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ON LINEAR FUNCTIONALS AND SUMMABILITY 
FACTORS FOR STRONG SUMMABILITY 

W. BALSER, W. B. JURKAT, AND A. PEYERIMHOFF 

0. I n t r o d u c t i o n . Let A = (ank) (n, k = 0, 1, 2, . . .) be an infinite matrix. 
We call a sequence s = (sk) (k = 0, 1,2, . . .) A-limitable (denoted by s £ (A)) 
if the sequence t = (tn), tn = J^Jc anksk exists and converges. We call 5 absolutely 
A-limitable (denoted by s G \A\), if t (defined as above) is of bounded varia
tion, i.e. X^°=o \tn — ln-i\ < oo, /_! = 0. Finally, if A ^ 0 (i.e. ank ^ 0 for all 
n, k), we call 5 strongly A-limitable with exponent p (1 :§ P < °° ) (denoted by 
^ G [A]p) if there exists some number a such tha t X^ ank\sk — a\p —-» 0 as n —* 
co. Fur thermore , we call a formal series J2 ak A-summable (resp. absolutely 
A-summable, resp. strongly A-summable with exponent p) if the sequence 5 = 
(Sk), sk = a0 + ...-{- ak belongs to (A) (resp. \A\, resp. [A]p), and we write 
£ a* € (A) (resp. £ ak £ \A\, resp. J2 ak G [-4]P). Finally, we write 5 Ç e?[-4]p 

if S * a ^ | ^ | p —> 0 (w —-> oo ). A matr ix A is said to be regular (resp. absolutely 
regular) if j * —> o- implies tn = J^k CLnkSk - » o* (resp. if X* K l < °° implies 
Z ak Ç | 5 | and 

A; 

4 = X On* 2 «m -^ Z) a* (W -* °° ))• 
A; m = 0 A: 

The purpose of this paper is to characterize the sequences X = (X*) which 
have one of the following properties: 

(0.1) 5 e [A]p implies £ X^, 6 ( 5 ) , resp. \B\, resp. [ £ ] , . 

(0.2) £ ak e [A]p implies £ \kak Ç ( 5 ) , resp. | 5 | , resp. [B]p. 

(0.3) 5 Ç [A]p implies Xs = (X,^) G ( 5 ) , resp. | £ | , resp. [B]p. 

We call X satisfying (0.1), resp. (0.2), resp. (0.3) a sequence to series factor, 
resp. series to series factor, resp. sequence to sequence factor, and we use the same 
notat ion for general sequence spaces X and Y instead of [A]p and (B) (resp. 
\B\, resp. [B]p). In Section 1, we give an abst ract functional analytic answer 
to the questions (0.1) and (0.2) which involves a condition in terms of continu
ous linear func t iona l on [A]p (called functional condition) and a condition of 
type (0.3). 

Section 2 reduces the sequence to sequence factor problem from o[A]p to 
\B\ to a functional condition, and in Section 3 we show tha t (0.3) in case [A]p 

to (B) is equivalent to the case [A]p to [C]i with cnk = \bnk\. Section 4 discusses 
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(0.3) in case [A]p to [B]p, and in Section 5 we characterize continuous linear 
functionals on o[A]p. In a final Section 6 we apply our results to weighted 
ari thmetical means and to Norlund means. 

Pa r t II of this paper, which will be published separately, contains an extended 
s tudy of the continuous linear functionals on o[^4]p. 

We use the following notat ions for special sequences resp. sequence spaces: 

(a) e = (1, 1, l , . . . ) , * ( n ) = (ônk). 

(b)co = {s = (sk)\sk-+0(k->co)}. 

(c) bv = {s = fo.)IE* \sk - ^ ._i | < co}. 

(d) lp= {a= ta)| Z * k l * < oo}, 1 ^ P < oo, 
L = {b = ta)|sup, |6,| < oo}. 

For a topological vector space X, we denote the space of all continuous linear 

functionals on X (the " d u a l " space) by X*. 

