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The ideals of the

hurwitzean polynomial ring

Margaret J. Morton

In 1919> Adolf Hurwitz formed the quaternion ring R composed

of elements whose coordinates were either all integers or halves

of odd integers. The objective of this paper is to examine the

(two-sided) ideal structure in the hurwitzean polynomial ring

i?[x] , formed by taking all polynomials with coefficients in R .

The maximal and prime ideals of R[x] will be characterized with

results surprisingly analogous to those in Z[x] . In addition,

a canonical basis, of the type developed by G. Szekeres, 1952,

for polynomial domains, will be developed for the ideals of

R[x] .

A. Preliminaries

The hurwitzean ring of quaternions (if) is formed of all quaternions

a = a + a±l + a j + a k where

(i) the coordinates aQ, a , a^, a are either all integers or

are all halves of odd integers,

(ii) the units -t, j, k satisfy the relations

o o o
•i = j = k = -i , ij = k = -ji , jk = i = -kj , ki = j = -ik .

The conjugate of a is a = aQ - a -L - a j - a k . The norm of a

2 2 2 2
is N{a) = aa = aa = a + a + a* + a . For all a and |3 in R , N(a)

is in Z and i!/(ot3) = N(a)N(8) . The trace of a is tr(a) = a + ct .
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tr(ct) is in Z for al l a in if . R is the maximal quaternion ring

with the property that if a is in if , then N(a) and tr(oc) are in

Z .

If a is in R , then a is a unit, if and only if N(.a) - 1 . The

group of units of if consists of the twenty-four quaternions ±1, ±-L, ±j,

±k, %

The center of R is Z . Closely related are elements in R of norm

two. Any such element which is a right divisor of an element in if is

also a left divisor and vice versa.

Redei [2] showed:

THEOREM 1. All the distinct ideals of R , different from zero, are

the principal ideals [m\ ) , where m = 1, 2, ... 3 t = 0, 1 ,

X = 1 + I .

From this theorem it follows quite readily that all ideals in i?

generated by elements of norm two are equal and that all ideals in if

commute. The ideals of i? will be denoted by A, B, C, .

It can also be shown that:

THEOREM 2. The following are equivalent:

(i) P is a proper prime ideal in R ;

(ii) P is a proper maximal ideal in R ;

(Hi) P = (p) j where p + 1 is an odd prime in Z , or

P = (A) .

Let K[x] be the quaternion polynomial ring composed of all elements

p(x) = rQ(x) + r^{x)l + r2(x)j + r (x)k , where ^ Q U ) . r^x), r2(x), r^{x)

are in Q[x] . Then K[x] is a non-commutative integral domain with the

obvious multiplication and addition. For an element p(x) in K[x] ,

conjugate, norm and trace are defined as in i? . In addition the symbol 8

will be used to denote the degree of a polynomial. For any elements

= rQ(x) + r±{x)l + r2(x)j +

and

T(X) = tQ{x)
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in K[x] the following results are easily verified.

(i) If q(x) is in Q[x] , then q{x)p(x) = p(x)q(x) (that is,

Q[x] is the center of K[x] ).

(ii) JV(PU)TU)) = N[P(X))N[T(X)) .

(iii)

(iv)

(v) 3iV(p(a:)) = 0 , if and only if, 2*0(a;)> ..., rAx) are in Q .

Such elements p(x) are in the quaternion ring.

DEFINITION. p(aO is a unit in K[x] if there exists a(x) in

such that either p(x)o(x) = 1 or a(x)p(a;) = 1 .

It is not necessary to distinguish between left and right units in

K[x] . For if p{x)a(x) = 1 , then p(a;) = p(x)p(x)a(x) = a(x)p(x)p{x) ,

so 1 = a{x)p(x) .

THEOREM 3 (Division Algorithm). Given p{x) and a(x) not units

in K[x] , there exist x(x) and p(x) in K[x] such that

p{x) = x(x)o(x) + y(x) 3 where 8y(x) < 8a(x) . (As stated this is a right

division algorithm. Similarly, there is a left division algorithm.)

THEOREM 4 (Existence of a greatest conmon divisor). Any two

elements p(x) and o(x) in K[x] > which are not both zero, have a

greatest common right divisor §{x) which is uniquely determined up to a

unit.

Furthermore, there exist ty(x) and u(x) in K[x] such that

4>(x) = p(x)\li{x) + o(x)ixi(x) . (A similar result holds for a greatest common

left divisor.)

DEFINITION. Let p(x) = rAx) + z^UU + r2(x)j + rAx)k be in

K[x] . Then p(x) is primitive in K[x] if the greatest common divisor

of rAx), ••-, rAx) in Q[x] is a unit.

The ideals of K[x] will be denoted by S(x), T{x), ... .

THEOREM 5. All the distinct ideals of K[x] , different from zero,

are the principal ideals (a(x)J ., where a(x) is in Z[x] .

Proof. It follows from Theorem 3 that K[x] is a principal ideal
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domain.

Let S(x) = (a(x)) be an ideal in K[x] where

a(x) = sQ(x) + s±(x)i + s2(x)j + s3

is a primitive element in K[x] . Then

(x)fe = -its (x) + a(x) ,

so Us-(x) is in S{x) . Furthermore,

hsQ(x) ,

hence ksAx) is in S(x) . Similar calculations show that ks, {x) and

Us2(x) are in S(x) . But a(x) is primitive, so the greatest common

divisor in Q[x] of ksAx) , ..., ks (x) must be a unit. By Theorem k

this greatest common divisor must be in S(x) . Hence S(x) contains a

unit and must equal K[x] .

