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Abstract

We give two characterizations of the Mobius invariant QK spaces, one in terms of a double integral and
the other in terms of the mean oscillation in the Bergman metric. Both characterizations avoid the use of
derivatives. Our results are new even in the case of Qp spaces.
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1. Introduction

Let D> be the open unit disk in the complex plane C. For any 0 < p < oo we consider
the space Qp consisting of all analytic functions / in D such that

||/| |2
0 = sup f | / ' (z ) | 2 ( l - \<p(z)\2)pdA(z) < oo,

where dA is the area measure on D normalized so that A(D) = 1, and the supremum
is taken over cp e Aut(D), the group of Mobius maps of D. The space Qp is Mobius
invariant in the sense that | | / o (p\\Qp = H/lle, for every / e Qp and <p e Aut(D).

Since every Mobius map cp can be written as <p(z) = e'9(pa(z), where 6 is real, and
q>a(z) = (a — z) /( l — dz) is the Mobius map of the unit disk that interchanges the
points 0 and a, we can also write

= sup f \f'(z)\2 (I-\<pa(z)\2)pdA(z).
aeO Jo
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It is well-known that for p > 1, we have Qp = 38, the Bloch space of analytic
functions / in D such that \\f\\& = supzeD(l - |z|2) |/ '(z)l < oo. It is also well
known that Qp = BMOA when p = 1. When p = 0, the space Qp degenerates to
the Dirichlet space, see [9] for a summary of recent research about Qp spaces.

More generally, for any nonnegative and Lebesgue measurable function K on (0, 1 ],
we consider the space QK consisting of all analytic functions / in the unit disk such
that

\\f\\2
QK = sup f \f'(z)\2K(l - \<pa(z)\2)dA(z) < oo.

aeO Jo

Clearly, if K(t) = tp, then QK = QP. It is also clear that QK is Mobius invariant,
that is, | | / o <p\\Qt, = \\f\\Qlc whenever f € QK and <p e Aut(D). A great deal of
function theory was worked out in [3] for the spaces QK- The paper [8] characterized
QK spaces in terms of higher order derivatives. More research on QK spaces can be
found in [2], [7].

The purpose of this paper is to give two characterizations of QK, which are free of
the use of derivatives. The first characterization, Theorem 3.3, is in terms of a double
integral involving the area measure on D. The other characterization, Theorem 4.2,
is based on the mean oscillation of a function in the Bergman metric. Our results are
new even for Qp spaces, although the corresponding results for the Bloch space are
well-known, see [1] and [10].

As a consequence of our main results, the Bloch space and the space BMOA
are characterized by the same type of conditions involving the area measure. For
example, BMOA can now be characterized in terms of the mean oscillation in the
Bergman metric. This seems to be something that has not been noticed before.

2. Preliminaries

We need an elementary, but somewhat non-standard tool, the so-called oro-coordin-
ates on the unit disk. Recall that, for any r > 0, the equation

II -z? "

defines a circle Cr that is internally tangent to the unit circle \z\ = 1 at the point
z = 1. These are called oro-cycles at z = 1, see [4]. It is easy to check that Cr can be
rewritten as

https://doi.org/10.1017/S1446788700016086 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016086


[3] QK spaces 285

It follows that the unit disk D> can be parametrized by

z = —— H eie, 0 < r < oo, 0 < 6 < 2n.

\+r \+r
This reparametrization of the unit disk will be called oro-coordinates on D. The

following lemma gives the right form of the area integral in terms of oro-coordinates.

LEMMA 2.1. Suppose f is Lebesgue measurable o« D. If f is nonnegative or
belongs to L'(O, dA), then

Jo * Jo Jo
where f(r,9) is the function f in oro-coordinates.

PROOF. See [6]. •

If the function K is only defined on (0, 1], then we extend it to (0, oo) by setting
K(t) = K{\) for t > 1. We can then define an auxiliary function as

K(st)
<pK(s) = sup , 0 < s < oo.

0<r<i K(t)

We further assume that K is continuous and nondecreasing on (0, 1]. This ensures
that the function <pK is continuous and nondecreasing on (0, oo).

