The ideals of the hurwitzean polynomial ring

Margaret J. Morton

In 1919, Adolf Hurwitz formed the quaternion ring R composed of elements whose coordinates were either all integers or halves of odd integers. The objective of this paper is to examine the (two-sided) ideal structure in the hurwitzean polynomial ring R[x], formed by taking all polynomials with coefficients in R. The maximal and prime ideals of R[x] will be characterized with results surprisingly analogous to those in Z[x]. In addition, a canonical basis, of the type developed by G. Szekeres, 1952, for polynomial domains, will be developed for the ideals of R[x].

A. Preliminaries

The hurwitzean ring of quaternions (R) is formed of all quaternions $\alpha = a_0 + a_1 \dot{\iota} + a_2 \dot{j} + a_3 k$ where

(i) the coordinates a_0, a_1, a_2, a_3 are either all integers or are all halves of odd integers,

(ii) the units i, j, k satisfy the relations

 $i^{2} = j^{2} = k^{2} = -1 , \quad ij = k = -ji , \quad jk = i = -kj , \quad ki = j = -ik .$ The conjugate of α is $\overline{\alpha} = a_{0} - a_{1}i - a_{2}j - a_{3}k$. The norm of α is $N(\alpha) = \alpha \overline{\alpha} = \overline{\alpha} \alpha = a_{0}^{2} + a_{1}^{2} + a_{2}^{2} + a_{3}^{2}$. For all α and β in R, $N(\alpha)$ is in Z and $N(\alpha\beta) = N(\alpha)N(\beta)$. The trace of α is $tr(\alpha) = \alpha + \overline{\alpha}$. Received 29 October 1975. tr(α) is in Z for all α in R . R is the maximal quaternion ring with the property that if α is in R, then N(α) and tr(α) are in Z.

If α is in R, then α is a *unit*, if and only if $N(\alpha) = 1$. The group of units of R consists of the twenty-four quaternions ± 1 , $\pm i$, $\pm j$, $\pm k$, $\frac{1}{2}(\pm 1 \pm i \pm j \pm k)$.

The center of R is Z. Closely related are elements in R of norm two. Any such element which is a right divisor of an element in R is also a left divisor and vice versa.

Rédei [2] showed:

THEOREM 1. All the distinct ideals of R, different from zero, are the principal ideals $(m\lambda^t)$, where m = 1, 2, ..., t = 0, 1, $\lambda = 1 + i$.

From this theorem it follows quite readily that all ideals in R generated by elements of norm two are equal and that all ideals in R commute. The ideals of R will be denoted by A, B, C, \ldots .

It can also be shown that:

THEOREM 2. The following are equivalent:

- (i) P is a proper prime ideal in R;
- (ii) P is a proper maximal ideal in R;
- (iii) P = (p), where $p \neq 1$ is an odd prime in Z, or $P = (\lambda)$.

Let K[x] be the quaternion polynomial ring composed of all elements $\rho(x) = r_0(x) + r_1(x)\dot{\iota} + r_2(x)j + r_3(x)k$, where $r_0(x)$, $r_1(x)$, $r_2(x)$, $r_3(x)$ are in Q[x]. Then K[x] is a non-commutative integral domain with the obvious multiplication and addition. For an element $\rho(x)$ in K[x], conjugate, norm and trace are defined as in R. In addition the symbol ϑ will be used to denote the degree of a polynomial. For any elements

$$\rho(x) = r_0(x) + r_1(x)i + r_2(x)j + r_3(x)k$$

and

$$\tau(x) = t_0(x) + t_1(x)i + t_2(x)j + t_3(x)k$$

in K[x] the following results are easily verified.

(i) If q(x) is in Q[x], then $q(x)\rho(x) = \rho(x)q(x)$ (that is, Q[x] is the center of K[x]).

(ii)
$$N(\rho(x)\tau(x)) = N(\rho(x))N(\tau(x))$$
.

(iii) $\partial N(\rho(x)\tau(x)) = \partial N(\rho(x)) + \partial N(\tau(x))$.

- (iv) $\partial N(\rho(x)+\tau(x)) \leq \max\{\partial N(\rho(x)), \partial N(\tau(x))\}$.
- (v) $\partial N(\rho(x)) = 0$, if and only if, $r_0(x)$, ..., $r_3(x)$ are in Q.

Such elements $\rho(x)$ are in the quaternion ring.

DEFINITION. $\rho(x)$ is a *unit* in K[x] if there exists $\sigma(x)$ in K[x] such that either $\rho(x)\sigma(x) = 1$ or $\sigma(x)\rho(x) = 1$.

It is not necessary to distinguish between left and right units in K[x]. For if $\rho(x)\sigma(x) = 1$, then $\overline{\rho(x)} = \overline{\rho(x)}\rho(x)\sigma(x) = \sigma(x)\rho(x)\overline{\rho(x)}$, so $1 = \sigma(x)\rho(x)$.

THEOREM 3 (Division Algorithm). Given $\rho(x)$ and $\sigma(x)$ not units in K[x], there exist $\tau(x)$ and $\mu(x)$ in K[x] such that $\rho(x) = \tau(x)\sigma(x) + \mu(x)$, where $\partial\mu(x) < \partial\sigma(x)$. (As stated this is a right division algorithm. Similarly, there is a left division algorithm.)

THEOREM 4 (Existence of a greatest common divisor). Any two elements $\rho(x)$ and $\sigma(x)$ in K[x], which are not both zero, have a greatest common right divisor $\phi(x)$ which is uniquely determined up to a unit.

Furthermore, there exist $\psi(x)$ and $\omega(x)$ in K[x] such that $\phi(x) = \rho(x)\psi(x) + \sigma(x)\omega(x)$. (A similar result holds for a greatest common left divisor.)

DEFINITION. Let $\rho(x) = r_0(x) + r_1(x)i + r_2(x)j + r_3(x)k$ be in K[x]. Then $\rho(x)$ is primitive in K[x] if the greatest common divisor of $r_0(x), \ldots, r_3(x)$ in Q[x] is a unit.

The ideals of K[x] will be denoted by S(x), T(x), ...

THEOREM 5. All the distinct ideals of K[x], different from zero, are the principal ideals (a(x)), where a(x) is in Z[x].

Proof. It follows from Theorem 3 that K[x] is a principal ideal

domain.

Let
$$S(x) = (\sigma(x))$$
 be an ideal in $K[x]$ where

$$\sigma(x) = s_0(x) + s_1(x)\dot{\iota} + s_2(x)\dot{j} + s_3(x)k$$

is a primitive element in K[x] . Then

$$i\sigma(x)i + j\sigma(x)j + k\sigma(x)k = -4s_0(x) + \sigma(x)$$
,

so $4s_0(x)$ is in S(x). Furthermore,

$$2(i\sigma(x)j-j\sigma(x)i) = 4s_3(x) + 4s_0(x)$$

hence $4s_3(x)$ is in S(x). Similar calculations show that $4s_1(x)$ and $4s_2(x)$ are in S(x). But $\sigma(x)$ is primitive, so the greatest common divisor in Q[x] of $4s_0(x)$, ..., $4s_3(x)$ must be a unit. By Theorem 4 this greatest common divisor must be in S(x). Hence S(x) contains a unit and must equal K[x].