If the inverse of a matr ix A = (ank) exists, we denote it by ^4r = (ank). For 

a sequence ta) we write xk f (resp. xk j ) if xk increases (resp. decreases) in the 

wider sense. 

1. Genera l f u n c t i o n a l - a n a l y t i c r e s u l t s . Theorems 1 and 2 of this section 
are the basic theorems on series to series and sequence to series factors. Both 
theorems follow from some functional-analytic results which will be discussed 
first. 

An FK-space X (see e.g. [18]) is called solid, if x £ X implies bx £ X for 
every b £ /œ, and X has proper ty AK if x = ta) £ X implies x(n) = (x0, . . . , 
x.n, 0, 0, . . .) G X, n £ N, and x(n) —» x as n —> oo . 

If X is a solid FK-space with ^4i£, then the continuous linear functionals on 
X are/Ox;) = J^k ekxk with J2k ta^-| < °° for every x £ X, i.e. the dual space 
X* is isomorphic with the space of all absolute convergence factors for X. (If k0 

is such tha t x ^ I implies xk0 = 0, we choose eAo = 0.) 

PROPOSITION 1. Let X be a solid FK-space with AK. Let Y be an FK-space 
with the properties 

(i) bv C Y, and 
(ii) /Aère w / o e F* szjcfc thatfo(eW) = 0, « = 0, 1, . . . , / o t a = 1. 

Then the following statements are equivalent. 
(a) X is a sequence to series factor from X to F, and 
(b) X is an absolute convergence factor for X. 

Proof. Condition (b) implies (a) by (i), and it remains to prove t ha t (a) 
implies (b). Let X be a sequence to series factor from X to Y. I t follows from 
the closed graph theorem tha t 

n 

T{x) = ta), yn = XI *kXk 
k=0 
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is a continuous linear operator from X to F, hence 

fo(T(x)) = X e*x* 
A; 

for some absolute convergence factor e = (ek). If w G N is such tha t x = 
(xk) £ X exists with xm ^ 0, then e{m) G -X, and it follows tha t 

em = MT(eW)) = WoCe - (e<°> + . . . + e^-v)) = Xro. 

COROLLARY. i / m addition, c0 C -X", aw^ if X = {x + c£|# G I , c ^ R ) , //^w 

Proposition 1 remains true when X in (a) w replaced by X. 

This is an immediate consequence of X* C Zi. 

PROPOSITION 2. Let X and Y be FK-spaces as in Proposition 1. Then the 
following statements are equivalent: 

(a) \is a series to series factor from X to F, and 
(b) (AX*) = (X* — Xfc+i) is an absolute convergence factor for X and X is a 

sequence to sequence factor from X to Y. 

Proof. Let x = (xk) £ X, xk — a0 + . . . + ak. I t follows from 

n n—1 

(1.1) X a*X* = *A> + X *fcAX* (w ^ 1) 
fc=0 fc=0 

t ha t (b) implies (a) (since bv C F.) In order to prove the necessity of (b) we 
proceed similarly as in the proof of Proposition 1 : We introduce the continuous 
linear operator 

f(x) = (yn), yn = X a^k 
k=0 

and obtain/o(7"(x)) = ^k tkxk for some absolute convergence factor e = (ek). 
If x = e{m\ this implies 

tm = /o(0, . . . , 0, Xm, AXrn, AXm, . . .) = AXm, 

which shows tha t the first condition in (b) is necessary, and the necessity of the 
second condition follows from bv C F and (1.1). 

COROLLARIES. 1. If (a) or (b) of Proposition 2 holds, then T(x) = \x is a 
continuous linear operator from X to Y and 

fo(\x) = \imfo(\x(n)) = lim X X***/o(e(it)) = 0. 
ra->oo w^oo fc=0 

2. Proposition 2 remains true when X in (a) is replaced by 

X = {x + ce\x G X, c e R } . 