We will also need to use the Berezin transform. More specifically, for any function
/ e L'(U, dA), we define a function Bf by

r (l - \z\
2)2

Bf(z)= / T ; — - = ^ f ( w ) d A ( w ) , z e D .
Jo |1 -zw\4

It is standard terminology to call Bf the Berezin transform of / . By a change of
variables, we can also write

= /D
Bf{z)= fo<pz(w)dA(w), z e D .

Jo

See [5] and [10] for basic properties of the Berezin transform.
The following estimate is the key to the main results of this paper.

LEMMA 2.2. Let K be any nonnegative and Lebesgue measurable function on

{0, oo) and f(z) = K(\-\z\2). If

(2.D
Jo

then there exists a positive constant C such that Bf(z) < Cf(z)for all z € D.
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PROOF. Recall that Bf(z) = / „ AT(1 - \<pz(w)\2) dA(w). Since

1 - \(pz{w)\ =
\\-zw\2

it follows from the definition of <pK that

K{\ - \<pz{w)\2) < K(l - \z\2)<pK ( , 1
1 ~ H

so Bf(z) < / ( z ) O ( z ) , zeO, where

= / 9K

The function <J> is continuous on D, so it is bounded on any compact subset of D.
On the other hand, if z e D is nonzero, then we use the monotonicity of (pK (together
with the obvious inequality I — \w\2 < I — \zw\2) and a change of variables to obtain

\z\2 JM<
1

If the condition in (2.1) is satisfied, then an application of Lemma 2.1 shows that

• dr < oo.

Combining this with the estimates in the previous paragraphs, we conclude that the
function O(z) is bounded in D. This completes the proof. •

If £ ( 0 = tp and f(z) = K(l - |z|2), then the Berezin transform of / is

Bf{z) = / (1 - \<Pz(w)\2Y dA(w)

= (l - \z\2Y L - \w\2)pdA(w)

o \\-zw\2p

= r (i - \w\2ydA(w)

JD |1 — zw\2p

By a well-known estimate (see [10, Lemma 4.2.2], for example), the last integral
above is a bounded function of z if and only if p < 2.
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On the other hand, if K(t) = tp, then it is easy to see that <pK(t) = tp as well. In
this case, it is clear that condition (2.1) holds if and only if p < 2. Therefore, at least
in the case of Qp spaces, the condition in (2.1) is best possible.

Let fi(z,w) denote the Bergman metric between two points z and w in P. It is
well-known that

P(z, w) = - log .
2 1 - \(pz(w)\

For z 6 O and R > 0 we use D(z, R) = [w e D> : fi(z, w) < R} to denote the
Bergman metric ball at z with radius R. If R is fixed, then it can be checked that the
area of D{z, R), denoted by \D(z, R)\, is comparable to (1 — |z|2)2 as z approaches
the unit circle, see [10].

LEMMA 2.3. For any R > 0 there exists a positive constant C (depending on R)
such that

JD(z,f

\f(w)\2dA(w)
~ \D(z, R)\ JDU,R)

for all z e 0 and all analytic functions f in D.

PROOF. See [10, Lemma 4.3.8], for example. •

3. A double integral characterization of QK

In this section we characterize the spaces QK in terms of a double integral that does
not involve the use of derivatives. We begin with the following estimate of Dirichlet
type integrals.

LEMMA 3.1. There exists a constant C > 0 (independent of K) such that

'(z)\2K(\-\z\2)dA(z)<CI(f)

for all analytic functions f in O, where

[\f'(
Jo
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PROOF. We write the double integral / ( / ) as an iterated integral

Making a change of variables in the inner integral, we obtain

(3.1) / ( / ) = f K
1
(1 ~ ]*}) dA(z) f \f(<pz(w)) - f(z)\2dA(w).

Jo v.1 ~ |z| ) Jo

It is well-known (verify using Taylor expansion or see [10, Theorem 4.27], for exam-
ple) that

(3.2) [ \g(w) - g(0)\2 dA(w) ~ / |g'(u;)|2(l - M2)2 dA(w)
J J

for analytic functions g in D. Applying (3.2) to the inner integral in (3.1) with the
function g(w) = f(<pz(u>)), we see that

/ ^ , ,2
o \* ~ \z\ ) Jo

By the chain rule and a change of variables, we get

! \{fo<pz)'{W)\\\-\w\2)2dA{w).
Jo

0.3)
Jo Jo

Fix any positive radius R. Then there exists a constant C > 0 such that

o JD(Z,R)

