ON THE EXPANSIONS OF REAL NUMBERS IN TWO MULTIPLICATIVELY DEPENDENT BASES

YANN BUGEAUD and DONG HAN KIM ${ }^{\boxtimes}$

(Received 21 September 2016; accepted 3 October 2016; first published online 1 December 2016)

Abstract

Let $r \geq 2$ and $s \geq 2$ be multiplicatively dependent integers. We establish a lower bound for the sum of the block complexities of the r-ary expansion and the s-ary expansion of an irrational real number, viewed as infinite words on $\{0,1, \ldots, r-1\}$ and $\{0,1, \ldots, s-1\}$, and we show that this bound is best possible.

2010 Mathematics subject classification: primary 11A63; secondary 68R15.
Keywords and phrases: combinatorics on words, Sturmian word, complexity, b-ary expansion.

1. Introduction

Throughout this paper, $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x and $\lceil x\rceil$ denotes the smallest integer greater than or equal to x. Let $b \geq 2$ be an integer. For a real number ξ, write

$$
\xi=\lfloor\xi\rfloor+\sum_{k \geq 1} \frac{a_{k}}{b^{k}}=\lfloor\xi\rfloor+0 \cdot a_{1} a_{2} \ldots,
$$

where each digit a_{k} is an integer from $\{0,1, \ldots, b-1\}$ and infinitely many digits a_{k} are not equal to $b-1$. The sequence $\mathbf{a}:=\left(a_{k}\right)_{k \geq 1}$ is uniquely determined by the fractional part of ξ. With a slight abuse of notation, we call it the b-ary expansion of ξ and we view it also as the infinite word $\mathbf{a}=a_{1} a_{2} \ldots$ over the alphabet $\{0,1, \ldots, b-1\}$.

For an infinite word $\mathbf{x}=x_{1} x_{2} \ldots$ over a finite alphabet and a positive integer n, set

$$
p(n, \mathbf{x})=\operatorname{Card}\left\{x_{j+1} \ldots x_{j+n}: j \geq 0\right\} .
$$

This notion from combinatorics on words is now commonly used to measure the complexity of the b-ary expansion of a real number ξ. Indeed, for a positive integer n, we denote by $p(n, \xi, b)$ the total number of distinct blocks of n digits in the b-ary expansion a of ξ, that is,

$$
p(n, \xi, b):=p(n, \mathbf{a})=\operatorname{Card}\left\{a_{j+1} \ldots a_{j+n}: j \geq 0\right\} .
$$

[^0]Obviously, we have $1 \leq p(n, \xi, b) \leq b^{n}$ and both inequalities are sharp. If ξ is rational, then its b-ary expansion is ultimately periodic and the numbers $p(n, \xi, b), n \geq 1$, are uniformly bounded by a constant depending only on ξ and b. If ξ is irrational, then, by a classical result of Morse and Hedlund [8], we know that $p(n, \xi, b) \geq n+1$ for every positive integer n, and this inequality is sharp.

Definition 1.1. A Sturmian word \mathbf{x} is an infinite word which satisfies

$$
p(n, \mathbf{x})=n+1 \quad \text { for } n \geq 1 .
$$

A quasi-Sturmian word \mathbf{x} is an infinite word which satisfies

$$
p(n, \mathbf{x})=n+k \quad \text { for } n \geq n_{0}
$$

for some positive integers k and n_{0}.
The following rather general problem was investigated in [2]. Recall that two positive integers x and y are called multiplicatively independent if the only pair of integers (m, n) such that $x^{m} y^{n}=1$ is the pair $(0,0)$.

Problem 1.2. Are there irrational real numbers having a 'simple' expansion in two multiplicatively independent bases?

We established in [3] that the complexity function of the r-ary expansion of an irrational real number and that of its s-ary expansion cannot both grow too slowly when r and s are multiplicatively independent positive integers.

Theorem 1.3 [3]. Let r and s be multiplicatively independent positive integers. Any irrational real number ξ satisfies

$$
\lim _{n \rightarrow+\infty}(p(n, \xi, r)+p(n, \xi, s)-2 n)=+\infty .
$$

Said differently, ξ cannot have simultaneously a quasi-Sturmian r-ary expansion and a quasi-Sturmian s-ary expansion.

We complement Theorem 1.3 by the following statement addressing expansions of a real number in two multiplicatively dependent bases.