Let T(x) be any proper ideal in K[x] . Then T{x) = (x(x)j , where

T(X) is a nonprimitive element in K[x] . Let T(X) = q(x)o(x) , where

q(x) is in Q[x] and o(x) is primitive in #[x] . Then,

T(x) = (T(X)) = {q(x)) {a(x)) = {q(x)) .

Let I be the lowest common multiple of the denominators of q(x) , then

q(x) = l~ a(x) , where a(x) is in Z[x] . Since I is a unit in #[x]

it now follows that T(x) = (a(x)) .

THEOREM 6. The following are equivalent:

(i) M(x) is a proper maximal ideal in K[x] ;

(ii) A?(x) is a proper prime ideal in K[x] ;

(Hi) M(x) = (p(x)) , where 3p(x) 2; 1 and p(x) is irreducible

in Z[x] .

B. The quaternion factor rings i?,[x] and R [x]
A p

Before the quaternion polynomial ring R[x] can be discussed i t is

necessary to examine the structure of certain quaternion factor rings.
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Let X = 1 + -c and p be an odd prime in Z . Then i?, = -pry ,

f? 7? T?

R^[x] = -rry [a;] , i? = y—y , and #p[«] = Try [«] are all quaternion

factor rings.

R-, is a finite field with four elements. It has a complete set of

representatives, namely 0, 1, %(l+-i.+/+fe) and %(l—i-j-k) , in R . Thus
i?, [x] is a commutative principal ideal domain with a complete set of
A

representatives in R[x] . By the same type of proof used for Z[x] it

follows that the proper maximal and prime ideals in i?. [x] are generated
A

by the irreducible elements of R\[x] •

THEOREM 7. (i) R is isomorphic to the ring of quaternions with

coordinates in Z and consequently has p elements.

(ii) R [x] is isomorphic to the ring of quaternions with coordinates

in Z [x] .

(iii) R is isomorphic to the full ring of two by two matrices with

entries in Z .
P

(iv) R [x] is isomorphic to the full ring of two by two matrices

with entries in Z [a:] .

(v) R [x] is a principal ideal ring.

Proof. (i) Clearly Z c R . Since p + 2 , 2~ is in Z and

the desired result follows.

(ii) Immediate from (i).

(iii) By Theorem 2, (p) is a proper maximal ideal in R . By (i),

R has only a finite number of elements, thus it can have only a finite

number of maximal ideals and must be simple. Therefore, by the Wedderburn-

Artin structure theorem, R must be isomorphic to a full matrix ring over

a division ring. But by Theorem 1 this full matrix ring must have p

elements, thus the matrices must be two by two. Moreover the division ring
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must contain p elements, so, without loss of generality, i t can be taken

as Zp .

(iv) Follows from (iii).

(v) Let A(x) be an ideal in R [x] and a(x) =

where a
rm(x) is in Z [x] for n = 1, 2 , m = 1, 2 , he any element in

A{x) . Using the fact that A(x) is a two-sided ideal i t follows that the

matrices

'a (x) 0
mn

0

Let L(x) = jfc(x) in Z [

, n = 1, 2 , m = 1, 2 , are in A(x) .

•k(x) OnMx) On -I
x] | in A(x)> .in A(x)> . Then L{x) is

a non-trivial ideal in z
v\.

x^ • Bu"t [x] is a principal ideal ring,

h(x) o

0 0
hence L(x) = [l(x)) for some l(x) in L(x) . Thus

contained in A{x) .

Conversely, since a (x) , m - 1, 2 , n = 1, 2 , are in £(x) i t

follows that in Z [x] , a (x) = l{x)b (x) for m = 1, 2 , n = 1, 2 .

Thus

a(x) =

so A(x) is contained in

'l(x) 0

'l(x) 0

_ 0 l(x)

hjx)

21v

It is clear from this Theorem that R has a complete set of

representatives in R and R [x] has a complete set of representatives

DEFINITION. Let a(x) = aQ(x) + aAx)l + a^{x)i + a (x)fe be an

element in R [x] . Then ct(x) is primitive i f the greatest common

https://doi.org/10.1017/S0004972700024849 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700024849


Ideals of a polynomial ring 43

divisor of the aAx) , 0 5 I 5 3 , in Z [x] is a unit.

THEOREM 8. (i) The only proper ideals in R [x] are of the form

[a{x)) , where a{x) | 1 mod p is in Z [x] .

(ii) The proper prime and maximal ideals in R [x] are (p(x)) ,

where p(x) £ 1 mod p is irreducible in Z [x] .

Proof. (i) This follows by the same type of argument that was used

in Theorem 5.

(ii) By (i) the proper ideals in R [x] commute, so the desired

result follows "by the standard method.

C. The quaternion polynomial r i ng i?[x]

The ring R[x] is clearly a subring of K[x] . Thus the definitions

made for K[x] are applicable for R[x] . However, the structure of R[x]

is more complicated than that of K[x] . R[x] does not have a division

algorithm and is not a principal ideal domain. It can be verified that it

is a noetherian ring. The ideals of R[x] will be denoted by

A(x), B(x), C(x), ....

In R ideals other than those generated by a unit were equal to the

whole ring. The same type of situation arises in R[x] as will be shown

in Theorem 9-

Let <j), denote the natural epimorphism from R[x] to R-, [x] , where

X = 1 + -c . Let <j> denote the natural epimorphism from R[x] to

R [x] , where p is again an odd prime in Z .

THEOREM 9. Let B(x) be an ideal in R[x] . Then B(x) = R[x] ,

if and only if either

(i) B(x) = (a(x), p) , where (j> (a(x)) is primitive in

Rp[x] ; or

(ii) B(x) = (a(x), X) , where cj>, (a(x)) S 1 mod X in RAx] .