The following results from summabil i ty theory (which are either well-known, 
see e.g. [17] and [11], or easily verified) are used to derive Theorems 1 and 2 
from Propositions 1 and 2: 

https://doi.org/10.4153/CJM-1978-084-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-084-3


986 W. BALSER, W. B. JURKAT AND A. PEYERIMHOFF 

(i) Let A = (ank) (n, k = 0, 1, . . .)• Then the spaces o[A]p, 1 ^ p < co (if 
A ^ 0) , (A) and \A\ are FK-spaces. (In case of o[A]p the seminorms are 
\sk\, k = 0, 1, . . . and 

/ oo \ 1/p \ 

\\s\\AtP = sup I XI ank\sk\
v) . ) 

The space [A]p is an FK-space when A is regular. 
(ii) The space o[A]p is solid and has AK. 

(iii) The spaces [B]p (when B ^ 0 and regular), (B) (when B is regular), and 

\B\ (when B is absolutely regular) satisfy assumptions (i) and (ii) of 
Proposition 1 when 

oo 

fo(s) = lim X buns*. 
w-->oo k=0 

T H E O R E M 1. Let ^ 4 ^ 0 and let Y be any of the spaces mentioned in (iii). Then 
the following statements are equivalent: 

(a) 5 G o[A]p implies X ^sk G Y, and 
(b) s G o[A]pimplies 52k \\ksk\ < oo. 

T H E O R E M 2. Let ^ 4 ^ 0 and let Y be any of the spaces mentioned in (iii). Then 
the following statements are equivalent: 

(a) 5 G o[A]p implies J2 M * € Y (sk = a0 + . . . + ak), and 
(b) ^ G o[A]p implies J2k I^AX^I < oo and\s G F. 

COROLLARY. If A is regular, then in (a) of both theorems the space o[A]p may 
be replaced by [A]p. 

Both theorems and the corollary follow from Propositions 1 and 2 and 
corollaries. We remark t ha t the non-trivial pa r t of Theorem 1, i.e. the con
clusion from (a) to (b), is obvious if B ^ 0 since then J^ ck G Y, ck ^ 0, im
plies J2k ck < oo . 

Theorems 1 and 2 show t h a t the determinat ion of sequence to series and 
series to series factors requires the knowledge of the absolute convergence 
factors of tf[y4]p, i.e. the knowledge of the space o[A]p* of the continuous linear 
functionals in o[^4]p. The corresponding condition on X will be called the 
functional condition. Section 5 of this paper will be devoted to the s tudy of this 
condition, i.e. to 0^4]^*. T h e addit ional condition \s G Y of Theorem 2 will be 
discussed in Sections 2, 3, and 4. 

For the corresponding si tuat ion in case of ordinary summabi l i ty see e.g. 
[15, Theorem 11.25]. 

2. T h e c o n d i t i o n \s G \B\. W e will show t h a t this condition reduces to a 
functional condition if \B\ has a special absolute convergence factor — a condi-
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tion which is satisfied in many cases. The condition on \B\ is: 

(2.1) B is absolutely regular, and X ak G B implies X \akhk\ < co , 
k 

where hk = X |&n* - &»-i,*|. 
rc=0 

In particular, if B is triangular and bnk I as n] (n ^ k), then /^ = 2^*, i.e. 
(2.1) requires that (bkk) is an absolute convergence factor for \B\. This is true 
for all Cesàro methods (see, e.g. [9; 16]). 

In Section 6, we will discuss some other classes of matrices which satisfy 
(2.1). 

The reduction of As G \B\ to a functional condition follows from 

THEOREM 3. Let ^ 4 ^ 0 , and let B satisfy (2.1). Then 

(2.2) s^ o[A]p implies As G \B\ 

if and only if 

(2.3) s G o[A]p implies X |M***I < °° • 
k 

Proof. If (2.2) holds, then J^k hk\\ksk — A^-i^-il < oo whenever 5 G o[^4]p. 
If we change s so that s2k = 0 or s2k+i = 0 (k = 0, 1, . . .) then we obtain 
£ * \hk\ksk\ < oo, i.e. (2.3) holds. Conversely, if (2.3) holds, then 

2^ fink ~ bn-i>k)XkSk 
k 

i.e. (2.2) holds. 