Let T(x) be any proper ideal in K[x]. Then $T(x) = (\tau(x))$, where $\tau(x)$ is a nonprimitive element in K[x]. Let $\tau(x) = q(x)\sigma(x)$, where q(x) is in Q[x] and $\sigma(x)$ is primitive in K[x]. Then,

$$T(x) = (\tau(x)) = (q(x))(\sigma(x)) = (q(x)).$$

Let l be the lowest common multiple of the denominators of q(x), then $q(x) = l^{-1}a(x)$, where a(x) is in Z[x]. Since l is a unit in K[x]it now follows that T(x) = (a(x)).

THEOREM 6. The following are equivalent:

- (i) M(x) is a proper maximal ideal in K[x];
- (ii) M(x) is a proper prime ideal in K[x];
- (iii) M(x) = (p(x)), where $\partial p(x) \ge 1$ and p(x) is irreducible in $\mathbb{Z}[x]$.

B. The quaternion factor rings $R_{\lambda}[x]$ and $R_{\mu}[x]$

Before the quaternion polynomial ring R[x] can be discussed it is necessary to examine the structure of certain quaternion factor rings. Let $\lambda = 1 + i$ and p be an *odd* prime in Z. Then $R_{\lambda} = \frac{R}{(\lambda)}$, $R_{\lambda}[x] = \frac{R}{(\lambda)}[x]$, $R_{p} = \frac{R}{(p)}$, and $R_{p}[x] = \frac{R}{(p)}[x]$ are all quaternion factor rings.

 R_{λ} is a finite field with four elements. It has a complete set of representatives, namely 0, 1, $\frac{1}{2}(1+i+j+k)$ and $\frac{1}{2}(1-i-j-k)$, in R. Thus $R_{\lambda}[x]$ is a commutative principal ideal domain with a complete set of representatives in R[x]. By the same type of proof used for Z[x] it follows that the proper maximal and prime ideals in $R_{\lambda}[x]$ are generated by the irreducible elements of $R_{\lambda}[x]$.

THEOREM 7. (i) R_p is isomorphic to the ring of quaternions with coordinates in Z_p and consequently has p^4 elements.

(ii) $\mathbf{R}_{p}[\mathbf{x}]$ is isomorphic to the ring of quaternions with coordinates in $\mathbf{Z}_{p}[\mathbf{x}]$.

(iii) ${\rm R}_{\rm p}$ is isomorphic to the full ring of two by two matrices with entries in ${\rm Z}_{\rm p}$.

(iv) $R_{p}[x]$ is isomorphic to the full ring of two by two matrices with entries in $\rm Z_{p}[x]$.

(v) $R_{p}[x]$ is a principal ideal ring.

Proof. (i) Clearly $Z_p \subseteq R_p$. Since $p \neq 2$, 2^{-1} is in Z_p and the desired result follows.

(ii) Immediate from (i).

(*iii*) By Theorem 2, (p) is a proper maximal ideal in R. By (*i*), R_p has only a finite number of elements, thus it can have only a finite number of maximal ideals and must be simple. Therefore, by the Wedderburn-Artin structure theorem, R_p must be isomorphic to a full matrix ring over a division ring. But by Theorem 1 this full matrix ring must have p^4 elements, thus the matrices must be two by two. Moreover the division ring

must contain p elements, so, without loss of generality, it can be taken as $\frac{Z_p}{p}$.

(iv) Follows from (iii).

(v) Let
$$A(x)$$
 be an ideal in $R_p[x]$ and $\alpha(x) = \begin{bmatrix} a_{11}(x) & a_{12}(x) \\ a_{21}(x) & a_{22}(x) \end{bmatrix}$,

where $a_{mn}(x)$ is in $Z_p[x]$ for n = 1, 2, m = 1, 2, be any element in A(x). Using the fact that A(x) is a two-sided ideal it follows that the matrices $\begin{bmatrix} a_{mn}(x) & 0 \\ 0 & 0 \end{bmatrix}$, n = 1, 2, m = 1, 2, are in A(x).

Let
$$L(x) = \left\{k(x) \text{ in } Z_p[x] \mid \begin{bmatrix}k(x) & 0\\0 & 0\end{bmatrix} \text{ in } A(x)\right\}$$
. Then $L(x)$ is a non-trivial ideal in $Z_p[x]$. But $Z_p[x]$ is a principal ideal ring, hence $L(x) = (l(x))$ for some $l(x)$ in $L(x)$. Thus $\begin{pmatrix} [l(x) & 0\\0 & 0\end{bmatrix} \end{pmatrix}$ is contained in $A(x)$.

Conversely, since $a_{mn}(x)$, m = 1, 2, n = 1, 2, are in L(x) it follows that in $Z_p[x]$, $a_{mn}(x) = l(x)b_{mn}(x)$ for m = 1, 2, n = 1, 2. Thus

$$\alpha(x) = \begin{bmatrix} l(x) & 0 \\ 0 & l(x) \end{bmatrix} \begin{bmatrix} b_{11}(x) & b_{12}(x) \\ b_{21}(x) & b_{22}(x) \end{bmatrix}$$

so $A(x)$ is contained in $\left(\begin{bmatrix} l(x) & 0 \\ 0 & l(x) \end{bmatrix} \right)$.

It is clear from this Theorem that R_p has a complete set of representatives in R and $R_p[x]$ has a complete set of representatives in $R_p[x]$.

DEFINITION. Let $\alpha(x) = a_0(x) + a_1(x)i + a_2(x)j + a_3(x)k$ be an element in $R_p[x]$. Then $\alpha(x)$ is primitive if the greatest common

divisor of the $a_l(x)$, $0 \le l \le 3$, in $Z_p[x]$ is a unit.

THEOREM 8. (i) The only proper ideals in $R_p[x]$ are of the form (a(x)), where $a(x) \ddagger 1 \mod p$ is in $Z_p[x]$.

(ii) The proper prime and maximal ideals in $R_p[x]$ are (p(x)), where $p(x) \ddagger 1 \mod p$ is irreducible in $Z_p[x]$.

Proof. (*i*) This follows by the same type of argument that was used in Theorem 5.

(*ii*) By (*i*) the proper ideals in $R_p[x]$ commute, so the desired result follows by the standard method.

C. The quaternion polynomial ring R[x]

The ring R[x] is clearly a subring of K[x]. Thus the definitions made for K[x] are applicable for R[x]. However, the structure of R[x]is more complicated than that of K[x]. R[x] does not have a division algorithm and is not a principal ideal domain. It can be verified that it is a noetherian ring. The ideals of R[x] will be denoted by $A(x), B(x), C(x), \ldots$.

In R ideals other than those generated by a unit were equal to the whole ring. The same type of situation arises in R[x] as will be shown in Theorem 9.

Let ϕ_{λ} denote the natural epimorphism from R[x] to $R_{\lambda}[x]$, where $\lambda = 1 + \dot{x}$. Let ϕ_p denote the natural epimorphism from R[x] to $R_p[x]$, where p is again an odd prime in Z.

THEOREM 9. Let B(x) be an ideal in R[x]. Then B(x) = R[x], if and only if either

(i)
$$B(x) = (\alpha(x), p)$$
, where $\phi_p(\alpha(x))$ is primitive in
 $R_p[x]$; or
(ii) $B(x) = (\alpha(x), \lambda)$, where $\phi_{\lambda}(\alpha(x)) \equiv 1 \mod \lambda$ in $R_{\lambda}[x]$.
Proof. Case 1: $B(x)$ contains prime $p \neq 2$. Now (p) is in the

kernel of ϕ_p and $(p) \subseteq B(x)$, thus $R[x]/B(x) \cong R_p[x]/\phi_p(B(x))$.