Theorem 1.4. Let $r, s \geq 2$ be multiplicatively dependent integers and m, ℓ be the smallest positive integers such that $r^{m}=s^{\ell}$. Then there exist uncountably many real numbers ξ satisfying

$$
\lim _{n \rightarrow+\infty}(p(n, \xi, r)+p(n, \xi, s)-2 n)=m+\ell
$$

and every irrational real number ξ satisfies

$$
\lim _{n \rightarrow+\infty}(p(n, \xi, r)+p(n, \xi, s)-2 n) \geq m+\ell
$$

The next result, used in the proof of Theorem 1.4, has its own interest.

Theorem 1.5. Let $b \geq 2$ be an integer and ρ, σ be positive integers. If σ divides ρ, then every real number whose b^{ρ}-ary expansion is quasi-Sturmian has a quasi-Sturmian b^{σ}-ary expansion. Moreover, every real number whose b^{ρ}-ary and b^{σ}-ary expansions are both quasi-Sturmian has a quasi-Sturmian b^{μ}-ary expansion, where μ is the least common multiple of ρ and σ.

We conclude by an immediate consequence of Theorems 1.3 and 1.4.
Corollary 1.6. Let $r, s \geq 2$ be distinct integers. No real number can have simultaneously a Sturmian r-ary expansion and a Sturmian s-ary expansion.

Our paper is organised as follows. Section 2 gathers auxiliary results on Sturmian and quasi-Sturmian words. Theorems 1.4 and 1.5 are established in Section 3.

2. Auxiliary results

We will make use of the following characterisation of quasi-Sturmian words.
Lemma 2.1 [4]. An infinite word \mathbf{x} written over a finite alphabet \mathcal{A} is quasi-Sturmian if and only if there are a finite word W, a Sturmian word \mathbf{s} defined over $\{0,1\}$ and a morphism ϕ from $\{0,1\}^{*}$ into \mathcal{A}^{*} such that $\phi(01) \neq \phi(10)$ and

$$
\mathbf{x}=W \phi(\mathbf{s}) .
$$

Throughout this paper, for a finite word W and an integer t, we write W^{t} for the concatenation of t copies of W and W^{∞} for the concatenation of infinitely many copies of W. We denote by $|W|$ the length of W, that is, the number of letters composing W. A word U is called periodic if $U=W^{t}$ for some finite word W and an integer $t \geq 2$. If U is periodic, then the period of U is defined as the length of the shortest word W for which there exists an integer $t \geq 2$ such that $U=W^{t}$.

Lemma 2.2. Let U be a finite word. Assume that there exist words U_{1}, U_{2}, V, W such that $U=U_{1} U_{2}$ and $U U=V U_{2} U_{1} W$, with $\left|U_{1}\right| \neq|V|$ and $0<|V|<|U|$. Then, the word U is periodic.

Proof. Since V is a prefix of U and W is a suffix of U,

$$
U=U_{1} U_{2}=V W
$$

thus, $V U_{2} U_{1} W=U U=V W V W$. This implies that

$$
U_{2} U_{1}=W V
$$

If $\left|U_{1}\right|<|V|$, then we can write $V=V^{\prime} U_{1}$ for a nonempty word V^{\prime} and thus $U_{2}=W V^{\prime}$. Therefore,

$$
U_{1} W V^{\prime}=U_{1} U_{2}=V W=V^{\prime} U_{1} W
$$

Our assumption $0<|V|<|U|$ implies that the word $Z:=U_{1} W$ is nonempty. Since $Z V^{\prime}=V^{\prime} Z$, it follows from [1, Theorem 1.5.3] that $U=Z V^{\prime}$ is periodic. The proof of the case $\left|U_{1}\right|>|V|$ is similar.

Lemma 2.3. Let \mathcal{A} be a finite set, sa Sturmian word over $\{0,1\}$ and ϕ a morphism from $\{0,1\}^{*}$ into \mathcal{A}^{*} satisfying $\phi(01) \neq \phi(10)$. Then there exists an integer n_{0} such that, for any factor A of \mathbf{s} of length greater than n_{0}, if one can write $\phi(A)$ as $V_{1} \phi\left(b_{2} b_{3} \ldots b_{m-1}\right) V_{2}$, where $B=b_{1} b_{2} \ldots b_{m-1} b_{m}$ is a factor of \mathbf{s}, the word V_{1} is a nonempty suffix of $\phi\left(b_{1}\right)$ and V_{2} is a nonempty prefix of $\phi\left(b_{m}\right)$, then it follows that $V_{1}=\phi\left(b_{1}\right), V_{2}=\phi\left(b_{m}\right)$ and $A=B$.