Proof. Case 1: B{x) contains prime p f 2 . How (p) is in the
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kernel of <b and (p) c B{x) . t h u s « [ I ] / 8 ( I ) = i i

If R[x] = B(x) , then i? [x] = <j> (B(x)) , so "by Theorem 8,

4> (B(X)) = (a (x)) , where a (x) i s primitive in R [x] . But (J> i s an

epimorphism, hence there must be a(x) in B(x) such that

4> (a(x)) = a (x) . Hence B(x) c (a(x), p) and i t i s then immediate that

B(x) = (a(x), p) .

Conversely, suppose B(x) = (ot(x), p) where § (a(x)) is primitive

in R [x] . Then, by Theorem 8, <j> [B(x)) = R [x] , hence R[x] = B(x) .

Case 2. B(x) contains X . Then, as in Case 1,

R[x]/b{x) ^ i?, [x]/<j>, [b(x)) . Since if,[x] is commutative, any ideal in

/?, [x] which equals if, [x] must be generated by an element which is

congruent to 1 . The remainder of the proof now follows as in Case 1.

Theorem 9 is non-trivial. One example of an ideal equal to R[x] is

(x+l, 3) -

Theorem 9 indicates that the maximal ideals of R[x] might not have

the prime elements of R[x] among their generators. This is indeed the

case as will be shown in the following discussion which characterizes the

maximal ideals of i?[x] .

LEMMA 1 . Let g(x) , not a unit, be in Z[x] . Then [g{x)) is not

a maximal ideal in R[x] .

Proof. Since Z[x] is noetherian it must contain a maximal ideal

[f{x), p) , where /(x) is irreducible mod p and p is prime in Z ,

such that {g(x)) „, -. 5 (/(x), p) r •, . Let a(x) be any element in

(g{x)) r -, . Then, since g{x) is in the center of R[x] ,

a(x) = #(x)B(x) for some 3(x) in i?[x] . But g(x) = f(x)g1(x) + ph(x) ,

where g^x), h{x) are in Z[x] . Hence a(x) = f(x)g1{x)&(x) + p/z(x)B(x)

and ocU) is in [f (x), p) R[x] • Thus [ff(x)) s[x] % [fix), p) R[x] •

Case 1. p # 2 . It suffices to show that [f(x), p] r •, + R[x] •

Now the natural epimorphism <ji will map i?[x]/(/(x), p) onto
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*p[«]/(<f>pCf(sO)) • By Theorem 8, since f(x) i s in Z[x] , (<|> (/(*)) i s

a proper ideal in R [x] . Therefore [fix), p) must he a proper ideal in

R[x] .

Case 2. p = 2 . How ( / (x) , 2 ) ^ ^ c (/(x) , X) f l [ x ] . Then, as in

Case 1, i t follows that [fix), \) t R[x] .

LEMMA 2. Let A{x) = (a (x) , . . . , a ( x ) ) be a proper maximal ideal

in R[x] . Then A(x) contains a non-zero integer from Z .

Proof. Let a^x) = a{
Q

l) (x) + a[l) (x)-i + a^l)(x)j + a^}(x)fe , for

1 5 I 2 r . Then, by the same argument that was used in Theorem 5,

ka{
Q

l) (x), ka[l) (x), hai,l) (x), ka{
3
l)(x) a r e i n A(x) f o r I Z l S r .

Thus 2a{
Q

l)(x), 2a[l\x), 2a^]\x), 2a^\x) a r e i n Z[x] , f o r 1 5 I S r ,

and their greatest common divisor in Z[x] must be 1 or 2 . Suppose

not. Then there exists g{x) , not a uni t , in Z[x] such that g(x)

divides a (x) for 0 5 m S 3 and 1 2 I 2 3 . Hence g[x) dividesm

aAx) for 1 5 I 5 r . But then A(x) c (g(a;)) C i?[x] . Since A(x) i s

maximal i t now follows that A(x) = (g(x))_r •, , which i s false by Lemma 1.

Since the greatest common divisor in Z[x] of the 2a {x) i s 1

or 2 , there exis ts V '(x) , 1 < Z 5 r , 0 5 u < 3 , in Q[x] such

that

It (a;) = 1 or 2 .-=- - m y mI m

Clearing denominators in the preceeding immediately gives the desired

result.

LEMMA 3. Let A(x) = (ot,(x), ..., a (x)) be a proper maximal ideal

in R[x] . Then A{x) contains either

(i) a prime integer p t 2 from Z , or

(ii) an element from R of norm two.
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Proof (i) (showing that A(x) contains some prime integer p ) . By

Lemma 2, A{x) contains a non-zero integer n . Let the prime

decomposition of n in Z be p ... p

If p1 is in A{x) the proof is finished.

Suppose p1 is not in A(x) . Since A(x) is maximal it follows

that [A(X) , p.) = R[x] . Hence there exists a(x) in A{x) and 3(ar)

in S(x) such that a(x) + 3(x)p, = 1 . Thus

a(x)p2 ... Pm+ B(x)n = P2 ••• Pm ,

so p . .. p is in A(x) . If p is in A(x) , the proof is finished.

If not, by the same arguments as above, p ... p is in A(x) .

Repeating the above argument, it must eventually follow that p is in

A(x) if px, ...,pm_x are not.

(ii) If the prime integer obtained in (i) is odd the proof is

finished.

Suppose the prime integer obtained in (i) is 2 . Note that 2 = XX .