If R[x] = B(x), then $R_p[x] = \phi_p(B(x))$, so by Theorem 8, $\phi_p(B(x)) = (\alpha_p(x))$, where $\alpha_p(x)$ is primitive in $R_p[x]$. But ϕ_p is an epimorphism, hence there must be $\alpha(x)$ in B(x) such that $\phi_p(\alpha(x)) = \alpha_p(x)$. Hence $B(x) \subseteq (\alpha(x), p)$ and it is then immediate that $B(x) = (\alpha(x), p)$.

Conversely, suppose $B(x) = (\alpha(x), p)$ where $\phi_p(\alpha(x))$ is primitive in $R_p[x]$. Then, by Theorem 8, $\phi_p(B(x)) = R_p[x]$, hence R[x] = B(x).

Case 2. B(x) contains λ . Then, as in Case 1, $R[x]/b(x) \simeq R_{\lambda}[x]/\phi_{\lambda}(b(x))$. Since $R_{\lambda}[x]$ is commutative, any ideal in $R_{\lambda}[x]$ which equals $R_{\lambda}[x]$ must be generated by an element which is congruent to 1. The remainder of the proof now follows as in Case 1.

Theorem 9 is non-trivial. One example of an ideal equal to R[x] is $(x+\dot{\iota}, 3)$.

Theorem 9 indicates that the maximal ideals of R[x] might not have the prime elements of R[x] among their generators. This is indeed the case as will be shown in the following discussion which characterizes the maximal ideals of R[x].

LEMMA 1. Let g(x), not a unit, be in Z[x]. Then (g(x)) is not a maximal ideal in R[x].

Proof. Since Z[x] is noetherian it must contain a maximal ideal (f(x), p), where f(x) is irreducible mod p and p is prime in Z, such that $(g(x))_{Z[x]} \neq (f(x), p)_{Z[x]}$. Let $\alpha(x)$ be any element in $(g(x))_{R[x]}$. Then, since g(x) is in the center of R[x], $\alpha(x) = g(x)\beta(x)$ for some $\beta(x)$ in R[x]. But $g(x) = f(x)g_1(x) + ph(x)$, where $g_1(x), h(x)$ are in Z[x]. Hence $\alpha(x) = f(x)g_1(x)\beta(x) + ph(x)\beta(x)$ and $\alpha(x)$ is in $(f(x), p)_{R[x]}$. Thus $(g(x))_{R[x]} \neq (f(x), p)_{R[x]}$.

Case 1. $p \neq 2$. It suffices to show that $(f(x), p)_{R[x]} \neq R[x]$. Now the natural epimorphism ϕ_p will map R[x]/(f(x), p) onto $R_p[x]/(\phi_p(f(x)))$. By Theorem 8, since f(x) is in Z[x], $(\phi_p(f(x)))$ is a proper ideal in $R_p[x]$. Therefore (f(x), p) must be a proper ideal in R[x].

Case 2. p = 2. Now $(f(x), 2)_{R[x]} \subseteq (f(x), \lambda)_{R[x]}$. Then, as in Case 1, it follows that $(f(x), \lambda) \neq R[x]$.

LEMMA 2. Let $A(x) = (\alpha_1(x), \ldots, \alpha_n(x))$ be a proper maximal ideal in R[x]. Then A(x) contains a non-zero integer from Z.

Proof. Let $\alpha_l(x) = a_0^{(l)}(x) + a_1^{(l)}(x)i + a_2^{(l)}(x)j + a_3^{(l)}(x)k$, for $l \leq l \leq r$. Then, by the same argument that was used in Theorem 5, $4a_0^{(l)}(x), 4a_1^{(l)}(x), 4a_2^{(l)}(x), 4a_3^{(l)}(x)$ are in A(x) for $l \leq l \leq r$. Thus $2a_0^{(l)}(x), 2a_1^{(l)}(x), 2a_2^{(l)}(x), 2a_3^{(l)}(x)$ are in Z[x], for $l \leq l \leq r$, and their greatest common divisor in Z[x] must be 1 or 2. Suppose not. Then there exists g(x), not a unit, in Z[x] such that g(x)divides $a_m^{(l)}(x)$ for $0 \leq m \leq 3$ and $l \leq l \leq 3$. Hence g(x) divides $\alpha_l(x)$ for $l \leq l \leq r$. But then $A(x) \subseteq (g(x)) \subsetneq R[x]$. Since A(x) is maximal it now follows that $A(x) = (g(x))_{R[x]}$, which is false by Lemma 1.

Since the greatest common divisor in Z[x] of the $2a_m^{(l)}(x)$ is 1 or 2, there exists $t_m^{(l)}(x)$, $1 \le l \le r$, $0 \le m \le 3$, in Q[x] such that

$$2\sum_{l}\sum_{m}a_{m}^{(l)}(x)t_{m}^{(l)}(x) = 1 \text{ or } 2.$$

Clearing denominators in the preceeding immediately gives the desired result.

LEMMA 3. Let $A(x) = (\alpha_1(x), ..., \alpha_p(x))$ be a proper maximal ideal in R[x]. Then A(x) contains either (i) a prime integer $p \neq 2$ from Z, or

(ii) an element from R of norm two.

Proof (i) (showing that A(x) contains some prime integer p). By Lemma 2, A(x) contains a non-zero integer n. Let the prime decomposition of n in Z be $p_1 \ldots p_m$.

If p_1 is in A(x) the proof is finished.

Suppose p_1 is not in A(x). Since A(x) is maximal it follows that $(A(x), p_1) = R[x]$. Hence there exists $\alpha(x)$ in A(x) and $\beta(x)$ in B(x) such that $\alpha(x) + \beta(x)p_1 = 1$. Thus

$$\alpha(x)p_2 \cdots p_m + \beta(x)n = p_2 \cdots p_m,$$

so $p_2 \dots p_m$ is in A(x). If p_2 is in A(x), the proof is finished. If not, by the same arguments as above, $p_3 \dots p_m$ is in A(x). Repeating the above argument, it must eventually follow that p_m is in A(x) if p_1, \dots, p_{m-1} are not.

(ii) If the prime integer obtained in (i) is odd the proof is finished.

Suppose the prime integer obtained in (*i*) is 2. Note that $2 = \lambda \overline{\lambda}$. Suppose λ is not in A(x); then since A(x) is maximal, $(A(x), \lambda) = R[x]$. Recalling that if λ is a left divisor it is a right divisor and vice versa, there must exist $\alpha(x)$ in A(x) and $\beta(x)$ in R[x] such that $\alpha(x) + \beta(x)\lambda = 1$. Thus $\alpha(x)\overline{\lambda} + \beta(x)2 = \overline{\lambda}$, so $\overline{\lambda}$ is in A(x).

COROLLARY. Let A(x) be a proper maximal ideal in R[x]. Then A(x) must contain a proper maximal ideal from R.

Proof. This is immediate from Lemma 3.

Since all ideals in R generated by elements of norm two are equal it follows from this corollary that $\lambda = 1 + i$ must be in A(x).

LEMMA 4. Let M(x) be a proper maximal ideal in R[x]. Then either

(i)
$$M(x) = (a(x), p)$$
, where p is an odd prime in Z and
 $a(x) \ddagger 1 \mod p$ is in $Z[x]$ and irreducible $\mod p$; or

(ii)
$$M(x) = (\alpha(x), \lambda)$$
, where $N(\lambda) = 2$ and $\alpha(x) \ddagger 1 \mod \lambda$ is irreducible mod λ .

Proof. By Lemma 3, M(x) contains either a prime $p \neq 2$ or $\lambda = 1 + \dot{\iota}$.

