T(i)x > s|T(i)x > t

)
= e−ν(s−t). For each policyholder

i= 1, 2, . . . ,N, by the independence and the Markov property, for any 0≤ t ≤ s≤ T,

EQ
[
J(i)s
∣∣Ft
]
=EQ

[
J(i)s
∣∣J(i)t ]=

⎧⎪⎨
⎪⎩
Q
(
T(i)x > s|T(i)x ≤ t

)
= 0 if T(i)x (ω)≤ t

Q
(
T(i)x > s|T(i)x > t

)
= e−ν(s−t) if T(i)x (ω) > t

. (15)

Moreover, under the probability measure Q, for any t ∈ [0, T], dFt = (r −m) Ftdt + σFtdWQ
t ,

where WQ =
{
WQ

t

}
t∈[0,T] is the standard Brownian motion under the probability measure Q.

Hence, the time-t value of the discounted future gross liability, for t ∈ [0, T], is given by

VGL
t = e−ν(T−t)

(
GMe−r(T−t)�

(−d2 (t,GM)
)− Fte−m(T−t)�

(−d1 (t,GM)
)) N∑

i=1
J(i)t

+
∫ T

t

(
GDe−r(T−s)�

(−d2 (s,GD)
)− Fte−m(T−s)�

(−d1 (s,GD)
))
νe−ν(s−t)ds

N∑
i=1

J(i)t ,

where, for s ∈ [0, T) andG> 0, d1 (s,G)=
ln
(
Fs
G

)
+
(
r−m+ σ2

2 (T−s)
)

σ
√
T−s , d2 (s,G)= d1 (s,G)− σ

√
T − s,

d1 (T,G)= lims→T− d1 (s,G), d2 (T,G)= d1 (T,G), and � (·) is the standard Gaussian distri-
bution function. Note that

∑N
i=1 J

(i)
t represents the number of surviving policyholders at time

t ∈ [0, T].
As for the cumulative future rider charge to be collected by the insurer from any time t ∈ [0, T]

onward, it is given by
∑N

i=1
∫ T
t meFsJ(i)s er(T−s)ds, and its time-t discounted value is

VRC
t = e−r(T−t)EQ

[ N∑
i=1

∫ T

t
meFsJ(i)s er(T−s)ds

∣∣∣Ft

]
=

N∑
i=1

∫ T

t
mee−r(s−t)EQ [Fs|Ft]EQ

[
J(i)s
∣∣J(i)t ] ds,

where the second equality is again due to the independence and the Markov property. Under the
probability measureQ, EQ [Fs|Ft]= e(r−m)(s−t)Ft . Together with (15),

VRC
t = 1− e−(m+ν)(T−t)

m+ ν
meFt

N∑
i=1

J(i)t .
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Therefore, the time-t net liability of the insurer, for t ∈ [0, T], is given by

Lt =VGL
t −VRC

t =
(
e−ν(T−t)

(
GMe−r(T−t)�

(−d2 (t,GM)
)− Fte−m(T−t)�

(−d1 (t,GM)
))

+
∫ T

t

(
GDe−r(T−s)�

(−d2 (s,GD)
)− Fte−m(T−s)�

(−d1 (s,GD)
))

νe−ν(s−t)ds− 1− e−(m+ν)(T−t)

m+ ν
meFt

) N∑
i=1

J(i)t , (16)

which contributes parts of the reward signals in (9). The time-t value of the insurer’s hedging port-
folio, for t ∈ [0, T], as in (1), is given by: P0 = 0, and if t ∈(tk, tk+1

]
, for some k= 0, 1, . . . , n− 1,

Pt =
(
Ptk −HtkStk

)
er(t−tk) +HtkSt +me

∫ t

tk
Fser(t−s)

N∑
i=1

J(i)s ds

−
N∑
i=1

er
(
t−T(i)x

)(
GD − FT(i)x

)
+ 1{tk<T(i)x ≤t<T}, (17)

which is also supplied to the reward signals in (9).
At each time tk, where k= 0, 1, . . . , n, the RL agent is given to observe four features from this

MDP environment; these four features are summarised in the state vector

Xtk =
(
ln Ftk ,

Ptk
N

,
∑N

i=1 J
(i)
tk

N
, T − tk

)
. (18)

The first feature is the natural logarithm of the segregated account value of the policyholder.
The second feature is the hedging portfolio value of the insurer, being normalised by the initial
number of policyholders. The third feature is the ratio of the number of surviving policyholders
with respect to the initial number of policyholders. These features are either log-transformed or
normalised to prevent the RL agent from exploring and learning from features with high vari-
ability. The last feature is the term to maturity. In particular, when either the third or the last
feature first hits zero, i.e. at time tñ, an episode is terminated. The state space X =R×R×
[0, 1/N, 2/N, . . . , 1]× {0, t1, t2, . . . , T}.

Recall that, at each time tk, where k= 0, 1, . . . , ñ− 1, with the state vector (18) being the input,
the output of the policy network in (11) is the mean c

(
Xtk ; θp

)
and the variance d2

(
Xtk ; θp

)
of

a Gaussian measure; herein, the Gaussian measure represents the distribution of the average
number of shares of the risky asset being held by the insurer at the time tk for each surviv-
ing policyholder. Hence, for k= 0, 1, . . . , ñ− 1, the hedging strategy Htk in (17) is given by
Htk =Htk

∑N
i=1 J

(i)
tk , where Htk is sampled from the Gaussian measure. Since the hedging strat-

egy is assumed to be Markovian with respect to the state vector, it can be shown, albeit tedious,
that the state vector, in (18), and the hedging strategy together satisfy the Markov property in (3).

Also recall that the infant RL agent is trained in the MDP environment with multiple homoge-
neous policyholders. The RL agent should then effectively update the ANNweights θ and learn the
hedging strategies, via a more direct inference on the force of mortality from the third feature in
the state vector. The RL agent hedges daily, so that the difference between the consecutive discrete
hedging time is δtk = tk+1 − tk = 1

252 , for k= 0, 1, . . . , n− 1. In this MDP training environment,
the parameters of the model are given in Table 3, but with N = 500.
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Table 6. Hyperparameters setting of Proximal Policy Optimisation and neural network.

(a) Hyperparameters for proximal policy optimisation
Grid-searched Pre-specified

Hyperparameter Value Hyperparameter Value

Learning rate α 0.07 Coefficient of value function 0.25
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Batch size K 2048 approximation loss c1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clip factor ε 0.18 Coefficient of entropy bonus c2 0.01

(b) Hyperparameters for neural network

Hyperparameter Value(s)
Number of layers in policy network Np 6

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of layers in value function network Nv 6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of shared layers Ns 3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dimension of hidden layers in policy network d(l)p [32, 64, 128, 64, 32]
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dimension of hidden layers in value function network d(l)v [32, 64, 128, 64, 32]
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Activation functionψ (·) ReLU

4.2. Building reinforcement learning agent
After constructing this MDP training environment, the insurer builds the RL agent which imple-
ments the PPO, which was reviewed in section 3.4. Table 6(a) summarises all hyperparameters of
the implemented PPO, in which three of them are determined via grid search2 , while the remain-
ing two are fixed a priori since they alter the surrogate performancemeasure itself, and thus should
not be based on grid search. Table 6(b) outlines the hyperparameters of the ANN architecture in
section 3.3, which are all pre-specified, in which ReLU stands for Rectified Linear Unit; that is, the
componentwise activation function is given by, for any z ∈R, ψ(z)=max {z, 0}.

4.3. Training of reinforcement learning agent
With all these being set up, the insurer assigns the RL agent experiencing this MDP training
environment, in order to observe the state, decide, as well as revise, the hedging strategy, and
collect the anchor-hedging reward signal based on (9), as much as possible. Let U ∈N be the
number of update steps in the training environment on the ANN weights. Hence, the policy of
the experienced RL agent is given by π

(·; θ(U))= π
(
·; θ(U)p

)
.