Suppose X is not in A(x) ; then since A(x) is maximal,

{A{x), X) = R[x] . Recalling that if X is a left divisor it is a right

divisor and vice versa, there must exist a(x) in A(x) and 3(x) in

R[x] such that a(x) + 3(x)X = 1 . Thus a(x)X + 3(x)2 = X , so X is

in A(x) .

COROLLARY. Let A(x) be a proper maximal ideal in R[x] . Then

A(x) must contain a proper maximal ideal from R .

Proof. This is immediate from Lemma 3.

Since all ideals in R generated by elements of norm two are equal it

follows from this corollary that X = 1 + -t must be in A{x) .

LEMMA 4. Let M{x) be a proper maximal ideal in R[x] . Then

either

(i) M(x) - [a{x), p) j where p is an odd prime in Z and

a{x) | 1 mod p is in Z[x] and irreducible mod p ; or
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(ii) M(x) = (a(x), X) , where N(\) = 2 and a(x) £ 1 mod X is

irreducible mod X .

Proof. By Lemma 3, M(x) contains either a prime p # 2 or

X = 1 + -i .

Case 1. M(x) contains a prime p + 2 . Let

M(x) = [p, a (x), ..., a (x)) . Then since (p) , -, c M(x) , it follows

that i?[x]/Af(x) =S R [x]/<j> (M(x)) , where § is again the natural

epimorphism from R[x] to i? [x] . Thus (j> (Af(x)) is a proper ideal in

•frpM • By Theorem 8, (j> (M(X)) C (a (x)) , for some a (x) which is

irreducible in Z [x] . Hence (j> (a7(x)l = a (x)-3 (x) for some 3 (x) in
p P L p p p

i? [x] , where 1 5 Z- 5 r . Therefore a7(x) - a(x)g(x) must be in
p i

(p)_r •, , 1 5 1 £ r , for some 3(x) in i?[x] and a{x) irreducible in
K\_x]

Z [x] . Thus a,(x) is in (a(x), p) for 1 £ Z 5 r , and consequently

M{x) c (a(x), p) c i?[x] . But

i?[x]/(a(x), p) Si?p[x]/(<j>p(<2(x))) = i?p[x]/(ap(x)) ,

and (a (x)) + R [x] so [a{x) , p) # R[x] . Then, since Af(x) is maximal

it must be that Af(x) = (a(x), p) .

Case 2. Af(x) contains X . Let M{x) ~ (X, ct,(x), ..., a (x)) .

Then, as in Case 1, <)>, [M(X)) <=_ (a,(x)) for some a,(x) irreducible in

i?,[x] . Thus, since i?,[x] is commutative, for some 3,(x) in i?,[x] ,

^), (ou(x)) = aAx)$,(x) where 1 £ I £ r . The argument is now completed

in a similar fashion to Case 1.

LEMMA 5. (i) Let p be an odd prime and a{x) | 1 mod p be in

Z[x] and irreducible mod p . 27zew W(x) = (a(x), p) is a proper maximal

ideal in R[x] .

(ii) Let X = 1 + i. and a(x) £ 1 mod X in R[x] be irreducible

mod X . Then M(x) = (a(x), X) is a proper maximal ideal in R[x] .

Proof. (i) Suppose (a(x), p) is not a maximal ideal in R[x] .

Since i?[x] is noetherian there must exist a maximal ideal NAx) in
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R[x] such that (p, a(x)) 5 N (x) £ R[x] . By Lemma 3, NAx) must

contain either an odd prime or X . Since NAx) ? R[x] it is clear that

N (x) can not contain X or any odd prime except p . Thus, by Lemma k,

NAx) = (b(x), p) , where b{x) , not a unit, is in Z[x] and irreducible

mod p.

Since a(x) is in \b{x) , p] = NAx) , there must exist a(x) and

8(x) in R[x] such that a(x) = b(x)&{x) + pa(x) . Hence

$ (a(x)] = <J> (fc(x)(|> (B(x))) in R [x] . But a(a;) is irreducible mod p ,

hence § (a(x)) must be irreducible in R [x] ; thus <j> (3(x)) must be a

unit in R [x] . Let y (x) be its inverse in R [x] ; then since <$>

is an epimorphism there must be a y(x) in R[x] such that

4>v{y(
x)) = Yp^) • Hence y{x)a(x) - b(x) is in (p) in i?[x] . Thus

b(x) is in (a{x), p) . But then (a(x), p) = ̂ ,(3:) , which is a

contradiction.

(ii) Suppose [a{x) , X) is not a maximal, ideal in R[x] . Then it

must be contained in a maximal ideal N (x) . By Lemma 3, N-.(x) must

contain either an odd prime from 2 or X . Since NAx) t R[x] it is

clear that N (x) can not contain an odd prime p . Thus N (x) must be

of the form (3(x), X) where 3(x) | 1 mod X and f?(x) is irreducible

mod X • Hence (a(x), X) £ (eU), X) ; so ((^(aU))) c (()>x(6(x))) in

R [x] . But a(x) is irreducible mod X , so (<)). (a(x))) is a maximal

ideal in #,[*] ; hence (<K (a(a:))) = (<(i, (g(x))) . Returning to /?[x] it

follows that (ct(x) , X) = [&(x), X) = ̂ ,(x) , which is a contradiction.

THEOREM 10. Mix) is a proper maximal ideal in R[x] , if, and only

if, either

(i) Af(x) = (a(x), p) , where p is an odd prime in Z and

a(x) ̂  1 mod p in Z[x] is irreducible mod p • or

(ii) M(x) = (a(x), X) , where N(\) = 2 and a(x) \ 1 mod X is

irreducible mod X .
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Proof. Immediate by Lemmas k and 5.