Case 1. M(x) contains a prime $p \neq 2$. Let $M(x) = (p, \alpha_1(x), \ldots, \alpha_p(x))$. Then since $(p)_{R[x]} \subseteq M(x)$, it follows that $R[x]/M(x) \cong R_p[x]/\phi_p(M(x))$, where ϕ_p is again the natural epimorphism from R[x] to $R_p[x]$. Thus $\phi_p(M(x))$ is a proper ideal in $R_p[x]$. By Theorem 8, $\phi_p(M(x)) \subseteq (a_p(x))$, for some $a_p(x)$ which is irreducible in $Z_p[x]$. Hence $\phi_p(\alpha_l(x)) = a_p(x)\beta_p(x)$ for some $\beta_p(x)$ in $R_p[x]$, where $1 \leq l \leq r$. Therefore $\alpha_l(x) - a(x)\beta(x)$ must be in $(p)_{R[x]}$, $1 \leq l \leq r$, for some $\beta(x)$ in R[x] and a(x) irreducible in $Z_p[x]$. Thus $\alpha_l(x)$ is in (a(x), p) for $1 \leq l \leq r$, and consequently $M(x) \subseteq (a(x), p) \subseteq R[x]$. But

$$R[x]/(a(x), p) \cong R_p[x]/(\phi_p(a(x))) = R_p[x]/(a_p(x)) ,$$

and $(a_p(x)) \neq R_p[x]$ so $(a(x), p) \neq R[x]$. Then, since M(x) is maximal it must be that M(x) = (a(x), p).

Case 2. M(x) contains λ . Let $M(x) = (\lambda, \alpha_1(x), \ldots, \alpha_r(x))$. Then, as in Case 1, $\phi_{\lambda}(M(x)) \subseteq (\alpha_{\lambda}(x))$ for some $\alpha_{\lambda}(x)$ irreducible in $R_{\lambda}[x]$. Thus, since $R_{\lambda}[x]$ is commutative, for some $\beta_{\lambda}(x)$ in $R_{\lambda}[x]$, $\dot{\phi}_{\lambda}(\alpha_{l}(x)) = \alpha_{l}(x)\beta_{\lambda}(x)$ where $l \leq l \leq r$. The argument is now completed in a similar fashion to Case 1.

LEMMA 5. (i) Let p be an odd prime and $a(x) \ddagger 1 \mod p$ be in Z[x] and irreducible mod p. Then M(x) = (a(x), p) is a proper maximal ideal in R[x].

(ii) Let $\lambda = 1 + i$ and $\alpha(x) \notin 1 \mod \lambda$ in R[x] be irreducible mod λ . Then $M(x) = (\alpha(x), \lambda)$ is a proper maximal ideal in R[x].

Proof. (i) Suppose (a(x), p) is not a maximal ideal in R[x]. Since R[x] is noetherian there must exist a maximal ideal $N_1(x)$ in

R[x] such that $(p, a(x)) \not\subseteq N_1(x) \not\subseteq R[x]$. By Lemma 3, $N_1(x)$ must contain either an odd prime or λ . Since $N_1(x) \neq R[x]$ it is clear that $N_1(x)$ can not contain λ or any odd prime except p. Thus, by Lemma 4, $N_1(x) = (b(x), p)$, where b(x), not a unit, is in Z[x] and irreducible mod p.

Since a(x) is in $(b(x), p) = N_1(x)$, there must exist $\alpha(x)$ and $\beta(x)$ in R[x] such that $a(x) = b(x)\beta(x) + p\alpha(x)$. Hence $\phi_p(a(x)) = \phi_p(b(x)\phi_p(\beta(x)))$ in $R_p[x]$. But a(x) is irreducible mod p, hence $\phi_p(a(x))$ must be irreducible in $R_p[x]$; thus $\phi_p(\beta(x))$ must be a unit in $R_p[x]$. Let $\gamma_p(x)$ be its inverse in $R_p[x]$; then since ϕ_p is an epimorphism there must be a $\gamma(x)$ in R[x] such that $\phi_p(\gamma(x)) = \gamma_p(x)$. Hence $\gamma(x)a(x) - b(x)$ is in (p) in R[x]. Thus b(x) is in (a(x), p). But then $(a(x), p) = N_1(x)$, which is a contradiction.

(*ii*) Suppose $(\alpha(x), \lambda)$ is not a maximal ideal in R[x]. Then it must be contained in a maximal ideal $N_1(x)$. By Lemma 3, $N_1(x)$ must contain either an odd prime from Z or λ . Since $N_1(x) \neq R[x]$ it is clear that $N_1(x)$ can not contain an odd prime p. Thus $N_1(x)$ must be of the form $(\beta(x), \lambda)$ where $\beta(x) \ddagger 1 \mod \lambda$ and $\beta(x)$ is irreducible mod λ . Hence $(\alpha(x), \lambda) \subseteq (\beta(x), \lambda)$; so $(\phi_{\lambda}(\alpha(x))) \subseteq (\phi_{\lambda}(\beta(x)))$ in $R_p[x]$. But $\alpha(x)$ is irreducible mod λ , so $(\phi_{\lambda}(\alpha(x)))$ is a maximal ideal in $R_{\lambda}[x]$; hence $(\phi_{\lambda}(\alpha(x))) = (\phi_{\lambda}(\beta(x)))$. Returning to R[x] it follows that $(\alpha(x), \lambda) = (\beta(x), \lambda) = N_1(x)$, which is a contradiction.

THEOREM 10. M(x) is a proper maximal ideal in R[x], if, and only if, either

(i) M(x) = (a(x), p), where p is an odd prime in Z and a(x) ± 1 mod p in Z[x] is irreducible mod p; or
(ii) M(x) = (a(x), λ), where N(λ) = 2 and a(x) ± 1 mod λ is irreducible mod λ.

Proof. Immediate by Lemmas 4 and 5.

The preceding discussion showed that the maximal ideals were not, as might be expected, generated by the prime elements of R[x]. The following discussion will show that the unexpected also happens in the characterization of the prime ideals. Again, as for the maximal ideals, a characterization surprisingly analogous to the situation in Z[x] will be shown to occur.

LEMMA 6. Let P(x) be a prime ideal in R[x]. Then $P(x) \cap R$ is a prime ideal in R.

Proof. Suppose $P(x) \cap R$ is not a prime ideal in R. Then there exist ideals A and B in R such that $AB \subseteq P(x) \cap R$, but neither Anor B is in this intersection. Now raise the ideals A and B to R[x]forming the ideals A(x) and B(x). Then $A(x) = (\alpha)$ and $B(x) = (\beta)$ for some α and β in R.

Let $\gamma(x)$ be any element in A(x)B(x). Then

$$\gamma(x) = \left[\sum_{l=1}^{n} \gamma_{l}^{(1)}(x) \alpha \gamma_{l}^{(2)}(x)\right] \left[\sum_{h=1}^{m} \gamma_{h}^{(3)}(x) \beta \gamma_{h}^{(4)}(x)\right],$$

where $\gamma_l^{(1)}(x)$, $\gamma_l^{(2)}(x)$, $\gamma_h^{(3)}(x)$, $\gamma_h^{(4)}(x)$, $l \leq l \leq n$, $l \leq h \leq m$, are in R[x]. Thus $\gamma(x)$ is a polynomial with coefficients in AB. Hence $A(x)B(x) \subseteq P(x)$, which is prime. Without loss of generality, suppose $A(x) \subseteq P(x)$; then $A \subseteq A(x) \cap R \subseteq P(x) \cap R$, which is a contradiction.