Figure 4 depicts the training log of the RL agent in terms of bootstrapped sum of rewards and
batch entropy. In particular, Figure 4(a) shows that the value function in (2) reduces to almost
zero after around 108 training timesteps, which is equivalent to around 48,828 update steps for
the ANN weights; within the same number of training timesteps, Figure 4(b) illustrates a gradual
depletion on the batch entropy, and hence, the Gaussian measure gently becomes more concen-
trating around its mean, which implies that the RL agent progressively diminishes the degree of
exploration on the MDP training environment, while increases the degree of exploitation on the
learned ANN weights.

4.4. Baseline hedging performance
In the final step of the training phase, the trained RL agent is assigned to hedge in simulated sce-
narios from the same MDP training environment, except that N = 1 which is in line with hedging

2The grid search was performed using the Hardware-Accelerated Learning cluster in the National Center for
Supercomputing Applications; see Kindratenko et al. (2020).
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(a) (b)

Figure 4. Training log in terms of bootstrapped sum of rewards and batch entropy.

in the market environment. The trained RL agent takes the deterministic action c
(
·; θ(U)p

)
which

is the mean of the Gaussian measure.
The number of simulated scenarios is 5,000. For each scenario, the insurer documents the

realised terminal P&L, i.e. Ptñ − Ltñ . After all scenarios are experienced by the trained RL agent,
the insurer examines the baseline hedging performance via the empirical distribution and the
summary statistics of the realised terminal P&Ls. The baseline hedging performance of the RL
agent is also benchmarked with those by other methods, namely the classical Deltas and the DH;
see Appendix C for the implemented hyperparameters of the DH training. The following four
classical Deltas are implemented in the simulated scenarios from the training environment, in
which the (in)correctness of the Deltas are with respect to the training environment:

• (correct) Delta of the CFM actuarial and BS financial models with the model parameters as in
Table 3;

• (incorrect) Delta of the increasing force of mortality (IFM) actuarial and BS finan-
cial models, where, for any i= 1, 2, . . . ,N, if T < b, the conditional survival probability
Q
(
T(i)x > s|T(i)x > t

)
= b−s

b−t
, for any 0≤ t ≤ s≤ T < b, while if b≤ T, the conditional survival

probability Q
(
T(i)x > s|T(i)x > t

)
= b−s

b−t
, for any 0≤ t ≤ s< b≤ T, and Q

(
T(i)x > s|T(i)x > t

)
=

0, for any 0≤ t ≤ b≤ s≤ T or 0≤ b≤ t ≤ s≤ T, with the model parameters as in Tables 3(a)
and 7;

• (incorrect) Delta in the CFM actuarial and Heston financial models, where, for any t ∈
[0, T], dSt =μStdt + √

�tStdW(1)
t , d�t = κ

(
� −�t

)
dt + η

√
�tdW(2)

t , and
〈
W(1),W(2)〉

t =
φt, with the model parameters as in Tables 3(b) and 8;

• (incorrect) Delta in the IFM actuarial and Heston financial models with the model parameters
as in Tables 7 and 8.

Figure 5 shows the empirical density and cumulative distribution functions via the 5,000
realised terminal P&Ls by each hedging approach, while Table 9 outlines the summary statistics
of these empirical distributions. To clearly illustrate the comparisons, Figure 6 depicts the empir-
ical density functions via the 5,000 pathwise differences of the realised terminal P&Ls between
the RL agent and each of the other approaches, while Table 10 lists the summary statistics of the
empirical distributions; for example, comparing with the DH approach, the pathwise difference
of the realised terminal P&Ls for the e-th simulated scenario, for e= 1, 2, . . . , 5, 000, is calculated
by
(
PRLtñ (ωe)− LRLtñ (ωe)

)
−
(
PDHtñ (ωe)− LDHtñ (ωe)

)
.
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Table 7. Parameters setting of increasing force of mortality
actuarial model for Delta.

Parameter Value

Initial number of policyholder N 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Initial age of policyholder x 20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lower bound of uniformly distributed lifetime b 0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Upper bound of uniformly distributed lifetime b 50
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Investment strategy of policyholders ρ 1.19

Table 8. Parameters setting of Heston financial model
for Delta.

Parameter Value

Risk-free interest rate r 0.02
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Risky asset initial price S0 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Risky asset driftμ 0.08
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variance initial value�0 0.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variance mean reversion rate κ 0.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variance long-run average� 0.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Variance volatility η 0.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Brownian motions correlation φ −0.5

(a) (b)

Figure 5. Empirical density and cumulative distribution functions of realised terminal P&Ls by the approaches of reinforce-
ment learning, classical Deltas, and deep hedging.

As expected, the baseline hedging performance of the trained RL agent in this training envi-
ronment is comparable with those by, the correct CFM and BS Delta, as well as the DH approach.
Moreover, the RL agent outperforms all the other three incorrect Deltas, which are based on either
incorrect IFM actuarial or Heston financial model, or both.

5. Online Learning Phase
Given the satisfactory baseline hedging performance of the experienced RL agent in the MDP
training environment, the insurer finally assigns the agent to interact and learn from the market
environment.
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Table 9. Summary statistics of empirical distributions of realised terminal P&Ls by the approaches of reinforcement
learning, classical Deltas, and deep hedging.

Terminal P&L of hedging approach Mean Median Std. Dev. VaR90 VaR95 TVaR90 TVaR95 R̂MSE

Reinforcement learning 0.02 −0.01 0.58 −0.54 −0.87 −1.05 −1.43 0.58


CFM & BS Delta −0.01 0.00 0.38 −0.44 −0.63 −0.70 −0.89 0.38


IFM & BS Delta −0.06 −0.06 0.45 −0.60 −0.77 −0.85 −1.02 0.45


CFM & Heston Delta −0.32 −0.33 0.87 −1.41 −1.73 −1.85 −2.17 0.93


IFM & Heston Delta −0.53 −0.53 1.20 −1.94 −2.48 −2.70 −3.23 1.31
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Deep hedging −0.01 −0.02 0.60 −0.52 −0.71 −1.04 −1.49 0.60

(a) (b)

(c) (d)

(e)

Figure 6. Empirical density functions of realised pathwise differences of terminal P&Ls comparing with the approaches of
classical Deltas and deep hedging.

https://doi.org/10.1017/S1748499523000027 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499523000027


Annals of Actuarial Science 529

Table 10. Summary statistics of empirical distributions of realised pathwise differences of terminal P&Ls comparing with
the approaches of classical Deltas and deep hedging.

Pathwise difference of terminal P&Ls comparing with Mean Median Std. Dev. Probability of non-negativity (%)

CFM & BS delta 0.02 0.01 0.62 50.6


IFM & BS delta 0.08 0.07 0.66 54.7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CFM & Heston delta 0.34 0.34 1.01 64.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IFM & Heston delta 0.54 0.58 1.29 70.0


Deep hedging 0.02 0.01 0.75 51.3

Figure 7. An illustrative timeline with the real time and the contract effective time in the online learning phase.

To distinguish them from the simulated time in the training environment, let t̃k, for k=
0, 1, 2, . . . , be the real time when the RL agent decides the hedging strategy in the market envi-
ronment, such that 0= t̃0 < t̃1 < t̃2 < · · · , and δt̃k = t̃k+1 − t̃k = 1

252 . Note that the current time
t = t̃0 = 0 and the RL agent shall hedge daily on behalf of the insurer. At the current time 0, the
insurer writes a variable annuity contract with the GMMB and GMDB riders to the first policy-
holder. When this first contract terminates, due to either the death of the first policyholder or the
expiration of the contract, the insurer shall write an identical contract, i.e. contract with the same
characteristics, to the second policyholder. And so on. These contract re-establishments ensure
that the insurer shall hold only one written variable annuity contract with the GMMB and GMDB
riders at a time, and the RL agent shall solely hedge the contract being effective at that moment.