The preceding discussion showed that the maximal ideals were not, as

might be expected, generated by the prime elements of if[x] . The

following discussion will show that the unexpected also happens in the

characterization of the prime ideals. Again, as for the maximal ideals, a

characterization surprisingly analogous to the situation in Z[x] will be

shown to occur.

LEMMA 6. Let P(x) be a prime ideal in R[x] . Then P(x) n R is

a prime ideal in R .

Proof. Suppose P{x) n R is not a prime ideal in R . Then there

exist ideals A and B in R such that AB c P{x) n R , but neither A

nor B is in this intersection. Now raise the ideals A and B to R[x]

forming the ideals A(x) and B(x) . Then A[x) = (a) and B{x) = ($)

for some a and 3 in if .

Let Y(x) be any element in A{x)B{x) . Then

w h e r e y [ X ) ( x ) , y [ 2 ) ( x ) , Y £ 3 ) ( X ) , Y ^ U ) , 1 5 £ 5 n , 1 5 h S ffl , a r e

in if[a;] . Thus y(x) is a polynomial with coefficients in AB . Hence

A(x)B(x) c P(x) , which is prime. Without loss of generality, suppose

A{x) c P(x) ; then A c A(x) nRc^Pix) n R , which is a contradiction.

LEMMA 7. Let m be in Z , a{x) be in Z[x] > and a(a;), &(x) be

in R[x] . If ma(x) = a(x)8(x) and a{x) is irreducible in Z[x] , then

m divides

nl
Proof. Let a(x) = a. + a.x + ... + a x in Z[x] ,

n2
£>(x) = 3n + • • . + 3 x in R[x] and P-, • • • p be the prime

factorization of m in Z . Since a(x) is irreducible in Z[x] , there

must exist a first coefficient, say a , such that p does not divide

as in Z .
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Suppose p does not divide 3(x) in R[x] . Then there exists a

first coefficient, say 3, > such that p. does not divide $ in R .

s+t
Now the-coefficient of x in c(x)i3(x) is

Since this coefficient is divisible by p and an, ... , a . ,

1 0 S—X

3 . -, , ..., 3n are divisible by p. it follows that p. divides a 3. in
~C—X U X X o V

R . But since p is prime and p does not divide a , there exist a
_L _L S _L

and e_ in Z such that a p + aoa = 1 . Hence e p $. + c a 3. = 3+ »

so that p divides 3, in R , which is a contradiction. Hence p
t X

divides g(x) in R[x] .

Suppose' &(x) = p 31(x) ; then p 2 ... p a(x) = a(x)3-L(a;) , so by the

same argument as above p must divide 3, (x) . Continuing in this

fashion it follows that m divides 3(x) .

COROLLARY. Let p be prims in Z , a(x) be in Z[x] and a(x),

3(x) be in R[x] . If pa(x) = a(x)3(x) in R[x] and p does not

divide a(x) ., then p divides 3(x) .

Proof. Let a(x) = a_ + a-.x + — + a x in Z[x] and

3(x) = 3 + ... + &mx
m in R[x] . Since p does not divide a{x) there

must exist a first coefficient, say a , such that p does not divide a
s s

in Z .

Now suppose p does not divide 3(x) in R[x] and obtain a

contradictxon as in Lemma 7-

LEMMA 8. Let P(x) 2>e a proper prime ideal in R[x] . Then P(x)

must have one of the following forms:

(i) (p(x)) , where p(x) is irreducible in Z[x] ;

(ii) (P) , where P is a prime ideal in R ;

(iii) (a(x), p) j where p is an odd prime in Z and

a(x) | 1 mod p in Z[x] is irreducible mod p ;
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(iv) (a(x), X) , where N(X) = 2 and a(x) \ 1 mod X

•is inceduoible mod X .

Proof. By Lemma 6, P(x) n R is a prime ideal in R . Thus, by

Theorem 2, there are three cases to consider.

Case 1. P(x) n R = {0} . First raise P(x) to be an ideal in

K[x] . Since P{x) n R = {0} this must be a proper ideal in K[x] ; so,

by Theorem 5, P(x)vr -, = [a(x)) for some a(x) in Z[x] . Hence a(x)
K[x J

can be written as a X[x] linear combination of generators for P{x) .

But then there exists a d in Z such that <ia(x) can be written as an

R[x] linear combination of generators for P{x) , so that da{x) is in

P(x) . Since d and a(x) are in the center of R[x] it follows that

the ideal product (d) [a(x)] is in P(x) . But P(x) is prime and

P(x) n R = {o} ; therefore (a(a;)) c P(a;) .

Let a,(x) ... a (x) be the prime factorization of a(x) in Z[x] .

Then one of the ideals [aAx)) , 1 5 Z- 5 n , must be in P(a;) . Without

loss of generality, suppose [aAx)) c P(x) . Then it remains to show that

P(x) <=_ [a Ax)) . Suppose the generators of P{x) are a Ax), ..., a^(x) .

Since p(^)A-ra;i = (<*(*)) = [^(x) ... <*n(
x))K\x] i* follows that there

exist integers m., ..., m in Z such that m^aAx) = a(x)8Ax) ,

1 5 h 5 r , where 3, (x) is in i?[x] and aAx) is irreducible in

Z[x] . By Lemma J, m, divides 3, (x) in R[x] for 1 2 7z S r . Thus

a, (x) , 1 5 li 5 r , is in the ideal [aAx)) in R[x] ; so

P(x) c [ax(x)) .

Hence P(x) = (aAx)) , where aAx) is irreducible in Z[x] .

Case 2. P(x) n if = P , where P # {0} is a proper prime ideal in

R .