It is well-known that

(l - M 2 ) 2 i

| l - z«J | 4 ( l - | z | 2 ) 2 \D(z,R)\

forw e D(z, R), see [10, Section 4.3]. It follows that there exists a positive constant C
such that

/ ( / ) > C [ K(l - \z\2)dA(z) l f \f'(w)\2dA{w).
Jo \D\z, R)\ JDU.R)

Combining this with Lemma 2.3, we obtain a positive constant C such that

/(/)>C f \f'(z)\2K(l-\z\2)dA(z).
Jo

This completes the proof. •
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The second half of the above proof (the one based on Lemma 2.3) also follows
from inequality (5.5) of [3]; see the proof of Lemma 3.2 below. But the proof of (5.5)
in [3] transfers the setting to the upper half-plane and makes use of certain additional
assumptions on K, while our proof here does not depend on any special property of K.
The following lemma, however, makes a key assumption on K.

LEMMA 3.2. If the function K satisfies condition (2.1), then there exists a constant
C > 0 such that fD |/'(z)|2Zsr(l - \z\2) dA(z) > CI(f)for all analytic functions f
in D, where / ( / ) is as given in Lemma 3.1.

PROOF. By Fubini's Theorem, we can rewrite (3.3) as

f f (1 — I I D I 2 ) 2

/ \f\w)\2dA{w) / \ _4 K(l-\z\2)dA(z).
Jo JO U -ZW\4

The inner integral above is nothing but the Berezin transform of the function K (1 — | z \2)
at the point w. The desired estimate now follows from Lemma 2.2. •

We can now prove the main result of this section.

THEOREM 3.3. Suppose K satisfies condition (2.1). Then an analytic function f
in D belongs to QK if and only if

(3.4) sup I f lf(^~fl™)l K(l - \<pa(z)\2)dA(z)dA(w) < oo.
asD Jo JO |1 - ZW\4

PROOF. Recall that / e QK if and only if

sup f \f'(z)\2K(l - \<pa(z)\2)dA(z) < oo.
aeD Jo

By a change of variables, we have / € QK if and only if

sup [ \(f o <paY(z)\2K(I - \z\2)dA(z) < oo.
aeD Jo

Replacing / by / o q>a in Lemmas 3.1 and 3.2, we conclude that / e QK if and only
if

f f \focpa(z)-fo<pa(w)\2

sup / /
aeO Jo Jo

- \zr)dA(z)dA(w) < oo.
/D "-zw\4

Changing variables and simplifying the result, we find that the double integral above
is the same as

/ / = K(l— \(pa(z)\)dA(z)dA(w).
Jo Jo | l - z w | 4

Therefore, / € QK if and only if condition (3.4) holds. •
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4. The mean oscillation in the Bergman metric

In this section we give two closely related characterizations of QK spaces, one in
terms of the Berezin transform and the other in terms of the mean oscillation in the
Bergman metric.

Given a function / € L2(D>, dA), it is customary to write

MO(f)(z) = jB(\f\2)(z) ~ \Bf(z)\2;

see [10, Section 7.1]. It is easy to check that

[MO(f)(z)f = [ \fo<pz(w) - Bf(z)\2dA(w)
Jo

f (I — I7I2)2

= / \f(w)-Bf(z)\2 , ]L,dA(w).
Jo |1 — zw\*

If the function / is analytic, then it is easy to see that Bf = f, so that

[MO{f){z)f = f \fo<pz(w)-f(z)\2dA(w)
Jo

We can think of MO(f)(z) as the invariant mean oscillation of / in the Bergman
metric at the point z, because we always have MO(fo<p)(z) = MO(f)(cp(z)), where
<p e Aut(D).

We can now reformulate Theorem 3.3 as follows, which is in the same spirit as
condition (i) in Theorem 6.1 of [3].

THEOREM 4.1. If K satisfies condition (2.1), then an analytic function f in D>
belongs to QK if and only if

(4.1) sup / [MO(f)(z)]2K(l - \<pa{z)\2)dx{z) < <x),
oeD JO

where dr(z) = dA(z)/(l — \z\2)2 is the Mb'bius invariant measure on the unit disk.