To this end, iteratively, for the ι-th policyholder, where ι ∈N, let t̃ñ(ι) be the
first time (right) after the ι-th policyholder dies or the contract expires, for some
ñ(ι) = ñ(ι−1) + 1, ñ(ι−1) + 2, . . . , ñ(ι−1) + n; that is t̃ñ(ι) =min

{
t̃k, k= ñ(ι−1) + 1, ñ(ι−1) + 2, . . . ,

ñ(ι−1) + n : t̃k − t̃ñ(ι−1) ≥ T(ι)xι ∧ T
}
, where, by convention, ñ(0) = 0. Therefore, the contract

effective time for the ι-th policyholder τ (ι)k = t̃ñ(ι−1)+k, where ι ∈N and k= 0, 1, . . . , ñ(ι) − ñ(ι−1);
in particular, τ (ι)0 = t̃ñ(ι−1) is the contract inception time for the ι-th policyholder. Figure 7 depicts
one of the possible realisations for clearly illustrating the real time and the contract effective
time.

In the online learning phase, the trained RL agent carries on with the PPO of policy gradient
methods in the market environment. That is, as in section 3.4, starting from the ANN weights
θ(U) at the current time 0, and via interacting with the market environment to observe the states
and collect the reward signals, the RL agent further updates the ANN weights by a batch of K̃ ∈N
realisations and the (stochastic) gradient ascent in (13) with the surrogate performance measure
in (14), at each update step.

However, there are subtle differences of applying the PPO in the market environment from
that in the training environment. At each further update step v= 1, 2, . . . , based on the ANN
weights θ(U+v−1), and thus the policy π

(
·; θ(U+v−1)

p
)
, the RL agent hedges each effective contract
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of Ẽ(v) ∈N realised policyholders for the K̃ ∈N realisations. Indeed, the concept of episodes in
the training environment, by the state re-initiation when one episode ends, should be replaced by
sequential policyholders in the real-time market environment, via the contract re-establishment
when one policyholder dies or contract expires.

• If Ẽ(v) = 1, which is when (v− 1) K̃, vK̃ ∈ [ñ(ι−1), ñ(ι)
]
, for some ι ∈N, the batch of K̃

realisations is collected solely from the ι-th policyholder. The realisations are given by
{
. . . , x(v−1,ι)

τ
(ι)

K̃(v)s

, h(v−1,ι)
τ
(ι)

K̃(v)s

, x(v−1,ι)
τ
(ι)

K̃(v)s +1

, r(v−1,ι)
τ
(ι)

K̃(v)s +1

, h(v−1,ι)
τ
(ι)

K̃(v)s +1

,

. . . , x(v−1,ι)
τ
(ι)

K̃(v)s +K̃−1

, r(v−1,ι)
τ
(ι)

K̃(v)s +K̃−1

, h(v−1,ι)
τ
(ι)

K̃(v)s +K̃−1

, x(v−1,ι)
τ
(ι)

K̃(v)s +K̃

, r(v−1,ι)
τ
(ι)

K̃(v)s +K̃

, . . .

}
,

where K̃(v)s = 0, 1, . . . , ñ(ι) − ñ(ι−1) − 1, such that the time τ (ι)
K̃(v)s

is when the first state is

observed for the ι-th policyholder in this update; necessarily, ñ(ι) − ñ(ι−1) − K̃(v)s ≥ K̃.
• If Ẽ(v) = 2, 3, . . . , which is when (v− 1) K̃ ∈ [ñ(ι−1), ñ(ι)

]
and vK̃ ∈

[
ñ(j−1), ñ(j)

]
, for some

ι, j ∈N such that ι < j, the batch of K̃ realisations is collected from the ι-th, (ι+ 1)-th, . . . ,
and j-th policyholders; that is, Ẽ(v) = j− ι+ 1. The realisations are given by

{
. . . , x(v−1,ι)

τ
(ι)

K̃(v)s

, h(v−1,ι)
τ
(ι)

K̃(v)s

, x(v−1,ι)
τ
(ι)

K̃(v)s +1

, r(v−1,ι)
τ
(ι)

K̃(v)s +1

, h(v−1,ι)
τ
(ι)

K̃(v)s +1

,

. . . , x(v−1,ι)
τ
(ι)

ñ(ι)−ñ(i−1)−1

, r(v−1,ι)
τ
(ι)

ñ(ι)−ñ(i−1)−1

, h(v−1,ι)
τ
(ι)

ñ(ι)−ñ(i−1)−1

, x(v−1,ι)
τ
(ι)

ñ(ι)−ñ(i−1)
, r(v−1,ι)
τ
(ι)

ñ(ι)−ñ(i−1)

}
,

{
x(v−1,ι+1)
τ
(ι+1)
0

, h(v−1,ι+1)
τ
(ι+1)
0

, x(v−1,ι+1)
τ
(ι+1)
1

, r(v−1,ι+1)
τ
(ι+1)
1

, h(v−1,ι+1)
τ
(ι+1)
1

,

. . . , x(v−1,ι+1)
τ
(ι+1)
ñ(ι+1)−ñ(ι)−1

, r(v−1,ι+1)
τ
(ι+1)
ñ(ι+1)−ñ(ι)−1

, h(v−1,ι+1)
τ
(ι+1)
ñ(ι+1)−ñ(ι)−1

, x(v−1,ι+1)
τ
(ι+1)
ñ(ι+1)−ñ(ι)

, r(v−1,ι+1)
τ
(ι+1)
ñ(ι+1)−ñ(ι)

}
,

. . . ,{
x(v−1,j−1)

τ
(j−1)
0

, h(v−1,j−1)

τ
(j−1)
0

, x(v−1,j−1)

τ
(j−1)
1

, r(v−1,j−1)

τ
(j−1)
1

, h(v−1,j−1)

τ
(j−1)
1

,

. . . , x(v−1,j−1)

τ
(j−1)
ñ(j−1)−ñ(j−2)−1

, r(v−1,j−1)

τ
(j−1)
ñ(j−1)−ñ(j−2)−1

, h(v−1,j−1)

τ
(j−1)
ñ(j−1)−ñ(j−2)−1

, x(v−1,j−1)

τ
(j−1)
ñ(j−1)−ñ(j−2)

, r(v−1,j−1)

τ
(j−1)
ñ(j−1)−ñ(j−2)

}
,

{
x(v−1,j)
τ
(j)
0

, h(v−1,j)
τ
(j)
0

, x(v−1,j)
τ
(j)
1

, r(v−1,j)
τ
(j)
1

, h(v−1,j)
τ
(j)
1

,

. . . , x(v−1,j)
τ
(j)
K̃(v)f −1

, r(v−1,j)
τ
(j)
K̃(v)f −1

, h(v−1,j)
τ
(j)
K̃(v)f −1

, x(v−1,j)
τ
(j)
K̃(v)f

, r(v−1,j)
τ
(j)
K̃(v)f

, . . .

⎫⎪⎬
⎪⎭ ,
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Table 11. Hyperparameters setting of Proximal Policy Optimisation for online learning
with bolded hyperparameters being different from those for training.

Hyperparameter Value Hyperparameter Value

Learning rate α̃ 0.001 Coefficient of value function 0.25
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Batch size K̃ 30 approximation loss c1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clip factor ε 0.18 Coefficient of entropy bonus c2 0.01

where K̃(v)f = 1, 2, . . . , ñ(j) − ñ(j−1), such that the time τ(j)
K̃(v)f

is when the last state is observed

for the j-th policyholder in this update; necessarily, ñ(j−1) − ñ(i−1) + K̃(v)f − K̃(v)s = K̃.