(i) P = (p) where p is an odd prime in Z . The first step is to

show that (j> (P(x)) is a prime ideal in ^ L M • Let [aAx)) and

[b (x)) be proper ideals in R [x] such that [a (x)) [b (x)) c <f> (p(x)) .

Then a {x)b (x) is in $ (P(x)) , so that a (x)b (x) + ot(x)p is in
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P{x) for some a(x) in i?[x] . But p is in P(x) , so a (x)b (x)

must be in P(x) . Since a (x) and b (x) are both in the center of
P P

R[x] and P{x) is prime it must be that a {x) or b (x) is in P{x) .

Hence (a (x)) or [b (x)) must be in (j) (P(x)) and thus <{> (P(x)) is a

prime ideal in R [x] .

By the above the prime ideals in R[x] containing p must lie among

the inverse images with respect to <j> of the prime ideals in R [x] .

But the only ideals in R[x] which contain p and are among these inverse

images are (p) and (a(x) , p) , where a{x) is in Z[x] and irreducible

mod p .

(ii) P = (A) where N{\) = 2 . Then, since A is in P(x) , the

isomorphism R[x]/P(x) 9* f?. [>]/<L (P(as)) holds. But RAx] is a

commutative ring; thus P{x) is a prime ideal in #[#], if, and only if,

<j>. [P{x)) is a prime ideal in R [x] . Thus the prime ideals in R[x]

containing A must be among the inverse images with respect to <j>, of the

prime ideals in i?, [a;] . Consequently, the only possibilities are (A)
A

and (a(a;) , A) , where a(x) in R[x] is irreducible mod A .

Case 3. P(x) n R = R . If this is true , then 1 is in P(x) which

is impossible.

LEMMA 9. (i) Let p be an odd prime in Z and a(x) | 1 mod p in

Z[x] be irreducible mod p . Then [a(x), p) is a proper prime ideal in

R[x] .

(ii) Let N(\) =2 and a{x) in R[x] be irreducible mod A .

Then [a{x), A) is a proper prime ideal in R[x] .

Proof. (i) Let C(x) and B(x) be two ideals in R[x] such that

C(x)B(x) c [a{x), p] . Then

<Pp[C(x))4,p[B(x)) c <|>p(a(z), p) = c(>p(a(z)) = Ap(x) ,

say. By Theorem 8, A (x) is a prime ideal in R [x] . Without loss of

generality <j> (B{x)) C A (x) . Then
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B(x) c *p\p(B(x)) <~tp
1[Ap(x)) c [aix), p) ,

for, by Theorem 10, [a(x), p) is a maximal ideal. Thus [a(x), p) is a

prime ideal.

(ii) Follows by the same argument as was used in (i).

LEMMA 10. (i) Let p be an odd prime in Z . Then (p) is a

proper prime ideal in R[x] .

(ii) Let N(\) = 2 . Then (X) is a proper prime ideal in R[x] .

Proof. (i) Let A(x) and B(x) be two ideals in R[x] such that

A(x)B(x) c (p) . Then, in Rp[x] , <t>p{A(x))<!>p(B(x)) c (o) .

Case 1. At least one of <j> [A{x)) or <j> (B(x)) is (0) . Without

loss of generality suppose it is <j> (A(X)) . Then

A(x) c >̂~ (<j> [A(x))) C_ (p) and the proof is complete.

Case 2. (j> [A(x)) and (j) (B(X)) are both proper ideals in tfpM •

By Theorem 8, there exist a {x) and b (x) in Z [x] such that

(J> (4(a:)) = [a (x)) and (j) (B(o:)) = [bAx)) . Then, since

(aAx)) [b (x)) c (0) , p must divide a (x)fc (x) in Z[x] .

Consequently, without loss of generality, p divides a (x) in Z[x] .

Thus (a (x)) = (0) ; so A{x) c ^((J) (A(X))) C (p) and the proof is

complete.

Case 3. Either if) [A{x)) or <j> [B(X)) is i? [x] . Without loss of

generality, suppose cj> (4(x)) = RA\x] . Then, by Theorem 8, it must be

generated by a primitive element in R [x] . Thus the generator of

<|> (B(x)) must be divisible by p ; so <j> (fl(x)) = (0) , and again the

proof is complete.

(ii) Let A(x) and B(x) be two ideals in R[x] such that

A(x)B{x) c (X) . Then ^[A(X))^^[B{X)) C (0) in i?x[x] . Since i?^[x]

is a commutative integral domain it follows, without loss of generality,
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that <j>, (A(X)) C (0) . Thus A{x) c «T § [A(X)) C (X) , and the proof is

complete.

LEMMA 11. Let p(x) , not equal to a constant, be irreducible in

Z[x] . Then (p(x)) is a prime ideal in R[x] .

Proof. Let A{x) and B{x) be ideals in R[x] such that

A(x)B(x) <=_ (p(x)) . Then, lifting each of these ideals to K[x] , it

follows that A(x)K[x]B{x)K^ c {p{x))K^ . By Theorem 6, ip^) K[x]

is a prime ideal in K[x] . Without loss of generality, suppose

Let a, (x) , . . . , a (x) be the generators of A(x) in R[x] . Then

a.A.x) = p(x)pz(x) , 1 S Z S r , p^x) in X[x] ; so

mtat{x) = p(x)B^(x) , 1 5 Z 5 r , ^(x) in i?[x] , and ml in Z .

Hence, by Lemma 7, m7 divides B7(x) in R[x] for 1 5 Z- S r . Thus

aAx) is in (p(x)) for 1 5 Z. £ r . Hence <4(x) c (p(x)) and (p(x))

is a prime ideal in R[x] .