S X 1****1 X \bnk - K-l,k\ < 00, 

Theorem 3 shows that As G |i?| is equivalent to the condition that (hk\k) is 
an absolute convergence factor for o[^4]p. 

3. The condition As G (B). We will show that this condition is equivalent 
to As G [C]i for some C. 

THEOREM 4. Let B = (bnk) be regular and let C = (\bnk\). Furthermore, let 
A ^ 0. Then 

(3.1) s G o[A]p implies Xs G (5) 

i/ and only if 

(3.2) s G o[A]P implies \s G [C]i. 

Proof. If (3.1) holds, then/n(s) = X?=o bnk\ksk is a sequence of pointwise 
convergent, continuous linear functionals on 0^4]p, hence it is equicontinuous. 
The set {Tb}, Tb(s) = b • s with 6 Ç /œ, | |ô||œ ^ 1 is a set of equicontinuous 
linear transformations of o[A]p into itself, hence {/w(r&(s))} is a set of equi-
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continuous linear functionals. But a subset of this set is \fn(s) = jy=o cnk\ksk\ 
(n = 0, 1, . . .) which is equicontinuous and pointwise convergent to zero on a 
dense subset, namely the set of all sequences with finitely many non-zero 
terms. Hence (3.2) follows. T h e converse direction is obvious. 

I t should be mentioned tha t (3.1) implies \ s £ o(B) by Corollary 1 to 
Proposition 2. 

4. T h e c o n d i t i o n \s £ [B]p. In order to avoid minor complications it seems 
natural to introduce now the assumption tha t A ^ 0 and t ha t A has no zero-
column, i.e. 

(4.1) , 4 ^ 0 and ak = sup ank > 0. 
n 

If (4.1) holds, then o[A]v is a BK-spa.ce with norm 

/ co \ 1/p 

\\s\\A,v = s u p I X ) ann\sk\
v) . 

n \ k=0 ' 

If, in addition, A is regular, then [A]p is a BK-sp3.ce. The following lemma 

yields information on the order of growth of sequences in o[A]p (compare [8]). 

L E M M A 1. Let A be regular and satisfy (4.1). 
(a) If s G o[A]p then skak

l/p = o(l). This estimate is best possible, i.e. if 
t)k 7^- 0(1) then there is s Ç o[A]p such that rjkskak

1/p ^ 0 ( 1 ) . 
(b) If s £ o[A]p implies Xs G o[B]p, where B ^ 0, then 

(4.2) XA 1 / P = 0(ak
1/p). 

Proof, (a) Let 5 Ç o[^4]p, and choose e > 0. Then there are numbers N(e), 
K(e) such t ha t 

CO 

E a„k\sk\
p ^ t for n ^ N(e), ank\sk\

p ^e for k ^ K(e), n < N(e). 
k=0 

Hence ank\sk\
p ^ e for k ^ K(e) and all n, i.e. ak

1/psk —> 0. (Note tha t this pa r t 
of the proof does not require any assumption on A besides ^ 4 ^ 0 . ) Let 
0 < r]k 9

e 0 ( 1 ) and select a subsequence &zf co such tha t ]>]< Vki~pn < °° • 
If ski = aki~

1/p 7]ki~
1/2,sk = 0 otherwise, then 

£ ank\sk\'= £ ^ „ , - p / 2 - 0 

(.4 is regular) , bu t r)kiskiaki
1/p = r]ki

1/2 —> oo . 
(b) This is an immediate consequence of (a). 

Our next two theorems will discuss implications of the type 

(4.3) if ^ e o[A]p then As G [B]p. 

Assume tha t (4.3) holds, t ha t A satisfies (4.1) and t ha t B ^ 0 is regular. Then 
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| 1 ^ | | B , P is a continuous seminorm on o[^4]p, hence there is K ^ 0 such t ha t 

(4.4) \\\s\\Bj^K\\s\\A,p for all 5 Ç o[A]p. 