PROOF. Consider the integral from Theorem 3.3

- \Va(z)\2)dA(z)dA(w).
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We rewrite it as an iterated integral

= / AT(1 - \<pa(z)\2)dA(z)
J

I
JB/D " JB \\-ZW\*

or
C f (I — \z\2)2

Ia(f)= / K{\-\<pa{z)\2)dT{z) / | / ( ^ ) - / ( z ) | 2 . -4dA(w).
JB JB \1-ZW\4

According to the calculations preceding this theorem, we have

/«(/) = [ [MO(f)(z)fK(l - \<pa(z)\2)dr(z).
JB

This proves the desired result. •

Fix a positive radius R and denote by

AR(fHz) = l f f(w)dA(w)
\L>(z, R)\ JD(Z,R)

the average of / over the Bergman metric ball D{z, R). We define

r i f
MOR(f)(z)=\ / \f(w)-AR(f)(z)\2dA(w)

l\D{z, R)\ JD(Z,R)

and call it the mean oscillation of / in the Bergman metric at the point z. It is easy
to verifty that [MOR{f){z)f = AR(\f\2)(z) - \AR(f)(z)\2. See [10, Section 7.1] for
basic facts about the mean oscillation in the Bergman metric.

The Mobius invariant mean oscillation MO{f) and the localized mean oscillation
M0R(f) in the Bergman metric are useful in the study of Hankel operators on the
Bergman space; see [10] and [11].

THEOREM 4.2. If K satisfies condition (2.1), then an analytic function f in O
belongs to QK if and only if

(4.2) sup / [MOR(f)(z)]2 K(l - \<pa{z)\2) dx{z) < oo,
aeD JB

where R is any fixed positive radius.

PROOF. There exists a positive constant C (depending on R only) such that

MOR{f){z) < MO(f)(z), z € D,

where / is any function in L2(D>, dA). See the proof of Theorem 7.1.6 in [10].
Therefore, condition (4.1) implies condition (4.2).
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On the other hand, since D(0, R) is a Euclidean disk centered at the origin, we can
find a positive constant C (depending on R only) such that

\f'(O)\2<cf \f(w)-c\2dA(w)
J

'(O)\2<cf
JD(O,R)

for all analytic / in O and all complex constants c. Replace / by / o cpz and replace
c by A* (/)(*)• Then

(1 - kl2)2|/'(z)l2 < C f \fo<pz(w)-AR(f)(z)\2dA(w).

Through a change of variables on the right-hand side, we arrive at

( i -k iwa)! 2 <c[ \/(w)-AR(f)(z)\2iylzli]

Since

O - | z | 2 ) 2 . 1 1 _ _
\l-zw\4 ~ ( l - | z | 2 ) 2 ~ \D(z,R)\

for w e D(z, R), we can find another positive constant C such that

( 1 - \z\2)2\f'(z)\2 < C [MOR(f)(z)]2, z e ® .

It follows that, for each a € D>, the integral

L/D
is less than or equal to C times the integral

[MOR(f)(z)f K(l - \<pa(z)\2)dr(z).
Join

This shows that condition (4.2) implies / e QK- D

Recall from [3] that a positive Borel measure \JL on 0 is called a K-Carleson
measure if

up f Ksup f K (^-^-) dii(z) < oo,
J I

where the supremum is taken over all sub-arcs / C 3D. Here, for a sub-arc / of 8ID,
| / | is the length of / and S(I) = {rf : f e /, 1 - | / | < r < 1} is the corresponding
Carleson 'square'.
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THEOREM 4.3. Suppose K satisfies the following two conditions:

(a) There exists a constant C > 0 such that K{2t) < CK(t)for all t > 0; and
(b) The auxiliary function <pK has the property that f0 <pK{s)/s ds < oo.

Let \i be a positive Borel measure on D. Then /x is a K -Carleson measure if and only

' / s up f l 6 D / D * ( l - \<pa(z)\2)dn(z) < oo.

PROOF. See [3, Corollary 3.2]. •

Since QK is defined by the condition

sup I \f'{z)\2K{\ - \<pa{z)\2)dA{z) < oo,

we see t ha t / e QK if and only if the measure \f'{z)\2 dA{z) is a A'-Carleson measure.
This is one of the conclusions of [3, Theorem 3.1]. The following corollary gives two
analogous characterizations.