THEOREM 11. P(x) is a proper prime ideal in R[x] , if, and only

if, one of the following is true:

(i) P(x) = (p(x)) , where p(x) , not a unit, is irreducible in Z[x] ;

(ii) P(x) = (P) , where P is a proper prime ideal in R ;

(iii) P(x) = (a(x), p) , where p is an odd prime in Z and

a(x) £ 1 mod p in Z[x] is irreducible mod p ;

f£y; P(x) = (a(x), X) , where N(X) = 2 awd a(x) £ 1 mod X

is in R[x] and irreducible mod X .

Proof. This is immediate from Lemmas 8 through 11.

D. A Szekeres type basis for the ideals of i?[x]

DEFINITION. Let A(x) be an ideal in Elx] . A{x) is a primitive

ideal if there does not exist an ideal (a(x)) , where a(x) is in Z[x]

or N[aix)) = 2 , such that A(x) C [a(x)) g R[x] •

Let a(x) be an element in R[x] • Then
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2 a U ) = aQ(x) + a±{x)i + a^x)j + a (x)fe

for some a Ax), a (x), aAx), a Ax) in Z[x] . Let a(x) be the

greatest common divisor of a(x), ..., a Ax) in Z[x] . Then

2<x(a:) = a(a;)(&0(a:)+fc1(a;)̂ +fc2(a:)i+Z>3(a;)fe) = a(z)e(x) ,

where 3(x) is in R[x] , its coordinates are in Z[x] , and have no

common divisor there. Then there are two possibilities:

(i) two divides a{x) in Z[x] ; then, clearly, is the

largest element in Z[x] which divides a(x) in i?[x] ;

(ii) two does not divide a{x) in Z[x] ; then, by the

corollary to Lemma 7, two must divide f3(x) in R[x] .

Hence, a(x) is the largest element in Z[x] which

divides a(a;) in R[x] .

How let B(x) = {&x{x), ..., &s{x)) be any ideal in R[x] . By the

p r e c e d i n g p a r a g r a p h , f o r e a c h &{x) , 1 ^ 1 - 8 , t h e r e i s a g r e a t e s t

aAx) in Z[x] such that $Ax) = aAx)yAx) , yAx) in R[x] . Now

let a{x) be the greatest common divisor of the aAx) , 1 5 I S s , in

Z[x] . Then

B(x) = ( a ( x ) ) ( Y l ( x ) , . . . ,

17) (71 f Z.) 7
L e t Y 7 ( * ) = Y n + Y-, a: + . . . + Y x i ' , 1 5 7 , 5 s . F a c t o r f r o m t h e

P U 1 'Wy

Yt > 1 S 7 , S S , 0 S ?! S Wj , all common factors X in i? with norm

two. Let yAx) = X ... X.aAx) , 1 S 7, £ s , and

iV(Xn) = ... = fffX.) = 2 . Then

B(x) = (a(x))(X1) ... (Xt)(ai(x), ..., as(x)) = (a(x)) (X)^(x) ,

where t is a non-negative integer and A(x) = (a, (x), ..., a (a;)) . Then

A{x) is a primitive ideal in R[x] .

Thus, in order to characterize all the ideals in the ring R[x] , it
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is sufficient to characterize the primitive ideals. This will be done by

adapting a proof by Szekeres [3].

LEMMA 12. Let A(x) be a primitive ideal in R[x] . Then A{x)

contains a non zero integer from Z .

Proof. Let A(x) = [a (x), ..., a (x)) where

at(x) = a{
Q

l)(x) + a[l)(x)l + a^l)(x)j + a^l)(x)k

for 1 5 I 5 r . Then, by the same argument as in Theorem 5, ha (x) ,

l s Z - S r , 0 5 m 5 3 , are in A{x) n Z[x] . Moreover, since A(x) is

primitive, the greatest common divisor in Z[x] of these elements must be

2 or h . Thus, there exist hr '(x) , 1 5 j 5 r , 0 5 u 5 3 , in Q[x]

such that k T T a {x)h (x) is 2 or h . Clearing denominators, it
I m m m

follows that

m m

in Z , where the k (x) , 1 2 I 5 r , 0 5 m 5 3 , are in Z[x] .

Hence k i s in A{x) .

DEFINITION. Let a and 3 be in R . Then a i s equivalent to

B (a ~ B) , i f , and only i f , (a) = (3) .

In each equivalence class of R defined above choose a certain

element. This wi l l be called a normed element of R .

Now the only proper ideals in R are of the form [m\ J where m i s

non negative in Z , N{\) = 2 , and t = 0 or 1 . Thus one complete

representative set of the normed R i s

N = {0, 1, 2, . . . , X, 2X, 3X, . . . } .

For convenience l e t N = {0, 1, 2, . . . , X, 2X, 3X, . . . } .

LEMMA 13. Let A c B be ideals in R and A = [y ) , where y is

given in N u N . Then there exists a yp in N u N such that B = (y )
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and y = ay_ where a is in N .

Proof. Clearly y can be chosen in N u H so that B = (Y2) and

*2 -*2
Yp can be either of the form m X or m X . It just remains to show

*2 -*2
that given y and the fact that Y = O-jn^ = aomo^ > at l e a s t o n e o f

the a or a is in N .

*1 *2 -*2
Case 1. y i s in N . Let Y-, = "'n^n = a

1
/ n2^ = apm?^

(i) t = t = 0 . Then m = am , so m = N(aAm^ in Z and m

must divide m . Thus a i s in N for Y2
 = m2 "

( i i ) t x = 0 , * 2 = 1 . Then n^ = a ^ X , so m1 = 2il/(a2)m2 in

4 . Thus m = km for some k in Z ; hence fe = iv(a )2 , so k must

be even. Let k = 2k . Then Ik = a X , so k X = a ; that i s , a

i s in N i f Yo = m
2 ^ '

( i i i ) t = 1 , t = 0 . Then m X = am ; so 2m = ff(a1)m in

A . Hence m divides m in Z . Thus a i s in N i f Y2
 = m

2 *

(iv) t. = tg = 1 . Then ff^X = a-,m2X ; so m = a.m2 and the proof

i s as in ( i ) .