Proof. We may assume that 1 is the isolated letter in \mathbf{s}, that is, 11 is not a factor of \mathbf{s}. Since \mathbf{s} is balanced, there exists a positive integer k such that $10^{t} 1$ is a factor of \mathbf{s} if and only if $t=k$ or $k+1$.

We first consider the case where $V_{1}=\phi\left(b_{1}\right)$. Suppose that $A \neq B$. Then, by deleting the maximal common prefix of A and B, we may assume that A and B have no common prefix. Thus, the prefixes of A and B are 00 and 10 .

If $\phi(00)=\phi(10) V_{2}$, then $\phi(0)=\phi(1) V_{2}=V_{2} \phi(1)$ and there exist a word U and positive integers s, t such that $\phi(1)=U^{s}$ and $\phi(0)=U^{t}$. This gives a contradiction to $\phi(01) \neq \phi(10)$.

If $\phi(10)=\phi\left(0^{h}\right) V_{2}$ for some integer $h \geq 2$ and a nonempty prefix V_{2} of $\phi(0)$, then, writing $\phi(0)=V_{2} V^{\prime}$, we get $\phi(0)=V_{2} V^{\prime}=V^{\prime} V_{2}$. Thus, there exist a word U and positive integers s, t such that $\phi(1)=U^{s}$ and $\phi(0)=U^{t}$. This gives a contradiction to $\phi(01) \neq \phi(10)$.

If $\phi(10)=\phi\left(0^{h}\right) V_{2}$ for some integer $h \geq 2$ and a nonempty prefix V_{2} of $\phi(1)$, then there exist a positive integer ℓ and a prefix V^{\prime} of $\phi(0)$ such that $\phi(1)=\phi(0)^{\ell} V^{\prime}$. Write $\phi(0)=V^{\prime} V^{\prime \prime}$. Then $\phi(10)=\phi(0)^{\ell} V^{\prime} \phi(0)=\phi(0)^{\ell+1} V^{\prime}$ and we get $V^{\prime} \phi(0)=\phi(0) V^{\prime}$. Thus, there exist a word U and positive integers s, t such that $\phi(1)=U^{s}$ and $\phi(0)=U^{t}$. This gives a contradiction to $\phi(01) \neq \phi(10)$.

Similarly, we show that, if $V_{2}=\phi\left(b_{m}\right)$, then $A=B$.
It only remains for us to treat the case where $V_{1} \neq \phi\left(b_{1}\right)$ and $V_{2} \neq \phi\left(b_{m}\right)$. There exists an integer n_{0} such that any factor A of \mathbf{s} of length greater than n_{0} contains $10^{k} 10^{k+1} 10$. It is sufficient to consider the case where $\phi\left(10^{k} 10^{k+1} 10\right)=$ $V_{1} \phi\left(b_{2} b_{3} \ldots b_{m-1}\right) V_{2}$ for a factor $b_{1} b_{2} \ldots b_{m}$ of \mathbf{s} and with V_{1} a proper nonempty suffix of $\phi\left(b_{1}\right)$ and V_{2} a proper nonempty prefix of $\phi\left(b_{m}\right)$.

If $b_{2} b_{3} \ldots b_{m-1}=0^{k+1} 10^{k} 1$, then $b_{1}=1$ and $b_{m}=0$. It follows that $\left|V_{1}\right|<|\phi(1)|$ and $\left|V_{2}\right|<|\phi(0)|$, which contradicts

$$
\left|V_{1}\right|+\left|V_{2}\right|<|\phi(1)|+|\phi(0)|=\left|\phi\left(10^{k} 10^{k+1} 10\right)\right|-\left|\phi\left(0^{k+1} 10^{k} 1\right)\right| .
$$

Therefore, since any subword of \mathbf{s} in which $10^{k} 10$ and $10^{k+1} 1$ do not occur is a factor of $0^{k+1} 10^{k} 1$, we deduce that if $\phi\left(10^{k} 10^{k+1} 10\right)=V_{1} \phi\left(b_{2} \ldots b_{m-1}\right) V_{2}$ as above, then $b_{2} \ldots b_{m-1}$ contains $10^{k} 10$ or $10^{k+1} 1$.