LEMMA 7. Let m be in Z, a(x) be in Z[x], and $\alpha(x)$, $\beta(x)$ be in R[x]. If $m\alpha(x) = a(x)\beta(x)$ and a(x) is irreducible in Z[x], then m divides $\beta(x)$.

Proof. Let $a(x) = a_0 + a_1 x + \dots + a_n x_1^{n_1}$ in Z[x], $\beta(x) = \beta_0 + \dots + \beta_n x_2^{n_2}$ in R[x] and $p_1 \dots p_q$ be the prime factorization of m in Z. Since a(x) is irreducible in Z[x], there must exist a first coefficient, say a_s , such that p_1 does not divide a_s in Z. Suppose p_1 does not divide $\beta(x)$ in R[x]. Then there exists a first coefficient, say β_t , such that p_1 does not divide β_t in R. Now the coefficient of x^{s+t} in $\alpha(x)\beta(x)$ is

$$a_0\beta_{s+t} + a_1\beta_{s+t-1} + \dots + a_s\beta_t + \dots + a_{s+t}\beta_0$$
.

Since this coefficient is divisible by p_1 and a_0, \ldots, a_{s-1} , $\beta_{t-1}, \ldots, \beta_0$ are divisible by p_1 it follows that p_1 divides $a_s\beta_t$ in R. But since p_1 is prime and p_1 does not divide a_s , there exist c_1 and c_2 in Z such that $c_1p_1 + c_2a_s = 1$. Hence $c_1p_1\beta_t + c_2a_s\beta_t = \beta_t$, so that p divides β_t in R, which is a contradiction. Hence p_1 divides $\beta(x)$ in R[x].

Suppose $\beta(x) = p_1 \beta_1(x)$; then $p_2 \dots p_q \alpha(x) = \alpha(x)\beta_1(x)$, so by the same argument as above p_2 must divide $\beta_1(x)$. Continuing in this fashion it follows that m divides $\beta(x)$.

COROLLARY. Let p be prime in Z, a(x) be in Z[x] and $\alpha(x)$, $\beta(x)$ be in R[x]. If $p\alpha(x) = a(x)\beta(x)$ in R[x] and p does not divide a(x), then p divides $\beta(x)$.

Proof. Let $a(x) = a_0 + a_1 x + \ldots + a_n x^n$ in Z[x] and $\beta(x) = \beta_0 + \ldots + \beta_m x^m$ in R[x]. Since p does not divide a(x) there must exist a first coefficient, say a_g , such that p does not divide a_g in Z.

Now suppose p does not divide $\beta(x)$ in R[x] and obtain a contradiction as in Lemma 7.

LEMMA 8. Let P(x) be a proper prime ideal in R[x]. Then P(x) must have one of the following forms:

(i) (p(x)), where p(x) is irreducible in Z[x];
(ii) (P), where P is a prime ideal in R;
(iii) (a(x), p), where p is an odd prime in Z and a(x) \$\mu\$ 1 mod p in Z[x] is irreducible mod p;

(iv) $(a(x), \lambda)$, where $N(\lambda) = 2$ and $\alpha(x) \ddagger 1 \mod \lambda$ is irreducible mod λ .

Proof. By Lemma 6, $P(x) \cap R$ is a prime ideal in R. Thus, by Theorem 2, there are three cases to consider.

Case 1. $P(x) \cap R = \{0\}$. First raise P(x) to be an ideal in K[x]. Since $P(x) \cap R = \{0\}$ this must be a proper ideal in K[x]; so, by Theorem 5, $P(x)_{K[x]} = (a(x))$ for some a(x) in Z[x]. Hence a(x) can be written as a K[x] linear combination of generators for P(x). But then there exists a d in Z such that da(x) can be written as an R[x] linear combination of generators for P(x), so that da(x) is in P(x). Since d and a(x) are in the center of R[x] it follows that the ideal product (d)(a(x)) is in P(x). But P(x) is prime and $P(x) \cap R = \{0\}$; therefore $(a(x)) \subseteq P(x)$.

Let $a_1(x) \ldots a_n(x)$ be the prime factorization of a(x) in $\mathbb{Z}[x]$. Then one of the ideals $(a_l(x))$, $1 \le l \le n$, must be in P(x). Without loss of generality, suppose $(a_1(x)) \subseteq P(x)$. Then it remains to show that $P(x) \subseteq (a_1(x))$. Suppose the generators of P(x) are $\alpha_1(x), \ldots, \alpha_p(x)$. Since $P(x)_{K[x]} = (a(x)) = (a_1(x) \ldots a_n(x))_{K[x]}$ it follows that there exist integers m_1, \ldots, m_p in Z such that $m_h \alpha_h(x) = a_1(x)\beta_h(x)$, $1 \le h \le r$, where $\beta_h(x)$ is in R[x] and $a_1(x)$ is irreducible in $\mathbb{Z}[x]$. By Lemma 7, m_l divides $\beta_h(x)$ in R[x] for $1 \le h \le r$. Thus $\alpha_h(x)$, $1 \le h \le r$, is in the ideal $(a_1(x))$ in R[x]; so $P(x) \subseteq (a_1(x))$.

Hence $P(x) = (a_1(x))$, where $a_1(x)$ is irreducible in Z[x]. Case 2. $P(x) \cap R = P$, where $P \neq \{0\}$ is a proper prime ideal in R.

(i) P = (p) where p is an odd prime in Z. The first step is to show that $\phi_p(P(x))$ is a prime ideal in $R_p[x]$. Let $(a_p(x))$ and $(b_p(x))$ be proper ideals in $R_p[x]$ such that $(a_p(x))(b_p(x)) \subseteq \phi_p(P(x))$. Then $a_p(x)b_p(x)$ is in $\phi_p(P(x))$, so that $a_p(x)b_p(x) + \alpha(x)p$ is in

P(x) for some $\alpha(x)$ in R[x]. But p is in P(x), so $a_p(x)b_p(x)$ must be in P(x). Since $a_p(x)$ and $b_p(x)$ are both in the center of R[x] and P(x) is prime it must be that $a_p(x)$ or $b_p(x)$ is in P(x). Hence $(a_p(x))$ or $(b_p(x))$ must be in $\phi_p(P(x))$ and thus $\phi_p(P(x))$ is a prime ideal in $R_p[x]$.

By the above the prime ideals in R[x] containing p must lie among the inverse images with respect to ϕ_p of the prime ideals in $R_p[x]$. But the only ideals in R[x] which contain p and are among these inverse images are (p) and (a(x), p), where a(x) is in Z[x] and irreducible mod p.

(ii) $P = (\lambda)$ where $N(\lambda) = 2$. Then, since λ is in P(x), the isomorphism $R[x]/P(x) \cong R_{\lambda}[x]/\phi_{\lambda}(P(x))$ holds. But $R_{\lambda}[x]$ is a commutative ring; thus P(x) is a prime ideal in R[x], if, and only if, $\phi_{\lambda}(P(x))$ is a prime ideal in $R_p[x]$. Thus the prime ideals in R[x] containing λ must be among the inverse images with respect to ϕ_{λ} of the prime ideals in $R_{\lambda}[x]$. Consequently, the only possibilities are (λ) and $(\alpha(x), \lambda)$, where $\alpha(x)$ in R[x] is irreducible mod λ .

Case 3. $P(x) \cap R = R$. If this is true, then 1 is in P(x) which is impossible.

LEMMA 9. (i) Let p be an odd prime in Z and $a(x) \ddagger 1 \mod p$ in Z[x] be irreducible mod p. Then (a(x), p) is a proper prime ideal in R[x].