Moreover, the first two features in the state vector (18) are based on the real-time risky asset
price realisation from the market, while all features depend on a particular effective policyholder.
For ι ∈N and k= 0, 1, . . . , ñ(ι) − ñ(ι−1),

X(v−1,ι)
τ
(ι)

k
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
ln F(ι)

τ
(ι)

k
, P(ι)
τ
(ι)

k
, 1, T −

(
τ
(ι)

k − τ
(ι)
0

))
if k= 0, 1, . . . , ñ(ι) − ñ(ι−1) − 1(

ln F(ι)
τ
(ι)

k
, P(ι)
τ
(ι)

k
, 0, T −

(
τ
(ι)

k − τ
(ι)
0

))
if k= ñ(ι) − ñ(ι−1) and T(ι)xι ≤ T(

ln F(ι)
τ
(ι)

k
, P(ι)
τ
(ι)

k
, 1, 0

)
if k= ñ(ι) − ñ(ι−1) and T(ι)xι > T

, (19)

where F(ι)t = ρ(ι)Ste
−m(ι)

(
t−τ (ι)0

)
, if t ∈

[
τ
(ι)
0 , t̃ñ(ι)

]
, P(ι)
τ
(ι)
0

= 0, and

P(ι)
τ
(ι)

k
=
(
P(ι)
τ
(ι)

k−1
−H(ι)

τ
(ι)

k−1
S
τ
(ι)

k−1

)
er
(
τ
(ι)

k −τ (ι)k−1

)
+H(ι)

τ
(ι)

k−1
S
τ
(ι)

k
+m(ι)e

∫ τ
(ι)

k

τ
(ι)

k−1

F(ι)s er
(
τ
(ι)

k −s
)
J(ι)s ds

−
(
GD − F(ι)

T(ι)xι

)
+
1{τ (ι)k−1<T

(ι)
xι ≤τ (ι)k }e

r
(
τ
(ι)

k −T(ι)xι
)
,

for k= 1, 2, . . . , ñ(ι) − ñ(ι−1). Recall also that the reward signals collecting from the market
environment should be based on that in (8); that is, for ι ∈N and k= 0, 1, . . . , ñ(ι) − ñ(ι−1),

R(v−1,ι)
τ
(ι)

k
=

⎧⎪⎨
⎪⎩
0 if k= 0, 1, . . . , ñ(ι) − ñ(ι−1) − 1

−
(
P(ι)t̃ñ(ι)

− L(ι)t̃ñ(ι)

)2
if k= ñ(ι) − ñ(ι−1)

,

in which L(ι)t̃ñ(ι)
= 0 if T(ι)xι ≤ T, and L(ι)t̃ñ(ι)

=
(
GM − F(ι)

τ
(ι)
0 +T

)
+
if T(ι)xι > T.

Table 11 summarises all hyperparameters of the implemented PPO in the market environment,
while the hyperparameters of the ANN architecture are still given in Table 6(b). In the online
learning phase, the insurer should choose a smaller batch size K̃ comparing to that in the training
phase; this yields a higher updating frequency by the PPO to ensure that the experienced RL agent
could revise the hedging strategy within a reasonable amount of time. However, fewer realisations
in the batch cause less credible updates; hence, the insurer should also tune down the learning rate
α̃, from that in the training phase, to reduce the reliance on each further update step.
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6. Illustrative Example Revisited: Online Learning Phase
This section revisits the illustrative example in section 2.4 via the two-phase RL approach in the
online learning phase. In the market environment, the policyholders being sequentially writ-
ten of the contracts with both GMMB and GMDB riders are homogeneous. Due to contract
re-establishments to these sequential homogeneous policyholders, the number and age of policy-
holders shall be reset to the values as in Table 3(b) at each contract inception time. Furthermore,
via the approach discussed in section 2.1.3, to determine the fee structures of each contract at its
inception time, the insurer relies on the parameters of the model of the market environment in
Table 3, except that now the risky asset initial price therein is replaced by the risky asset price
observed at the contract inception time. Note that the fee structures of the first contract are still
given as in Table 4, since the risky asset price observed at t = 0 is exactly the risky asset initial
price.

Let V ∈N be the number of further update steps in the market environment on the ANN
weights. In order to showcase the result that (RLw/OL), the further trained RL agent with the
online learning phase, could gradually revise the hedging strategy, from the nearly optimal one in
the training environment, to the one in the market environment, we evaluate the hedging perfor-
mance of RLw/OL on a rolling basis. That is, right after each further update step v= 1, 2, . . . , V ,
we first simulate M̃ = 500 market scenarios stemming from the real-time realised state vector
x(v−1,j)
τ
(j)
K̃(v)f

and by implementing the hedging strategy from the updated policy π
(
·; θ(U+v)

p
)
, i.e. the

further trained RL agent takes the deterministic action c
(
·; θ(U+v)

p
)
which is the mean of the

Gaussian measure; we then document the realised terminal P&L, for each of the 500 simulated
scenarios, i.e. PRLw/OLt (ωe)− Lt(ωe), for e= 1, 2, . . . , 500, where t = t̃ñ(j)(ωe) if τ

(j)
K̃(v)f

< t̃ñ(j) , and

t = t̃ñ(j+1)(ωe) if τ
(j)
K̃(v)f

= t̃ñ(j) .

Since the state vector x(v−1,j)
τ
(j)
K̃(v)f

is realised in real time, the realised terminal P&L in fact depends

on, not only the simulated scenarios after each update but also the actual realisation in the market
environment. To this end, from the current time 0, we simulate M = 1, 000 future trajectories
in the market environment; for each future trajectory f = 1, 2, . . . , 1, 000, the aforementioned
realised terminal P&Ls are obtained as PRLw/OLt

(
ωf ,ωe

)− Lt
(
ωf ,ωe

)
, for e= 1, 2, . . . , 500, where

t = t̃ñ(j)
(
ωf ,ωe

)
if τ(j)

K̃(v)f

(
ωf
)
< t̃ñ(j)

(
ωf
)
, and t = t̃ñ(j+1)

(
ωf ,ωe

)
if τ(j)

K̃(v)f

(
ωf
)= t̃ñ(j)

(
ωf
)
.

The rolling-basis hedging performance of RLw/OL is benchmarked with those by, (RLw/oOL)
the trained RL agent without the online learning phase, (CD) the correct Delta based on the
market environment, and (ID) the incorrect Delta based on the training environment. For the
same set of future trajectories ωf , for f = 1, 2, . . . , 1, 000, and the same sets of simulated sce-
narios ωe, for e= 1, 2, . . . , 500, the realised terminal P&Ls are also obtained, by implementing
each of these benchmark strategies starting from the current time 0, which does not need to
be updated throughout; denote the realised terminal P&L as PSt

(
ωf ,ωe

)− Lt
(
ωf ,ωe

)
, where

S = RLw/OL, RLw/oOL, CD, or ID.
This example considers V = 25 further update steps of RLw/OL, for each future trajectory ωf ,

where f = 1, 2, . . . , 1, 000; as the batch size in the online learning phase K̃ = 30, this is equiv-
alent to 750 trading days, which is just less than 3 years (assuming that non-trading days are
uniformly spread across a year). For each f = 1, 2, . . . , 1, 000, and v= 1, 2, . . . , 25, let μ(v,j)S

(
ωf
)

be the expected terminal P&L, right after the v-th further update step implementing the hedging
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strategy S for the future trajectory ωf :

μ
(v,j)
S
(
ωf
)=E

⎡
⎢⎣PSt (ωf , ·

)− Lt
(
ωf , ·

) ∣∣∣X(v−1,j)
τ
(j)
K̃(v)f

= X(v−1,j)
τ
(j)
K̃(v)f

(
ωf
)⎤⎥⎦ ,

which is a conditional expectation taking with respect to the scenarios from the time τ(j)
K̃(v)f

forward;

let μ̂(v,j)S
(
ωf
)
be the sample mean of the terminal P&L based on the simulated scenarios:

μ̂
(v,j)
S
(
ωf
)= 1

500

500∑
e=1

(
PSt
(
ωf ,ωe

)− Lt
(
ωf ,ωe

))
. (20)

Figure 8 plots the sample means of the terminal P&L in (20), right after each further update
step and implementing each hedging strategy, in two future trajectories. Firstly, notice that, in
both future trajectories, the average hedging performance of RLw/oOL is even worse than that of
ID. Secondly, the average hedging performances of RLw/OL between the two future trajectories
are substantially different. In the best-case future trajectory, the RLw/OL is able to swiftly self-
revise the hedging strategy and hence quickly catch up the average hedging performance of ID
by simply twelve further updates on the ANN weights, as well as that of CD in around two years;
however, in the worst-case future trajectory, within 3 years, the RLw/OL is not able to improve the
average hedging performance to even the level of ID, let alone to that of CD.