COROLLARY 4.4. Suppose K satisfies condition (2.1) and conditions (a) and (b)
of Theorem 4.3. Let R > 0 be a fixed radius. Then the following conditions are
equivalent for an analytic function f in D.

(a) The function f belongs to QK.

(b) The measure d/j.(z) = [MO(f)(z)]2 dt(z) is a K-Carleson measure.
(c) The measure dv(z) = [MOR(f)(z)]2 dr (z) is a K-Carleson measure.

PROOF. This is a direct consequence of Theorems 4 .1^ .3 . D

5. The spaces QK>0

The space QK,o consists of analytic functions / in ID with the property that

'(z)\2K(l - \<pa(z)\2)dA(z) = 0.

It can be checked that QK0 is a closed subspace in QK.

lim / \f'(

THEOREM 5.1. If K satisfies condition (2.1) and R > 0 is fixed, then the following
conditions are equivalent for all analytic functions f in ID.

(a) / 6 <2*,o-

(b) lim / / l / ( f ~ ^ " > ) l K(l-\<pa(z)\2)dA(z)dA(w) = 0.
\ \ I J J | 1 Z W | 4
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(c) lim f[MO(f)(z)]2K(l - \<pa(z)\2)dr(z) = 0.
I" I l */ 0

(d) lim [[MOR(f)(z)]2K(l-\<pa(z)\2)dT(z) = 0.
\"\->-1 Jo

PROOF. All our earlier estimates are pointwise estimates with respect to a € D. So
the little oh version of these results must be valid. •

A positive Borel measure /x on D is called a vanishing K-Carleson measure if

lim I K (^-~) d/x(z) = 0.
l/l~>0J5(/) V I'I /

Carefully checking the proof of [3, Theorem 3.1], we see that the little oh version of
Theorem 4.3 holds as well, from which we obtain the following result.

THEOREM 5.2. Under the same assumptions in Theorem 4.4, the following condi-

tions are equivalent for analytic functions f in D>.

(a) The function f belongs to QK.O-
(b) The measure dfi{z) = \f'(z)\2dA(z) is a vanishing K-Carleson measure.
(c) The measure dfi(z) = [MO(/)(z)]2 dr(z) is a vanishing K-Carleson measure.
(d) The measure d fx(z) = [MOR(f)(z)]2 dr(z) isavanishing K-Carleson measure.

PROOF. We leave the details to the interested reader. •

References

[1] S. Axler, "The Bergman spaces, the Bloch space, and commutators of multiplication operators',
Duke Math. J. 53 (1986), 315-332.

[2] M. Essen and H. Wulan, 'On analytic and meromorphic functions and spaces of QK type', Illinois
J. Math. 46 (2002), 1233-1258.

[3] M. Essen, H. Wulan and J. Xiao, 'Function-theoretic aspects of Mobius invariant QK spaces',
J. Fund. Anal. 230 (2006), 78-115.

[4] J. Garnett, Bounded analytic functions (Academic Press, New York, 1982).
[5] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman spaces (Springer, New York, 2000).
[6] B. Korenblum and K. Zhu, 'Complemented invariant subspaces in Bergman spaces', J. London

Math. Soc. (2) 71 (2005), 467^80.
[7] H. Wulan and P. Wu, 'Charaterization of QT spaces', / Math. Anal. Appl. 254 (2001), 484-497.
[8] H. Wulan and K. Zhu, 'QK spaces via higher order derivatives', Rocky Mountain J. Math, (to

appear).
[9] J. Xiao, Holomorphic Q classes, Lecture Notes in Mathematics 1767 (Springer, Berlin, 2001).

[10] K. Zhu, Operator theory injunction spaces (Marcel Dekker, New York, 1990).

https://doi.org/10.1017/S1446788700016086 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016086


[13] QK spaces 295

[11] , 'Schatten class Hankel operators on the Bergman space of the unit ball', Amer. J. Math.
113(1991), 147-167.

Department of Mathematics Department of Mathematics
Shantou University SUNY
Shantou Albany, NY 12222
China USA
e-mail: wulan@stu.edu.cn and

Department of Mathematics
Shantou University

Shantou
China

e-mail: kzhu@math.albany.edu

https://doi.org/10.1017/S1446788700016086 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016086