(ii) Let $N(\lambda) = 2$ and $\alpha(x)$ in R[x] be irreducible mod λ . Then $(\alpha(x), \lambda)$ is a proper prime ideal in R[x].

Proof. (i) Let C(x) and B(x) be two ideals in R[x] such that $C(x)B(x) \subseteq (a(x), p)$. Then

$$\phi_p(C(x))\phi_p(B(x)) \subseteq \phi_p(a(x), p) = \phi_p(a(x)) = A_p(x),$$

say. By Theorem 8, $A_p(x)$ is a prime ideal in $R_p[x]$. Without loss of generality $\phi_p(B(x)) \subseteq A_p(x)$. Then

$$B(x) \subseteq \phi_p^{-1}\phi_p(B(x)) \subseteq \phi_p^{-1}(A_p(x)) \subseteq (a(x), p) ,$$

for, by Theorem 10, (a(x), p) is a maximal ideal. Thus (a(x), p) is a prime ideal.

(ii) Follows by the same argument as was used in (i).

LEMMA 10. (i) Let p be an odd prime in Z. Then (p) is a proper prime ideal in R[x].

(ii) Let $N(\lambda) = 2$. Then (λ) is a proper prime ideal in R[x].

Proof. (i) Let A(x) and B(x) be two ideals in R[x] such that $A(x)B(x) \subseteq (p)$. Then, in $R_p[x]$, $\phi_p(A(x))\phi_p(B(x)) \subseteq (0)$.

Case 1. At least one of $\phi_p(A(x))$ or $\phi_p(B(x))$ is (0). Without loss of generality suppose it is $\phi_p(A(x))$. Then

 $A(x) \subseteq \phi_p^{-1}(\phi_p(A(x))) \subseteq (p)$ and the proof is complete.

Case 2. $\phi_p(A(x))$ and $\phi_p(B(x))$ are both proper ideals in $R_p[x]$. By Theorem 8, there exist $a_p(x)$ and $b_p(x)$ in $Z_p[x]$ such that $\phi_p(A(x)) = (a_p(x))$ and $\phi_p(B(x)) = (b_p(x))$. Then, since $(a_p(x))(b_p(x)) \subseteq (0)$, p must divide $a_p(x)b_p(x)$ in Z[x]. Consequently, without loss of generality, p divides $a_p(x)$ in Z[x]. Thus $(a_p(x)) = (0)$; so $A(x) \subseteq \phi_p^{-1}(\phi_p(A(x))) \subseteq (p)$ and the proof is complete.

Case 3. Either $\phi_p(A(x))$ or $\phi_p(B(x))$ is $R_p[x]$. Without loss of generality, suppose $\phi_p(A(x)) = R_p[x]$. Then, by Theorem 8, it must be generated by a primitive element in $R_p[x]$. Thus the generator of $\phi_p(B(x))$ must be divisible by p; so $\phi_p(B(x)) = (0)$, and again the proof is complete.

(*ii*) Let A(x) and B(x) be two ideals in R[x] such that $A(x)B(x) \subseteq (\lambda)$. Then $\phi_{\lambda}(A(x))\phi_{\lambda}(B(x)) \subseteq (0)$ in $R_{\lambda}[x]$. Since $R_{\lambda}[x]$ is a commutative integral domain it follows, without loss of generality,

that $\phi_{\lambda}(A(x)) \subseteq (0)$. Thus $A(x) \subseteq \phi_{\lambda}^{-1}\phi_{\lambda}(A(x)) \subseteq (\lambda)$, and the proof is complete.

LEMMA 11. Let p(x), not equal to a constant, be irreducible in 2[x]. Then (p(x)) is a prime ideal in R[x].

Proof. Let A(x) and B(x) be ideals in R[x] such that $A(x)B(x) \subseteq (p(x))$. Then, lifting each of these ideals to K[x], it follows that $A(x)_{K[x]}^{B(x)}_{K[x]} \subseteq (p(x))_{K[x]}$. By Theorem 6, $(p(x))_{K[x]}$ is a prime ideal in K[x]. Without loss of generality, suppose $A(x)_{K[x]} \subseteq (p(x))_{K[x]}$.

Let $\alpha_1(x)$, ..., $\alpha_r(x)$ be the generators of A(x) in R[x]. Then $\alpha_l(x) = p(x)\rho_l(x)$, $1 \leq l \leq r$, $\rho_l(x)$ in K[x]; so $m_l\alpha_l(x) = p(x)\beta_l(x)$, $1 \leq l \leq r$, $\beta_l(x)$ in R[x], and m_l in Z. Hence, by Lemma 7, m_l divides $\beta_l(x)$ in R[x] for $1 \leq l \leq r$. Thus $\alpha_l(x)$ is in (p(x)) for $1 \leq l \leq r$. Hence $A(x) \subseteq (p(x))$ and (p(x))is a prime ideal in R[x].

THEOREM 11. P(x) is a proper prime ideal in R[x], if, and only if, one of the following is true:

(i) P(x) = (p(x)), where p(x), not a unit, is irreducible in Z[x];
(ii) P(x) = (P), where P is a proper prime ideal in R;
(iii) P(x) = (a(x), p), where p is an odd prime in Z and a(x) \mod 1 l mod p in Z[x] is irreducible mod p;
(iv) P(x) = (a(x), λ), where N(λ) = 2 and a(x) \mod 1 l mod λ is in R[x] and irreducible mod λ.

Proof. This is immediate from Lemmas 8 through 11.

D. A Szekeres type basis for the ideals of R[x]

DEFINITION. Let A(x) be an ideal in R[x]. A(x) is a primitive ideal if there does not exist an ideal (a(x)), where a(x) is in Z[x] or N(a(x)) = 2, such that $A(x) \subseteq (a(x)) \subsetneq R[x]$.

Let $\alpha(x)$ be an element in R[x]. Then

$$2\alpha(x) = a_0(x) + a_1(x)i + a_2(x)j + a_3(x)k$$

for some $a_0(x)$, $a_1(x)$, $a_2(x)$, $a_3(x)$ in $\mathbb{Z}[x]$. Let a(x) be the greatest common divisor of $a_0(x)$, ..., $a_3(x)$ in $\mathbb{Z}[x]$. Then

$$2\alpha(x) = \alpha(x) \left(b_0(x) + b_1(x) i + b_2(x) j + b_3(x) k \right) = \alpha(x)\beta(x) ,$$

where $\beta(x)$ is in R[x], its coordinates are in Z[x], and have no common divisor there. Then there are two possibilities:

- (i) two divides a(x) in Z[x]; then, clearly, $\frac{a(x)}{2}$ is the largest element in Z[x] which divides $\alpha(x)$ in R[x];
- (ii) two does not divide a(x) in Z[x]; then, by the corollary to Lemma 7, two must divide $\beta(x)$ in R[x]. Hence, a(x) is the largest element in Z[x] which divides $\alpha(x)$ in R[x].