In view of the second observation above, the hedging performance of RLw/OL should not
be concluded for each future trajectory alone; instead, it should be studied among the future
trajectories. To this end, for each f = 1, 2, . . . , 1, 000, define

vCD
(
ωf
)=min

{
v= 1, 2, . . . , 25 : μ̂(v,j)RLw/OL

(
ωf
)
> μ̂

(v,j)
CD
(
ωf
)}

as the first further update step such that the sample mean of the terminal P&L by RLw/OL is
strictly greater than that by CD, for the future trajectory ωf ; herein, let min ∅ = 26 and also define
tCD
(
ωf
)= vCD

(
ωf
)× K̃

252 as the corresponding number of years. Therefore, the estimated propor-
tion of the future trajectories, where RLw/OL is able to exceed the average hedging performance
of CD within 3 years, is given by

1
1, 000

1,000∑
f=1

1{tCD(ωf )≤3
} = 95.4%.

For each f = 1, 2, . . . , 1, 000, define vID
(
ωf
)
and tID

(
ωf
)
similarly for comparing RLw/OL with

ID. Figure 9 shows the empirical conditional density functions of tCD and tID, both subject to
that RLw/OL exceeds the average hedging performance of CD within 3 years. Table 12 lists the
summary statistics of the empirical conditional distributions.

The above analysis obviously neglected the variance, due to the simulated scenarios, of hedging
performance by each hedging strategy. In the following, for each future trajectory, we define a
refined first further update step such that the expected terminal P&L by RLw/OL is statistically
significant to be strictly greater than that by CD. To this end, for each f = 1, 2, . . . , 1, 000, and
v= 1, 2, . . . , 25, consider the following null and alternative hypotheses:

H(v,j)0,S
(
ωf
)
:μ(v,j)RLw/OL

(
ωf
)≤μ(v,j)S

(
ωf
)

versus H(v,j)1,S
(
ωf
)
:μ(v,j)RLw/OL

(
ωf
)
>μ

(v,j)
S
(
ωf
)
,

where S =CD or ID; the analysis before supports this choice of the alternative hypothesis. Define
respectively the test statistics and the p-value by
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Figure 8. Best-case andworst-case samples of future trajectories for rolling-basis evaluation of reinforcement learning agent
with online learning phase, and comparisons with classical Deltas and reinforcement learning agent without online learning
phase.

T (v,j)S
(
ωf
)= μ̂

(v,j)
RLw/OL

(
ωf
)− μ̂

(v,j)
S
(
ωf
)

√
σ̂
(v,j)
RLw/OL

(
ωf
)2

500 + σ̂
(v,j)
S
(
ωf
)2

500

and p(v,j)S
(
ωf
)= P

(
TS
(
ωf
)
> T (v,j)S

(
ωf
))

,

where the random variable TS
(
ωf
)
follows a Student’s t-distribution with the degree of freedom

df(v,j)S
(
ωf
)=

(
σ̂
(v,j)
RLw/OL

(
ωf
)2

500 + σ̂
(v,j)
S
(
ωf
)2

500

)2

(
σ̂
(v,j)
RLw/OL

(
ωf
)2
/500

)2
500−1 +

(
σ̂
(v,j)
S
(
ωf
)2
/500

)2
500−1

,
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Figure 9. Empirical conditional density functions of first surpassing times conditioning on reinforcement learning agent with
online learning phase exceeding correct Delta in terms of sample means of terminal P&L within 3 years.

and the sample variance σ̂ (v,j)S
(
ωf
)2 of the terminal P&L based on the simulated scenarios is

given by

σ̂
(v,j)
S

(
ωf
)2 = 1

499

500∑
e=1

((
PSt
(
ωf ,ωe

)− Lt
(
ωf ,ωe

))− μ̂
(v,j)
S
(
ωf
))2

.

For a fixed level of significance α∗ ∈(0, 1), if p(v,j)S
(
ωf
)
<α∗, then the expected terminal P&L by

RLw/OL is statistically significant to be strictly greater than that by S =CD or ID.
In turn, for each f = 1, 2, . . . , 1, 000, and for any α∗ ∈ (0, 1), define

vpS
(
ωf ; α∗)=min

{
v= 1, 2, . . . , 25 : p(v,j)S

(
ωf
)
<α∗}

as the first further update step such that the expected terminal P&L by RLw/OL is statistically
significant to be strictly greater than that by S =CD or ID, for the future trajectory ωf at the level
of significance α∗; again, herein, let min ∅ = 26 and define tpS

(
ωf ; α∗)= vpS

(
ωf ; α∗)× K̃

252 as the
corresponding number of years. Table 13 lists the estimated proportion of the future trajectories,
where RLw/OL is statistically significant to be able to exceed the expected terminal P&L of S
within 3 years, which is given by

∑1,000
f=1 1{tpS(ωf ; α∗)≤3

}/1, 000, with various levels of significance.
When the level of significance α∗ gradually decreases from 0.20 to 0.01, both estimated pro-

portions, of the future trajectories for RLw/OL being statistically significant to be exceeding CD
or ID within 3 years, decline. This is because, for any α∗

1 , α
∗
2 ∈(0, 1) with α∗

1 ≤ α∗
2 , and for any

ωf , for f = 1, 2, . . . , 1, 000, tpS
(
ωf ; α∗

1
)≤ 3 implies that tpS

(
ωf ; α∗

2
)≤ 3, and thus, 1{tpS(ωf ; α∗

1
)≤3

} ≤
1{tpS(ωf ; α∗
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or equivalently tpS
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1
)≤ 3. However, notably, the declining rate of the estimated

proportion for exceeding CD is greater than that for exceeding ID.
Similar to Figure 9 and Table 12, one can depict the empirical conditional density functions and

list the summary statistics of tpCD(·; α∗) and tpID(·; α∗), for each level of significance α∗, subject to
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Table 12. Summary statistics of empirical conditional distributions of first surpassing times conditioning on reinforcement
learning agent with online learning phase exceeding correct Delta in terms of sample means of terminal P&L within 3 years.

Reinforcement learning agent with online
learning phase first surpassing time to Mean Median Std. Dev. VaR90 VaR95 TVaR90 TVaR95

Correct Delta 1.84 1.79 0.32 2.38 2.50 2.66 2.73


Incorrect Delta 1.41 1.43 0.22 1.67 1.67 2.05 2.05

Table 13. Estimated proportions of future trajectories where reinforcement learning agent with online learning phase is
statistically significant to be exceeding correct Delta and incorrect Delta within 3 years with various levels of significance.

Estimated proportion of exceeding α∗ = 0.20 α∗ = 0.15 α∗ = 0.10 α∗ = 0.05 α∗ = 0.01

Correct Delta 55.7% 52.1% 47.6% 35.9% 21.8%


Incorrect Delta 96.9% 95.1% 85.0% 70.6% 64.6%

Figure 10. Empirical conditional density functions of first statistically significant surpassing times conditioning on reinforce-
ment learning agent with online learning phase being statistically significant to be exceeding correct Delta within 3 years for
0.1 level of significance.

that RLw/OL is statistically significant to be exceeding CD within 3 years. For example, with α∗ =
0.1, Figure 10 and Table 14 illustrate that, comparing with Figure 9 and Table 12, the distributions
are right-shifted as well as more spread, and the summary statistics are all increased.