T H E O R E M 5. Let A be regular and satisfy (4.1). Then 

(4.5) ^ £ o[^4]p implies \s £ [̂ 4]p 

i / and only if 

( 4 > 6 ) | s u p Ç ank\\kf
iv~3) <oo ifp<p, 

We omit the proof, since the following Theorem 6 is a partial generalization 
of Theorem 5, and a few obvious modifications of its proof lead to a proof of 
Theorem 5. 

T H E O R E M 6. Let A and B be normal, regular and assume that ank, bnk > 0 if 
k ^ n. Moreover, assume that ank J, and bnk/ank [ as n | (n ^ k). Then (4.3) holds 
if and only if 

U 7 , j s u p Ê IXtr'O^b^'^/aJ'^ < oo ifp<p, 
V*-i) \ n k=0 

U» = 0(l)(a«1/7&«1/f) ifP^P-
Proof. Let p < p. Holder 's inequality shows tha t 5 £ o[A]p and (4.7) imply 

As £ o[5]p, hence (4.7) implies (4.3). Assume tha t (4.3) holds which implies 

(4.4). Let s(m) = (s0(m), . . . , sm(m), 0, 0, . . .) G o[^4]p where 

sk(m) = W^-^ibmJc/a^y^-^ (k S m). 

The monotonicity of ank and bnk/ank implies 

| |Xs(m)| |B , - = sup \ £ ^ | X t | * / ^ ) | ^ ï 

( w \ (p—p) /P 

fc=0 / 

hence the first line of (4.7) follows from (4.4) and this est imate. 
Let p ^ p. If 5 £ 0[yl]p, then it follows from Lemma 1, (4.7) and the mono

tonicity of ank and bnk/ank t ha t 

A;=0 fc=0 #wfc 

= 0 ( 1 ) £ a „ , | ^ r ^ ^ — akk-^
),p = 0 ( 1 ) £ o^ls*!', 

k=0 akk akk k=0 

hence (4.7) implies (4.3). The necessity of (4.7) follows from (4.2). 

/(P-P)) I/P" 

= (I !*(»») IL,)"*' 
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Remarks. 1. The proof of Theorem 6 shows t ha t the monotonici ty of ank and 

bnk/ank is not needed to prove t ha t (4.7) is sufficient if p < p resp. necessary 

if p ^ p-
2. Holder 's inequali ty implies for regular matrices B 

(4.8) [ 5 ] ? + € C [B]h e > 0. 

I t follows tha t for fixed p condition (4.7) becomes stronger as p increases. 
Th is can also directly be shown by Holder 's inequali ty when p < p. 

3. The assumptions of Theorem 6 are satisfied for A = Ca, B = Q , 0 < /3 ^ 
a: ^ 1, hence B C. A in this case. In a sense, this relation is typical for the 
assumptions of Theorem 6: Let A, B be tr iangular, ank > 0, bnk > 0 (k ^ n), 
2 J L O an* = Z L o &n* = 1- Then 

(4.8) bnk/aTlk i as « Î (n ^ &), 6„*/aBA; j as & | (k ^ n) 

implies A = B, because for n ^ k we obtain 

( 4 . 9 ) fc^/a** ;> W ^ n * ^ Kn/ann, 

which implies 

n î n 7 

1 = 2 ^ &n* ^ — 2 ^ <*n* = — . 
fc=0 U>nn k=0 t%w 

and if bnn/ann = 1 for all n, A = B follows from (4.9). On the other hand, as
sume bnn/ann < 1 for some n; then it follows from (4.9) t ha t 

n n 7 n 

£ bnk ^ J2 ~ a n k < J2 ank = 1, 
k=0 k=0 &kk fc=0 

which contradicts the assumptions on B. (Of course, the same conclusion holds 
when bnk/ank | in n and k.) Hence, if A and B satisfy in addit ion Mi*(A) or 
Mi*(B) (see e.g. [15, p. 34]), bnk/ank[ as n t (w ^ &), and if bnk/ank is mono
tone in & (same kind of monotonici ty for every n), then Theorem 11.20 or 
Theorem 11.21 [15] implies B C A. 