-*1Case 2. y is in N . Let y = ̂ -.X. . Then the same type of

argument that was used in Case 1 holds.

Let R(a) be the system of representatives containing the element

0 , of the residue classes mod a , for an element a in Iti .

THEOREM 12. Let A(x) be a primitive ideal in R[x] . Then

A(x) = (aQ(x), ..., a-m{x)) , where

(i) aQ(x) = ax ... am ,
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I

hlh-± ~ m ;

(ii) a , ... , a are in N , ou t 0 , and a 4- 1 ;

(Hi) &xl, ..., &„ are in R(a )̂ for 1 5 I 5 m .

Proof I (showing that a (a;) a (x) are in i?[>] ) . Obviously

a (x) is in R[x] .

(i) a^^x) = xaQ(x) + 3l;La0(x)

^ ^ 0 2 ... a m ,

where (3', is in i? . Thus a (x) = (x+3' )a ... a and is in R[x] .

Moreover a (x) has leading coefficient a. ... a
1 2 w

3^0^ (a:)

am + 6 1 2 a i

where B^, ĝ  , 6^2, a' are in R . Thus a^x) is in i?[x] and has

leading coefficient a . . . a .

(Hi) Continuing in this fashion i t follows that ouCx), . . . , a (x)

are in i?[x] . The leading coefficient of ot,(x) , 1 5 I 5 m , is

a, , . . . a and the leading coefficient of a (x) is 1 .
t+1 tn m

II (showing that ( a . ( x ) , . . . , am(x)) i s indeed a primitive idea l ) .

Since a (x) has leading coefficient 1 and a_(x) i s a constant other

than zero i t i s obvious that for m > 0 , the ideal (oc (x) , . . . , a (x))

i s primit ive. For m = 0 , the polynomial sequence a (x) , . . . , a (x) i s

reduced to ^(^O = 1 j s o (a
n(a;) » . . . , Ct (x)) i s again primitive.

I I I . Let M-Ax) be the two-sided i?-module consisting of those

elements of A{x) whose degree is at most I . Then
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MQ{x) c MAx) c M2(x) c

leading coefficients of

an ideal AL = (y^) in i? . By Lemma 12, M t {0} ; thus

Furthermore, the leading coefficients of the elements of Mj(x) form

is a non-trivial chain.

IV. Since R[x] is a noetherian ring, A{x) is finitely generated.

Consequently, there is a minimal I for which A(x) is generated by the

elements of A/7(x) . Denote this I by m[A(x)} = m .

V. Now choose, in one way or another, from among each of the

MAx), ..., M (x) a polynomial a-(x) = y7x + ... , 0 £ I £ m . Then,
U 771 u Is

for each element a(a;) of MAx) , I > 0 , since its leading coefficient

is in My which is principal, there is an a in R for which

a(x) = aa7(x) lies in AL Ax) . Then, since the degrees of

a,(a;), ..., aQ(x) are descending, it follows by induction that

an(a;), — , a7(a;) constitute a left if-basis of the i?-module M~(x) .
U L L

Moreover, by definition of m ,

H\X1 — ICL-Aity , . . . , u \Xl I .

v u m J

VI. By III, MQ c M, c A?2 E • • • • Each of these ideals is principal

in R and the generator y of AL can be taken in N . Then, by Lemma

13, there exists y in N u N such that Af, = (y,) and y = oi-.y,

where a, is in N • Continuing up this ideal chain applying Lemma 13, it

follows that there exist elements a, , ..., a # 0 in N such that

J- m
o.-, = ot7y7 , 1 £ Z- £ in .

VII . By VI, a 7 y = Y7 , for 1 £ I £ m . Hence a 7 j - . . . a = y7
L L—JL t+1 m L

for 1 £ I £ m • Thus, ouou(a:) - xa~ Ax) is in M- Ax) for

1 £ I £ m . H e n c e , t h e r e e x i s t f $ , 7 , l £ h £ l , l £ Z £ m , i n R
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such that

f o r

and a.(x) = a, . . . a a0 _L mm

Now, using the formulations for aAx), ..., a (x) in I, it follows

that Y divides a (x) , ..., a (x) . But y is in N u N and

a Q(x), ..., a (x) generate A(x) which is primitive. Thus y = 1 .

VIII (showing that a # 1 ). If a = 1 (thus m > 0 ) it would

follow from VII that a (x) is contained in the ideal generated by

an(x), ..., a (x) . But then this ideal would be equal to A(x) ,

contradicting the definition of m[A(x)) = m in IV.

IX (showing that &ii> •••> B77 are in (ou) for 1 5 I 5 m ).

Clearly this condition holds for OL.(X) . Now continue by induction.

Suppose that for some r , 1 2 r 2 m , the aQ(x), ..., a -,(x) have "been

chosen as in V so that the coefficients 6, •, , 1 < h < I , 1 5 Z S r-1 ,

satisfy condition (iii).

Let a*(x) be any polynomial in A(x) which might replace a (x) .

Then a*(x) and a (x) have the same leading coefficient a ... a

Thus, since a*(x) is in M^{x) , there exist <5-, ..., S in R such

that

From this it follows that

r

1=1

Thus &i + 0^6, •> 1 - I - r , and condition (Hi) is satisfied.
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