Finally, to further examine the hedging performance of RLw/OL in terms of the sample mean
of the terminal P&L in (20), as well as take the random future trajectories into account, Figure 11
shows the snapshots of the empirical density functions, among the future trajectories, of the sam-
ple mean by each hedging strategy over time at t = 0, 0.6, 1.2, 1.8, 2.4, and 3; Table 15 outlines
their summary statistics. Note that, at the current time t = 0, since none of the future trajectories
has been realised yet, the empirical density functions are given by Dirac delta at the correspond-
ing sample mean by each hedging strategy, which only depends on the simulated scenarios. As
the time progresses, one can observe that the empirical density function by RLw/OL is gradually
shifting to the right, substantially passing the one by ID and almost catching up the one by CD
at t = 1.8. This sheds light on the high probability that RLw/OL is able to self-revise the hedging
strategy from a very sub-optimal one to a nearly optimal one close to the CD.
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Table 14. Summary statistics of empirical conditional distributions of first statistically significant surpassing times con-
ditioning on reinforcement learning agent with online learning phase being statistically significant to be exceeding correct
Delta within 3 years for 0.1 level of significance.

Reinforcement learning agent with online
learning phase first surpassing time to Mean Median Std. Dev. VaR90 VaR95 TVaR90 TVaR95

Correct Delta 1.92 1.90 0.34 2.50 2.62 2.61 2.70


Incorrect Delta 1.70 1.55 0.24 2.02 2.14 2.07 2.20

(a) (b)

(c) (d)

(e) (f)

Figure 11. Snapshots of empirical density functions of sample mean of terminal P&L by reinforcement learning agent with
online learning phase, reinforcement learning agent without online learning phase, correct Delta, and incorrect Delta at
different time points.
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Table 15. Summary statistics of empirical distributions of sample mean of terminal P&L by reinforcement learning agent
with online learning phase, reinforcement learning agent without online learning phase, correct Delta, and incorrect Delta at
different time points.

Sample mean of terminal P&L by Mean Median Std. Dev. VaR90 VaR95 TVaR90 TVaR95

RL with OL −2.66 −2.66 0 −2.66 −2.66 −2.66 −2.66


RL without OL −2.66 −2.66 0 −2.66 −2.66 −2.66 −2.66


Correct Delta −0.26 −0.26 0 −0.26 −0.26 −0.26 −0.26


Incorrect Delta −1.01 −1.01 0 −1.01 −1.01 −1.01 −1.01


(a) t= 0

Sample mean of terminal P&L by Mean Median Std. Dev. VaR90 VaR95 TVaR90 TVaR95
RL with OL −2.27 −2.19 0.45 −2.86 −3.11 −3.17 −3.38



RL without OL −2.71 −2.69 0.42 −3.20 −3.39 −3.52 −3.76


Correct Delta −0.24 −0.26 0.15 −0.40 −0.45 −0.46 −0.49


Incorrect Delta −0.99 −0.99 0.16 −1.20 −1.26 −1.27 −1.31


(b) t= 0.6

Sample mean of terminal P&L by Mean Median Std. Dev. VaR90 VaR95 TVaR90 TVaR95
RL with OL −1.29 −1.14 0.55 −1.83 −2.75 −2.80 −3.10



RL without OL −2.71 −2.68 0.42 −3.22 −3.45 −3.54 −3.78


Correct Delta −0.24 −0.26 0.14 −0.41 −0.44 −0.45 −0.48


Incorrect Delta −0.99 −0.99 0.16 −1.19 −1.25 −1.27 −1.33


(c) t= 1.2

Sample mean of terminal P&L by Mean Median Std. Dev. VaR90 VaR95 TVaR90 TVaR95
RL with OL −0.63 −0.43 0.69 −1.14 −2.50 −2.52 −2.94



RL without OL −2.70 −2.67 0.43 −3.22 −3.42 −3.58 −3.86


Correct Delta −0.25 −0.27 0.15 −0.41 −0.45 −0.47 −0.50


Incorrect Delta −0.99 −0.99 0.15 −1.20 −1.25 −1.27 −1.31


(d) t= 1.8

Sample mean of terminal P&L by Mean Median Std. Dev. VaR90 VaR95 TVaR90 TVaR95
RL with OL −0.46 −0.33 0.71 −0.72 −2.24 −2.13 −3.24



RL without OL −2.69 −2.66 0.41 −3.18 −3.40 −3.48 −3.69


Correct Delta −0.24 −0.26 0.15 −0.40 −0.45 −0.46 −0.50


Incorrect Delta −0.98 −0.98 0.15 −1.18 −1.24 −1.26 −1.30


(e) t= 2.4

Sample mean of terminal P&L by Mean Median Std. Dev. VaR90 VaR95 TVaR90 TVaR95
RL with OL −0.45 −0.33 0.56 −0.66 −1.66 −1.75 −2.59



RL without OL −2.71 −2.68 0.41 −3.24 −3.38 −3.49 −3.68


Correct Delta −0.24 −0.26 0.15 −0.40 −0.44 −0.46 −0.49


Incorrect Delta −0.99 −0.99 0.15 −1.19 −1.24 −1.26 −1.31


(f) t= 3

7. Methodological Assumptions and Implications in Practice
To apply the proposed two-phase RL approach to a hedging problem of contingent claims,
there are at least four assumptions to be satisfied. This section discusses these assumptions and
elaborates their implications in practice.
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7.1. Observable, sufficient, relevant, and transformed features in state
One of the crucial components in an MDP environment of the training phase or the online learn-
ing phase is the state, in which the features provide information from the environment to the RL
agent. First, the features must be observable by the RL agent for learning. For instance, in our
proposed state vectors (18) and (19), all the four features, namely the segregated account value,
the hedging portfolio value, the number of surviving policyholders, and the term to maturity, are
observable. Any unobservable, albeit desirable, features cannot be included in the state, such as
insider information which could provide a better inference on the future value of a risky asset, or
exact health condition of a policyholder. Second, the observable features in the state should be suf-
ficient for the RL agent to learn. For example, due to the dual-risk bearing nature of the contract
in this paper, the proposed state vectors (18) and (19) incorporate both financial and actuarial
features; also, the third and the fourth features in the state vectors (18) and (19) would inform
the RL agent to halt its hedging at the terminal time. However, incorporating sufficient observ-
able features in the state does not imply that every observable feature in the environment should
be included; the observable features in the state need to be relevant for learning efficiently. Since
the segregated account value and the term to maturity have already been included in the state
vectors (18) and (19) as features, the risky asset value and the hedging time are respective similar
information from the environment and thus are redundant features to be contained in the state.
Finally, the features in the state which have high variance might be appropriately transformed for
reducing the volatility due to exploration. For instance, the segregated account value in the state
vectors (18) and (19) is log-transformed in both phases.

7.2. Reward engineering
Another crucial component in an MDP environment is the reward, which supplies signals to the
RL agent to evaluate its actions, i.e. the hedging strategy, for learning. First, the reward signals, if
available, should suggest the local hedging performance. For example, in this paper, the RL agent is
provided by the sequential anchor-hedging reward, given in (9), in the training phase; through the
net liability value in the MDP training environment, the RL agent often receives a positive (resp.
negative) signal for encouragement (resp. punishment), which is more informative than collecting
the zero reward. However, any informative reward signals need to be computable from an MDP
environment. In this paper, since the insurer does not know theMDPmarket environment, the RL
agent could not be supplied the sequential anchor-hedging reward signals, which consist of the net
liability values, in the online learning phase, even though they are more informative; instead, the
RL agent is given the less informative single terminal reward, given in (8), in the online learning
phase which can be computed from the market environment.