4. In view of Remark 3 one might ask for the sequence to sequence factors in 
case A C B. In this case 

(4.10) [A],C[B]„ 

and (4.8) and (4.10) imply t ha t every X £ lœ is a sequence to sequence factor from 
o[A]p to o[B]p if p ^ p. This result will be helpful in our applicat ions when 
U iœ follows from a functional condition. 

T h e si tuation becomes considerably more difficult when o[A]P C o(B)p does 
not hold. We do not have a general result in this case. For more special results 
see the end of Section 6 and P a r t II of this paper (which will be published 
separate ly) . 
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5. Linear f u n c t i o n a l s o n o[A]p. In order to obtain o[A]v* we embed o[A]p 

into a certain space Mp
(0) which has a dual Mq

(1) of comparatively simple 
s t ructure. By the Hahn-Banach Theorem every element of fl[yl]p* has an 
extension to Mp

(0). 
Let 1 f£ p < oo , and let Afp

(0) denote the space of all matrices G = (gnk), 
n,k = 0, 1 , . . . , with £ * Ig»*!' = o ( l ) as « - > c » . If ||G|| = supn ( £ * I&J*)1 '*, 
then M2?

(0) is a Banach space. Similarly, let 1 ^ £ g oo , and let Mp
(l) denote 

the Banach space of all matrices H = (hnk) such tha t \\H\\ < oo, where 

| | f f | |=X " * 
( X) SUP \hnt\, P = °0. 
\ ra A; 

Let 1 ^ p < oo, (l/^>) + (1/q) = 1. Applying s tandard techniques one veri
fies t ha t 

( i ) 
(5.1) / ( G ) = Z Z hntgn*, Ge Mp

{0\He MQ 
n k 

is the general form of a continuous linear functional on Mp
(0\ and it follows 

t ha t M</1) is a representation of the dual of Mp
w and | | / | | = \\H\\. 

T H E O R E M 7. Let 1 ^ p < co, (1/p) + (1/q) = 1, awd assume that A is 

regular and satisfies (4.1). Then the followng statements are equivalent: 

(a) Z Ie*5* | < °° whenever s Ç o|y4]p, 

(b) €* = Z hnkank
1,v for some H £ Mff

(1), 

(c) e* = 7*1 Z a»fl»* ) for some y G /ç, a G /i , a„ ^ 0, 

(d) \ek\ ^ afc
1/ff( Z otnOnk) for some a £ / i , a „ ^ 0(ak

1,q = lforq = oo). 

Proof, (a) implies (b) : The space o[A]p is norm-isomorphic with the (closed) 
subspace {gnk = ank

1/p sk\s £ o[A]p} of M/°\ Since f(s) = £ * e ŝ* is in o[4] p * 
(by (a) ) , it follows from (5.1) tha t H £ Mq

{l) exists such tha t 

2^j eksk = 2~t 2^ hnkank sk 
k n k 

and this implies (b) (take 5 = e(m)). 
(b) implies (c): Let p > 1, and define an = Ç^l: \hnk\

Q)1/Q. T h e n J^n an <• oo , 
and if a^ > 0 for all w, then by (b) 

< * = Z Jtnk_ 1/p 1/p 
1/p " w "-nfc \ 2-i Q7P~) \ Z^ anank) 
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But 

E 7** = E —57» E W = ! « » < » • 
/c 7i ^ n A; n 

This shows t ha t (c) holds in this case. Some obvious modifications of the proof 
when some an = 0 or p = 1 show tha t (c) holds in general. 

(c) implies (d) : Since the case p = 1 is trivial, assume p > 1. If ft = 
a* + IYAJS then ft1/<z ^ |7*| and (c) implies (d) with /3 in place of a. 