Now let $B(x) = (\beta_1(x), \ldots, \beta_s(x))$ be any ideal in R[x]. By the preceding paragraph, for each $\beta(x)$, $1 \leq l \leq s$, there is a greatest $a_l(x)$ in Z[x] such that $\beta_l(x) = a_l(x)\gamma_l(x)$, $\gamma_l(x)$ in R[x]. Now let a(x) be the greatest common divisor of the $a_l(x)$, $1 \leq l \leq s$, in Z[x]. Then

$$B(x) = (a(x)) (\gamma_1(x), \ldots, \gamma_s(x)) .$$

Let $\gamma_{\mathcal{I}}(x) = \gamma_{0}^{(1)} + \gamma_{1}^{(1)}x + \ldots + \gamma_{m_{\mathcal{I}}}^{(1)}x^{m_{\mathcal{I}}}$, $1 \leq \ell \leq s$. Factor from the $\gamma_{h}^{(1)}$, $1 \leq \ell \leq s$, $0 \leq h \leq m_{\mathcal{I}}$, all common factors λ in R with norm two. Let $\gamma_{\mathcal{I}}(x) = \lambda_{1} \ldots \lambda_{t} \alpha_{\mathcal{I}}(x)$, $1 \leq \ell \leq s$, and $N(\lambda_{1}) = \ldots = N(\lambda_{t}) = 2$. Then

$$B(x) = (a(x))(\lambda_{1}) \ldots (\lambda_{t})(\alpha_{1}(x), \ldots, \alpha_{s}(x)) = (a(x))(\lambda)^{t}A(x) ,$$

where t is a non-negative integer and $A(x) = (\alpha_1(x), \ldots, \alpha_s(x))$. Then A(x) is a primitive ideal in R[x].

Thus, in order to characterize all the ideals in the ring R[x], it

is sufficient to characterize the primitive ideals. This will be done by adapting a proof by Szekeres [3].

LEMMA 12. Let A(x) be a primitive ideal in R[x]. Then A(x) contains a non zero integer from Z.

Proof. Let $A(x) = (\alpha_1(x), \ldots, \alpha_n(x))$ where

$$\alpha_{l}(x) = a_{0}^{(l)}(x) + a_{1}^{(l)}(x)i + a_{2}^{(l)}(x)j + a_{3}^{(l)}(x)k$$

for $1 \leq l \leq r$. Then, by the same argument as in Theorem 5, $4a_m^{(l)}(x)$, $1 \leq l \leq r$, $0 \leq m \leq 3$, are in $A(x) \cap Z[x]$. Moreover, since A(x) is primitive, the greatest common divisor in Z[x] of these elements must be 2 or 4. Thus, there exist $h_m^{(l)}(x)$, $1 \leq l \leq r$, $0 \leq m \leq 3$, in Q[x]such that $4 \sum_{l} \sum_{m} a_m^{(l)}(x) h_m^{(l)}(x)$ is 2 or 4. Clearing denominators, it follows that

$$\sum_{l} \sum_{m} 4a_{m}^{(l)}(x)k_{m}^{(l)}(x) = k \neq 0$$

in Z, where the $k_m^{(l)}(x)$, $1 \le l \le r$, $0 \le m \le 3$, are in Z[x]. Hence k is in A(x).

DEFINITION. Let α and β be in R. Then α is equivalent to β ($\alpha \sim \beta$), if, and only if, (α) = (β).

In each equivalence class of R defined above choose a certain element. This will be called a *normed* element of R.

Now the only proper ideals in R are of the form $(m\lambda^t)$ where m is non negative in Z, $N(\lambda) = 2$, and t = 0 or 1. Thus one complete representative set of the normed R is

$$N = \{0, 1, 2, ..., \lambda, 2\lambda, 3\lambda, ...\}.$$

For convenience let $\overline{N} = \{0, 1, 2, \dots, \overline{\lambda}, 2\overline{\lambda}, 3\overline{\lambda}, \dots\}$.

LEMMA 13. Let $A \subseteq B$ be ideals in R and $A = (\gamma_1)$, where γ_1 is given in $N \cup \overline{N}$. Then there exists a γ_2 in $N \cup \overline{N}$ such that $B = (\gamma_2)$

and $\gamma_1 = \alpha \gamma_2$ where α is in N.

Proof. Clearly γ_2 can be chosen in $N \cup \overline{N}$ so that $B = (\gamma_2)$ and γ_2 can be either of the form $m_2 \lambda^{t_2}$ or $m_2 \overline{\lambda}^{t_2}$. It just remains to show that given γ_1 and the fact that $\gamma_1 = \alpha_1 m_2 \lambda^{t_2} = \alpha_2 m_2 \overline{\gamma}^{t_2}$, at least one of the α_1 or α_2 is in N.

Case 1. γ_1 is in N. Let $\gamma_1 = m_1 \gamma_1^{t_1} = \alpha_1 m_2 \lambda^{t_2} = \alpha_2 m_2 \overline{\lambda}^{t_2}$.

(i) $t_1 = t_2 = 0$. Then $m_1 = \alpha_1 m_2$, so $m_1^2 = N(\alpha_1)m_2^2$ in Z and m_2 must divide m_1 . Thus α_1 is in N for $\gamma_2 = m_2$.

(ii) $t_1 = 0$, $t_2 = 1$. Then $m_1 = \alpha_2 m_2 \overline{\lambda}$, so $m_1^2 = 2N(\alpha_2)m_2^2$ in *A*. Thus $m_1 = km_2$ for some *k* in *Z*; hence $k^2 = N(\alpha_2)^2$, so *k* must be even. Let $k = 2k_1$. Then $2k_1 = \alpha_2 \overline{\lambda}$, so $k_1 \lambda = \alpha_2$; that is, α_2 is in *N* if $\gamma_2 = m_2 \overline{\lambda}$.

(iii) $t_1 = 1$, $t_2 = 0$. Then $m_1 \lambda = \alpha_1 m_2$; so $2m_2^2 = N(\alpha_1)m_2^2$ in *A*. Hence m_2 divides m_1 in *Z*. Thus α_1 is in *N* if $\gamma_2 = m_2$.

(iv) $t_1 = t_2 = 1$. Then $m_1\lambda = \alpha_1m_2\lambda$; so $m_1 = \alpha_1m_2$ and the proof is as in (i).

Case 2. γ_1 is in \overline{N} . Let $\gamma_1 = m_1 \overline{\lambda}_1^{t_1}$. Then the same type of argument that was used in Case 1 holds.

Let $R(\alpha)$ be the system of representatives containing the element 0 , of the residue classes mod α , for an element α in N .

THEOREM 12. Let A(x) be a primitive ideal in R[x]. Then $A(x) = (\alpha_0(x), \dots, \alpha_m(x))$, where

(i)
$$\alpha_0(x) = \alpha_1 \dots \alpha_m$$
,

$$\alpha_{l}\alpha_{l}(x) = x\alpha_{l-1} + \sum_{h=1}^{l} \beta_{hl}\alpha_{h-1}(x) , \quad 1 \leq l \leq m;$$

(ii) $\alpha_{1}, \ldots, \alpha_{m}$ are in N, $\alpha_{l} \neq 0$, and $\alpha_{m} \neq 1;$
(iii) $\beta_{1l}, \ldots, \beta_{ll}$ are in $R(\alpha_{l})$ for $1 \leq l \leq m$.

Proof I (showing that $\alpha_0(x)$, ..., $\alpha_m(x)$ are in R[x]). Obviously $\alpha_0(x)$ is in R[x].

(i)
$$\alpha_{1}\alpha_{1}(x) = x\alpha_{0}(x) + \beta_{11}\alpha_{0}(x)$$
$$= (x+\beta_{11})\alpha_{1} \dots \alpha_{m}$$
$$= \alpha_{1}(x+\beta_{11}')\alpha_{2} \dots \alpha_{m} ,$$

where β'_{11} is in R. Thus $\alpha_1(x) = (x+\beta'_{11})\alpha_2 \dots \alpha_m$ and is in R[x]. Moreover $\alpha_1(x)$ has leading coefficient $\alpha_2 \dots \alpha_m$.