7.3. Markov property in state and action
In an MDP environment of the training phase or the online learning phase, the state and action
pair needs to satisfy the Markov property as in (3). In the training phase, since the MDP training
environment is constructed, the Markov property can be verified theoretically for the state, with
the included features in line with section 7.1, and the action, which is the hedging strategy. For
example, in this paper, with the model of the market environment being the BS and the CFM,
the state vector in (18) and the Markovian hedging strategy satisfy the Markov property in the
training phase. Since the illustrative example in this paper assumes that the market environment
also follows the BS and the CFM, the state vector in (19) and the Markovian hedging strategy
satisfy theMarkov property in the online learning phase as well. However, in general, as themarket
environment is unknown, the Markov property for the state and action pair would need to be
checked statistically in the online phase as follows.
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After the training phase and before an RL agent proceeding to the online learning phase, his-
torical state and action sequences in a time frame are derived by hypothetically writing identical
contingent claims and using the historical realisations from themarket environment. For instance,
historical values of risky assets are publicly available, or an insurer retrieves historical survival
status of its policyholders with similar demographic information and medical history as the poli-
cyholder being actually written. These historical samples of the state and action pair are then used
to conduct hypothesis testing on whether the Markov property in (3) holds for the pair in the
market environment, by, for example, the test statistics proposed in Chen & Hong (2012). If the
Markov property holds statistically, the RL agent could begin the online learning phase. Yet, if the
property does not hold statistically, the state and action pair should be revised and then the train-
ing phase should be revisited; since the hedging strategy is the action in a hedging problem, only
the state could be amended by including more features from the environment. Moreover, dur-
ing the online learning phase, right after each further update step, new historical state and action
sequences in a shifted time frame of the same duration are obtained together with the most recent
historical realisations from the market environment and using the action samples being drawn
from the updated policy. These regularly new samples should be applied to statistically verify the
Markov property on a rolling basis. If the property fails to hold at any time, the state needs to be
revised and the RL agent must be re-trained before resuming the online learning.

7.4. Re-establishment of contingent claims in online learning phase
Any contingent claims must have a finite terminal time realisation. On one hand, in the training
phase, that would be the time when an episode ends and the state is re-initialised so that the RL
agent can be trained in the training environment as long as possible. On the other hand, in the
online learning phase, the market environment, and hence the state, could not be re-initialised;
instead, at each terminal time realisation, the seller re-establishes identical contingent claims of
the same contract characteristics and writing on (more or less) the same assets so that the RL
agent can be trained in the market environment successively. In this paper, the terms to maturity
and the minimum guarantees of all variable annuity contracts in the online learning phase are the
same. Moreover, all re-established contracts therein write on the same financial risky asset, though
the initial values of the asset are given by the real-time realisations in the market environment.
Finally, while a new policyholder is written at each contract inception time, these policyholders
have similar, if not identical, distributions of their random future lifetimes via examining their
demographic information and medical history.

8. Concluding Remarks and Future Directions
This paper proposed the two-phase deep RL approachwhich can tackle practically commonmodel
miscalibration in hedging variable annuity contracts with both GMMB and GMDB riders in the
BS financial and CFM actuarial market environments. The approach is composed of the training
phase and the online learning phase. While the satisfactory hedging performance of the trained
RL agent in the training environment was anticipated, the performance by the further trained RL
agent in the market environment via the illustrative example should be highlighted. First, by com-
paring their sample means of terminal P&L from simulated scenarios, in most future trajectories,
within a reasonable amount of time, the further trained RL agent was able to exceed the hedging
performance by the correct Delta from the market environment and the incorrect Delta from the
training environment. Second, through amore delicate hypothesis testing analysis, similar conclu-
sions can be drawn in a fair amount of future trajectories. Finally, snapshots of empirical density
functions, among the future trajectories, of the sample means of terminal P&L from simulated
scenarios by each hedging strategy, shed light on the high probability that the further trained RL
agent is indeed able to self-revise the hedging strategy.
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There should be at least two future directions derived from this paper. (I) The market envi-
ronment in the illustrative example of this paper was assumed to be the BS financial and CFM
actuarial models, which turned out to be the same as designed by the insurer for the training
environment, with different parameters though. Moreover, the policyholders were assumed to be
homogeneous that their survival probabilities and investment behaviours are all the same, with
even identical contracts of the same minimum guarantee and maturity. In the market environ-
ment, the agent only had to hedge one contract at a time, instead of a portfolio of contracts.
Obviously, if any of these is to be relaxed, the trained RL agent from the current training environ-
ment should not be able to produce satisfactory hedging performance in a market environment.
Therefore, the training environment will certainly need to be substantially extended in terms of
its sophistication, in order for the trained RL agent to be able to further learn and hedge well in
any realistic market environments. (II) Beyond this, an even more ambitious question needs to be
addressed is that howmuch similar do the training andmarket environments have to be, such that
the online learning for self-revision on hedging strategy is possible, if not efficient. This second
future direction is related to the transfer learning being adapted to the variable annuities hedging
problem and shall be investigated carefully in the future.
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Appendix A. Deep Hedging Approach
In this section, we provide a brief review of the DH approach adapted from Bühler et al. (2019).

In particular, the hedging objective of the insurer is still given as
√
E
[(
Ptñ − Ltñ

)2], with Equation
(2) being the optimal (discrete) hedging strategy. The hedging agent built by the insurer using the
DH algorithm shall be called the DH agent hereafter.

A.1. Deterministic Action
Different from section 3.1, in which the RL agent takes a stochastic action which is sampled from
the policy for the exploration in the MDP environment, the DH agent only deploys a determin-
istic action HDH :X →A, which is a direct mapping from the state space to the action space.
Specifically, at each time tk, where k= 0, 1, . . . , n− 1, given the current state Xtk ∈X , the DH
agent takes an action HDH(Xtk

) ∈A. In this case, the objective of the DH agent is to solve for the

optimal hedging strategy HDH,∗(·) that minimises
√
E
[(
Ptñ − Ltñ

)2], or equivalently minimises

E
[(
Ptñ − Ltñ

)2].
A.2. Action Approximation and Parameterisation
The deterministic action mapping HDH :X →A is then approximated and parameterised by an
ANN with weights υa. The construction of such ANN Na(·; υa) is similar to that in section 3.3.1,
except thatNa(x; υa) ∈R for any x ∈Rp; that is,Na(·; υa) takes a state vector x ∈Rp as the input,
and directly outputs a deterministic action a (x; υa) ∈R, instead of the Gaussian mean-variance
tuple

(
c(x; υa) , d2 (x; υa)

) ∈R×R+ in the RL approach, which then samples an action from the
Gaussian measure. Hence, in the DH approach, solving the optimal hedging strategy HDH,∗(·)
boils down to finding the optimal weights υ∗

a .

A.3. Deep Hedging Method

The DH agent starts from initial ANN weights υ(0)a , deploys the hedging strategy to collect ter-
minal P&Ls, and gradually updates the ANN weights by stochastic gradient ascent as shown in
Equation (13), with θ replaced by υ. For the DH agent, at each update step u= 1, 2, . . . , the
surrogate performance measure is given as

J (u−1)
(
υ(u−1)
a

)
= −E

[(
P(u−1)
tñ − L(u−1)

tñ

)2]
.
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Correspondingly, the gradient of the surrogate performance measure with respect to the ANN
weights υa is

∇υaJ (u−1)
(
υ(u−1)
a

)
= −2E

[(
P(u−1)
tñ − L(u−1)

tñ

)
∇υaP(u−1)

tñ

]
.