(d) implies (a) : Let s £ 0[yl]p. If p > 1 (the case p = 1 is obvious) then (d) 
implies 

2 \*kSk\ ^ I Z «J ( Z k*r X) «n^J < °°-
fc \ A; / \ A; n ' 

Remark. Conditions (b)- (d) of Theorem 7 are of a " two parameter t ype" , 
and the two parameters may be "essential ly" different. (For instance, the right 
hand side of (c) is the same when A = Ci,p — l a n d c ^ = (n + l)A(n + l ) - 3 , 
yn = 1 or an = (n + l)A(n + l)~ 2, yn = (n + l ) " 1 . ) I t may be difficult to 
decide whether a given sequence e satisfies one of the conditions (b ) - (d ) . Our 
next theorem shows t ha t for weighted means Mv also a "one parameter condi
t ion" exists. 

6. A p p l i c a t i o n s . We first give a character izat ion of o[^4]p* when A is a 
weighted mean: 

T H E O R E M 8. Let pk > 0, Pn = p0 + . . . + pn, ank = pkPn~
l{k ^ n), ank = 0 

(k > n). Then (d) of Theorem 7 is equivalent to 

E pn E I- MM) < * ifp>u(i/p) + a/q) = i). 

A, Slip ^ < 00 # £ = 1, 
//-. -j \ / n Jfĉ w Pk 

Proof. We give the proof for p > 1, the case p = 1 follows after some obvious 
modifications. Condition (d) is in the present case equivalent to 

<™ £h*{?.)(£?:)" TJCP 

In view of the inequality (a — b)aQ~l ^ a9 — bq S q(a — b)aQ~l (a > b > 0, 
g ^ 1), condition (6.2) is equivalent to 

(6.3) # i i ( z f ) ' - ( E f) 
(in the sense tha t (6.2) implies (6.3) and (6.3) implies (6.2) with e.g. qak 

instead of ak). The second condition (6.1) is an immediate consequence of 
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(6.3). Conversely, let (6.1) hold, and let 

» k=n -LJc Pk 

Q\ 1/(7 

We have an ^ 0 and 

23 an = 23 £ A — PN$N+\ ^ X) W»> 
0 0 0 

hence a: G /i by (6.1). This choice of a leads immediately to 8k = 2Zŵ * <*n/Pn, 
and this shows that (6.3) holds. But (6.3) is equivalent to (d) of Theorem 7. 

Remark. For A = Ci, Borwein [2] gave equivalent conditions characterizing 
o[A]p*. 

We are in a position now to discuss special theorems concerning sequence 
to sequence factors of the type 

(6.4) [ M J „ - * | 3 | 

(6.5) [MT]a^[B]ff 

where Mp denotes a weighted mean. We first discuss (6.4). 
Let B be triangular, and let B = ABS, where 5 = (snk), A — (Ank) and 

Snk = 1 (k ^ n), snk = 0(k > n), Ann = 1, An,n-i = - 1 , Ank = 0 otherwise. 
B is the series-to-series form of B, i.e. J2 ak £ \B\ if and only if £]n |an| < oo 
where an = £*=o a^a*. 

LEMMA 2. L<?/ B be normal, and let Y^=k\Kk'bnn\ = 0(1). Then J2 ak £ \B\ 
implies ^v\anbnn\ < co . 

2̂  ^ ( 
«A; = 23 K | 23 |*n*'6nn|. 23 I «An I = 23 l&! 

In what follows, we use the formula B' = ABfS, i.e. 

n 

(6.6) bnh' = £ (bnm' - 6_i.m '), (* ^ »)• 
ra=/c 

LEMMA 3. Le/ M^ be a weighted mean with pn > 0, pn/Pn I- Then J2 ak G |MP| 
implies £ n K Pn/Pn\ < °o • 

Proo/. (See [7]). We have bnn
f = Pn/pn, bn,n^ = -Pn_2//>»-i (n è 1, 

P-i = 0), 5 n / = 0 otherwise. It follows that 

£ IL'U = i + ij~¥1 ^ i + pk+yp"+1^ 2, 
n=k Pk ^k+1 Pk/^k 

and Lemma 3 follows from Lemma 2. 

LEMMA 4. Let Nv be a Norland mean with 0 < pn[, pn+x/p^ as ri\. Then 
£ ak G \NV\ implies J^n \an/Pn\ < oo . 

https://doi.org/10.4153/CJM-1978-084-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-084-3


994 W. BALSER, W. B. JURKAT AND A. PEYERIMHOFF 

For a proof, see [4]. 