(*ii*)
$$\alpha_{2}\alpha_{2}(x) = x\alpha_{1}(x) + \beta_{12}\alpha_{0}(x) + \beta_{22}\alpha_{1}(x)$$

= $(x+\beta_{22})(x+\beta'_{11})\alpha_{2} \dots \alpha_{m} + \beta_{12}\alpha_{1} \dots \alpha_{m}$
= $\alpha_{2}(x+\beta'_{22})(x+\beta''_{11})\alpha_{3} \dots \alpha_{m} + \alpha_{2}\beta'_{12}\alpha'_{1}\alpha_{3} \dots \alpha_{m}$,

where β'_{22} , β''_{11} , β'_{12} , α'_1 are in R. Thus $\alpha_2(x)$ is in R[x] and has leading coefficient $\alpha_3 \cdots \alpha_m$.

(*iii*) Continuing in this fashion it follows that $\alpha_0(x)$, ..., $\alpha_m(x)$ are in R[x]. The leading coefficient of $\alpha_l(x)$, $l \leq l \leq m$, is $\alpha_{l+1} \cdots \alpha_m$ and the leading coefficient of $\alpha_m(x)$ is l.

II (showing that $(\alpha_0(x), \ldots, \alpha_m(x))$ is indeed a primitive ideal). Since $\alpha_m(x)$ has leading coefficient 1 and $\alpha_0(x)$ is a constant other than zero it is obvious that for m > 0, the ideal $(\alpha_0(x), \ldots, \alpha_m(x))$ is primitive. For m = 0, the polynomial sequence $\alpha_0(x), \ldots, \alpha_m(x)$ is reduced to $\alpha_0(x) = 1$; so $(\alpha_0(x), \ldots, \alpha_m(x))$ is again primitive.

III. Let $M_{\mathcal{I}}(x)$ be the two-sided R-module consisting of those elements of A(x) whose degree is at most \mathcal{I} . Then

$$M_{0}(x) \subseteq M_{1}(x) \subseteq M_{2}(x) \subseteq \ldots$$

Furthermore, the leading coefficients of the elements of $M_{l}(x)$ form an ideal $M_{7} = (\gamma_{7})$ in R. By Lemma 12, $M_{0} \neq \{0\}$; thus

$$M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots$$

is a non-trivial chain.

IV. Since R[x] is a noetherian ring, A(x) is finitely generated. Consequently, there is a minimal l for which A(x) is generated by the elements of $M_{l}(x)$. Denote this l by m(A(x)) = m.

V. Now choose, in one way or another, from among each of the $M_0(x)$, ..., $M_m(x)$ a polynomial $\alpha_l(x) = \gamma_l x^l + \ldots$, $0 \le l \le m$. Then, for each element $\alpha(x)$ of $M_l(x)$, l > 0, since its leading coefficient is in M_l which is principal, there is an α in R for which $\alpha(x) = \alpha \alpha_l(x)$ lies in $M_{l-1}(x)$. Then, since the degrees of $\alpha_l(x)$, ..., $\alpha_0(x)$ are descending, it follows by induction that $\alpha_0(x)$, ..., $\alpha_l(x)$ constitute a left R-basis of the R-module $M_l(x)$. Moreover, by definition of m,

$$A(x) = (\alpha_0(x), \ldots, \alpha_m(x)) .$$

VI. By III, $M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots$. Each of these ideals is principal in R and the generator γ_0 of M_0 can be taken in N. Then, by Lemma 13, there exists γ_1 in $N \cup \overline{N}$ such that $M_1 = (\gamma_1)$ and $\gamma_0 = \alpha_1 \gamma_1$ where α_1 is in N. Continuing up this ideal chain applying Lemma 13, it follows that there exist elements $\alpha_1, \ldots, \alpha_m \neq 0$ in N such that

$$\alpha_{l-1} = \alpha_l \gamma_l , \quad 1 \le l \le m .$$

VII. By VI, $\alpha_{l}\gamma = \gamma_{l-1}$ for $1 \leq l \leq m$. Hence $\alpha_{l+1} \cdots \alpha_{m} = \gamma_{l}$ for $1 \leq l \leq m$. Thus, $\alpha_{l}\alpha_{l}(x) - x\alpha_{l-1}(x)$ is in $M_{l-1}(x)$ for $1 \leq l \leq m$. Hence, there exist β_{hl} , $1 \leq h \leq l$, $1 \leq l \leq m$, in R such that

$$\alpha_{l}\alpha_{l}(x) = x\alpha_{l-1}(x) + \sum_{h=1}^{l} \beta_{hl}\alpha_{h-1}(x) \quad \text{for } 1 \leq l \leq m ,$$

and $\alpha_0(x) = \alpha_1 \dots \alpha_m \alpha_m$.

Now, using the formulations for $\alpha_0(x)$, ..., $\alpha_m(x)$ in I, it follows that γ_m divides $\alpha_0(x)$, ..., $\alpha_m(x)$. But γ_m is in $N \cup \overline{N}$ and $\alpha_0(x)$, ..., $\alpha_m(x)$ generate A(x) which is primitive. Thus $\gamma_m = 1$.

VIII (showing that $\alpha_m \neq 1$). If $\alpha_m = 1$ (thus m > 0) it would follow from VII that $\alpha_m(x)$ is contained in the ideal generated by $\alpha_0(x), \ldots, \alpha_{m-1}(x)$. But then this ideal would be equal to A(x), contradicting the definition of m(A(x)) = m in IV.

IX (showing that β_{1l} , ..., β_{ll} are in (α_l) for $1 \leq l \leq m$). Clearly this condition holds for $\alpha_0(x)$. Now continue by induction. Suppose that for some r, $1 \leq r \leq m$, the $\alpha_0(x)$, ..., $\alpha_{r-1}(x)$ have been chosen as in V so that the coefficients β_{hl} , $1 \leq h \leq l$, $1 \leq l \leq r-1$, satisfy condition *(iii)*.

Let $\alpha_{p}^{*}(x)$ be any polynomial in A(x) which might replace $\alpha_{p}(x)$. Then $\alpha_{p}^{*}(x)$ and $\alpha_{p}(x)$ have the same leading coefficient $\alpha_{p+1} \dots \alpha_{m}$. Thus, since $\alpha_{p}^{*}(x)$ is in $M_{p}(x)$, there exist $\delta_{0}, \dots, \delta_{p-1}$ in R such that

$$\alpha_{r}^{*}(x) = \alpha_{r}(x) + \delta_{r-1}\alpha_{r-1}(x) + \ldots + \delta_{0}\alpha_{0}(x)$$
.

From this it follows that

$$\alpha_{r} \alpha_{r}^{*}(x) = x \alpha_{r-1}(x) + \sum_{l=1}^{r} (\beta_{lr} + \alpha_{r} \delta_{l-1}) \alpha_{l-1}(x) .$$

Thus $\beta_{lr}^* = \beta_{lr} + \alpha_r \delta_{l-1}$, $l \leq l \leq r$, and condition (*iii*) is satisfied.

References

- [1] Adolf Hurwitz, Vorlesungen über die Zahlentheorie der Quaternionen (Julius Springer, Berlin, 1919).
- [2] L. Redéi, Algebra, Volume 1 (International Series of Monographs in Pure and Applied Mathematics, 9]. Pergamon, Oxford, London, Eminburgh, New York, Toronto, Sydney, Paris, Braunschweig; Akadémiai Kiadó, Hungary; 1967).
- [3] G. Szekeres, "A canonical basis for the ideals of a polynomial domain", Amer. Math. Monthly 59 (1952), 379-386.

Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania, USA.