Therefore, based on the realised terminal P&L p(u−1)
tñ and l(u−1)

tñ , the estimated gradient is
given as

̂∇υaJ (u−1)
(
υ
(u−1)
a

)
= −2

(
p(u−1)
tñ − l(u−1)

tñ

)
∇υap(u−1)

tñ .

Algorithm 1 summarises the DH method above.

Algorithm 1. Pseudo-code for deep hedging method

Compared with policy gradient methods introduced in section 3.4, the DH method shows
two key differences. First, it assumes that the hedging portfolio value P(u−1)

tñ is differentiable with
respect to υa at each update u= 1, 2, . . . . Second, the update of ANN weights does not depend on
intermediate rewards collected during an episode; that is, to update the weights, the DH agent has
to experience a complete episode to realise the terminal P&L. Therefore, the update frequency of
the DH method is lower than that of the RL method with TD feature.

Appendix B. REINFORCE: A Monte Carlo Policy Gradient Method
At each update step u= 1, 2, . . . , based on the ANN weights θ(u−1), and thus the policy
π
(
·; θ(u−1)

p
)
, the RL agent experiences the realised episode:

{
x(u−1)
t0 , h(u−1)

t0 , x(u−1)
t1 , r(u−1)

t1 , h(u−1)
t1 , . . . , x(u−1)

tñ−1
, r(u−1)

tñ−1
, h(u−1)

tñ−1
, x(u−1)

tñ , r(u−1)
tñ

}
,

where h(u−1)
tk , for k= 0, 1, . . . , ñ− 1, is the time tk realised hedging strategy being sampled from

the Gaussian distribution with the mean c
(
x(u−1)
tk ; θ(u−1)

p
)
and the variance d2

(
x(u−1)
tk ; θ(u−1)

p
)
.

In the following, fix an update step u= 1, 2, . . . .
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REINFORCE takes directly the time-0 value function V(u−1)(0, x; θp), for any x ∈X , as a part
of the surrogate performance measure:

V(u−1)(0, x; θp)=E

⎡
⎣ñ−1∑

k=0

R(u−1)
tk+1

∣∣∣X(u−1)
0 = x

⎤
⎦ .

In Williams (1992), the Policy Gradient Theorem was proved, which states that

∇θpV(u−1)(0, x; θp)=E

⎡
⎣ñ−1∑

k=0

⎛
⎝ñ−1∑

l=k
R(u−1)
tl+1

⎞
⎠∇θp ln φ

(
H(u−1)
tk ; X(u−1)

tk , θp
) ∣∣∣X(u−1)

0 = x

⎤
⎦ ,

where φ
(
·; X(u−1)

tk , θp
)
is the Gaussian density function with mean c

(
X(u−1)
tk ; θp

)
and variance

d2
(
X(u−1)
tk ; θp

)
. Therefore, based on the realised episode, the estimated gradient of the time-0

value function is given by

̂∇θpV(u−1)
(
0, x; θ(u−1)

p
)

=
ñ−1∑
k=0

⎛
⎝ñ−1∑

l=k
r(u−1)
tl+1

⎞
⎠∇θp ln φ

(
h(u−1)
tk ; x(u−1)

tk , θ(u−1)
p

)
.

Notice that, thanks to the Policy Gradient Theorem, the gradient of the surrogate performance
measure does not depend on the gradient of the reward function, and hence, the reward function
could be discrete or non-differentiable while the estimated gradient of the surrogate performance
measure only needs the numerical reward values. However, in the DH approach of Bühler et al.
(2019), the gradient of the surrogate performance measure therein does depend on the gradient
of the terminal loss function and thus that approach implicitly requires the differentiability of the
hedging portfolio value while the estimated gradient of the surrogate performance requires its
numerical gradient values. See Appendix A for more details.

To reduce the variance of estimated gradient above, Williams (1992) suggested to introduce an
unbiased baseline in this gradient, where a natural choice is the value function:

∇θpV(u−1)(0, x; θp)=E

⎡
⎣ñ−1∑

k=0

⎛
⎝ñ−1∑

l=k
R(u−1)
tl+1

−V
(
tk, X

(u−1)
tk ; θp

)⎞⎠

∇θp ln φ
(
H(u−1)
tk ; X(u−1)

tk , θp
) ∣∣∣X(u−1)

0 = x
]
;

see also Weaver and Tao (2001). Herein, at any time tk, for k= 0, 1, . . . , ñ− 1, A(u−1)
tk =∑ñ−1

l=k R(u−1)
tl+1

−V
(
tk, X

(u−1)
tk ; θp

)
is called an advantage. Since the true value function is unknown

to the RL agent, it is approximated by V̂
(
tk, X

(u−1)
tk ; θ(u−1)

v
)

=Nv
(
X(u−1)
tk ; θ(u−1)

v
)
, defined in

(12), and in which the ANN weights are evaluated at θv = θ
(u−1)
v as the gradient of the time-0

value function is independent of the ANN weights θv; hence, the estimated advantage is given by
Â(u−1)
tk =∑ñ−1

l=k R(u−1)
tl+1

− V̂
(
tk, X

(u−1)
tk ; θ(u−1)

v
)
.

Due to the value function approximation in the baseline, REINFORCE includes a second com-
ponent in the surrogate performance measure, which aims to minimise the loss between the sum
of reward signals and the approximated value function by the ANN. Therefore, the surrogate
performance measure is given by:
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J (u−1)(θ)=V(u−1)(0, x; θp)−E

⎡
⎣ñ−1∑

k=0

(
Â(u−1)
θ
(u−1)
p ,tk

+ V̂
(
tk, X

(u−1)
tk ; θ(u−1)

v

)

−V̂
(
tk, X

(u−1)
tk ; θv

))2 ∣∣∣X(u−1)
0 = x

]
,

where the estimated advantaged Â(u−1)
θ
(u−1)
p ,tk

is evaluated at θp = θ
(u−1)
p .

Hence, at each update step u= 1, 2, . . . , based on the ANNweights θ(u−1), and thus, the policy
π
(
·; θ(u−1)

p
)
, the estimated gradient of the surrogate performance measure is given by

̂∇θJ (u−1)
(
θ(u−1)

)= ñ−1∑
k=0

⎛
⎝ñ−1∑

l=k
r(u−1)
tl+1

− V̂
(
tk, x

(u−1)
tk ; θ(u−1)

v

)⎞⎠∇θp ln φ
(
h(u−1)
tk ; x(u−1)

tk , θ(u−1)
p

)

+
ñ−1∑
k=0

⎛
⎝ñ−1∑

l=k
r(u−1)
tl+1

− V̂
(
tk, x

(u−1)
tk ; θ(u−1)

v

)⎞⎠∇θvV̂
(
tk, x

(u−1)
tk ; θ(u−1)

v

)

=
ñ−1∑
k=0

â(u−1)
tk

(
∇θp ln φ

(
h(u−1)
tk ; x(u−1)

tk , θ(u−1)
p

)
+ ∇θvV̂

(
tk, x

(u−1)
tk ; θ(u−1)

v

))
,

where â(u−1)
tk =∑ñ−1

l=k r(u−1)
tl+1

− V̂
(
tk, x

(u−1)
tk ; θ(u−1)

v
)
, for k= 0, 1, . . . , ñ− 1, is the realised esti-

mated advantage.

Appendix C. Deep Hedging Training
The state vector observed by the DH agent is the same as that by the RL agent in Equation (18).
Table C.1(a) summarises the hyperparameters of DH agent training, while Table C.1(b) outlines
the hyperparameters of the ANN architecture of DH agent; see Appendix A.

Table C.1. The hyperparameters of deep hedging training and the
neural network.

(a) Hyperparameters of deep hedging training
Parameter Value

Number of updates M̂ 108
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Learning rate α̂ 0.0001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Optimiser Adam

(b) Hyperparameters for neural network
Parameter Value(s)

Number of layers 6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dimension of hidden layers [32, 64, 128, 64, 32]
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Activation function ReLU
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