Our first theorem is of the type [Mp]a \Mg\ (1 g a < oo). 

T H E O R E M 9. Let Mp, Mq be regular weighted means and let pn > 0, qn > 0, 
Qn/Qni- Then X is a series to series factor from [Mp]a to \Mq\ if and only if 

(6.7) 

and 

(6.8) 

Pn SUP 
k^n 

\ n \ k=n 

AX* 

Pk 

< oo fora = 1, 

3 \ 1/â 
< (X) for a > I, (I/o) + (1/5) = 1, 

AXfc 

< oo / o r a = 1, (z^supfeM) 
/ n k^n \ VkPk ' 

) l J l ^ \ 7 r r \ y , a <œ M a>l, (l/a) + (1/â) = 1. 

A special case of this theorem is due to Pat i [13 ; 14] (who gives sufficient con

ditions only when a = 1, pn = 1 or pn = l / (w + 1), gw = 1). The theorem 

follows from Theorems 2, 3, 8, and Lemma 3. 

Our next theorem is of the type [M"p]a \Na 

T H E O R E M 10. Let Mv be regular, pn > 0 and let Nq be regular, 0 < qn[, 
qn+i/qn[ as ri\. Then X is a series to series factor from [Mp]a to \Nq\ if and only if 
(6.7) and 

(6.9) 
J E Pn 

\ZP«{± 
\ n \ k—n 

\k 
S UP 7wT 
k^n I VjW^ 

Pk QkP 

< oo /or a = 1, 

5 \ I/o 

< oo for a > I, (l/a) + (1/â) = 1. 

A special case of this theorem is due to Lai [10] (who gives sufficient conditions 
only when a = 1, pn = qn = 1/(n + 1). See also Daniel [3]. The proof follows 
from Theorems 2, 3, 8, and Lemma 4. 

Next we discuss (6.5). 

T H E O R E M 11. Let Mp, Mq be regular weighted means and let pn > 0, qn > 0, 
Tn/Qnt as ri\. Then X is a series to series factor from [Mp]a to [Mq~\p if and only if 
(6.7) and 

( t few*)1'™-ou) te)1 /(a-/3) 
fori ^ & <a, 

forl^a^(3 

mtially due to 
consequence of (6.7) in this case). The proof follows from Theorems 2, 5, and 8. 

k / \ qk 

T h e case p* = qk = 1, a = 0 is essentially due to Borwein [1] ((6.10) is a 
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A consequence of Remark 4 in Section 4 is 

THEOREM 12. Let Mp, Mq be regular weighted means and pn, qn > 0, pn/qn\ 
as n\. Then X is a series to series factor from [Mp]a to [MQ]p, /3 ^ a, if and only if 
(6.7) holds. 

For a proof note that Mv C Af ff under the stated conditions and that Xn = 
0(1) follows from (d) in Theorem 7, which is equivalent to (6.7). 

THEOREM 13. Let Mp be a regular weighted mean, pn > 0, and let B ^ 0 be 
regular. Then X is a series to series factor from [Mp]a to [B]$, /3 ̂  a, if and only if 
(6.7) and 

(6.11) 
( E / » » s u p H ^ L = 0 ( l ) fora = 

k^n P, 

E /»- I E # 7s* |X*r(H = 0(1) >r« > 
Proof. It is easy to derive from the definition of sequence to sequence factors 

that X is such a factor from [Mp]a to [B]p if and only if X = (IX*^) is a sequence 
to sequence factor from [Mp]a/p to [B]i if /3 ^ a. The latter condition is equi
valent to the statement, that 

m 

fm\S) = 2^ bmjc\Xjc\ \sk\ 

defines a pointwise, hence uniformly bounded sequence of continuous linear 
functionals on [Mp]a/0. Using the fact that (6.1) with p = a/13 defines a norm 
on [Mp]a/p* such that it becomes a BK-space, this is equivalent to (5.11). 
Hence Theorem 13 follows, using Theorem 2. 
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