We distinguish three cases.
Case (i). $\phi\left(10^{k} 10^{k+1} 10\right)=W_{1} \phi\left(10^{k} 10\right) W_{2}$, where $0<\left|W_{1}\right|<\left|\phi\left(10^{k}\right)\right|$. Then

$$
\phi\left(10^{k} 10^{k}\right)=W_{1} \phi\left(10^{k}\right) W_{2}^{\prime}, \quad \phi\left(0^{k} 100^{k} 10\right)=W_{1}^{\prime} \phi\left(0^{k} 10\right) W_{2},
$$

where $\left|W_{2}^{\prime}\right|=\left|W_{2}\right|-|\phi(0)|$ and $\left|W_{1}^{\prime}\right|=\left|W_{1}\right|$.

Case (ii). $\phi\left(10^{k} 10^{k+1} 10\right)=W_{1} \phi\left(10^{k} 10\right) W_{2}$, where $\left|\phi\left(10^{k}\right)\right|<\left|W_{1}\right|<\left|\phi\left(10^{k+1}\right)\right|$. Then

$$
\phi\left(10^{k} 10^{k}\right)=W_{1}^{\prime} \phi\left(0^{k} 1\right) W_{2}^{\prime}, \quad \phi\left(0^{k} 100^{k} 10\right)=W_{1}^{\prime \prime} \phi\left(0^{k} 10\right) W_{2},
$$

where $\left|W_{1}^{\prime}\right|=\left|W_{1}\right|-\left|\phi\left(0^{k}\right)\right|,\left|W_{2}^{\prime}\right|=\left|W_{2}\right|+\left|\phi\left(0^{k-1}\right)\right|$ and $\left|W_{1}^{\prime \prime}\right|=\left|W_{1}\right|$.
Case (iii). $\phi\left(10^{k} 10^{k+1} 10\right)=W_{1} \phi\left(10^{k+1} 1\right) W_{2}$, where $0<\left|W_{1}\right|<\left|\phi\left(10^{k+1}\right)\right|$. Then

$$
\phi\left(10^{k} 10^{k}\right)=W_{1} \phi\left(10^{k}\right) W_{2}^{\prime}, \quad \phi\left(0^{k} 100^{k} 10\right)=W_{1}^{\prime} \phi\left(0^{k+1} 1\right) W_{2}
$$

where $\left|W_{2}^{\prime}\right|=\left|W_{2}\right|-|\phi(0)|$ and $\left|W_{1}^{\prime}\right|=\left|W_{1}\right|$.
By Lemma 2.2, in each Case (i), (ii) and (iii), the factors $\phi\left(10^{k}\right)$ and $\phi\left(0^{k} 10\right)$ are periodic. Denoting by λ_{1}, λ_{2} the periods of $\phi\left(10^{k}\right), \phi\left(0^{k} 10\right)$,

$$
\lambda_{1} \leq \frac{\left|\phi\left(10^{k}\right)\right|}{2}=\frac{k|\phi(0)|+|\phi(1)|}{2}, \quad \lambda_{2} \leq \frac{\left|\phi\left(0^{k} 10\right)\right|}{2}=\frac{(k+1)|\phi(0)|+|\phi(1)|}{2} .
$$

Write $\phi\left(10^{k}\right)=U^{t}$ for a word U with $|U|=\lambda_{1}$ and an integer $t \geq 2$. Then $\phi(1)=U^{t_{1}} U_{1}$, $\phi\left(0^{k}\right)=U_{2} U^{t_{2}}$ for some words U_{1}, U_{2} with $U=U_{1} U_{2}$ and some nonnegative integers t_{1}, t_{2} satisfying $t_{1}+t_{2}=t-1$. Thus,

$$
\phi\left(0^{k} 1\right)=U_{2}\left(U_{1} U_{2}\right)^{t_{2}}\left(U_{1} U_{2}\right)^{t_{1}} U_{1}=\left(U_{2} U_{1}\right)^{t}, \quad\left|U_{2} U_{1}\right|=\lambda_{1}
$$

Since $\phi(0)$ is a prefix of $\left(U_{2} U_{1}\right)^{t}$, we deduce that $\phi\left(0^{k} 10\right)=\left(U_{2} U_{1}\right) \cdots\left(U_{2} U_{1}\right) U^{\prime}$ for a prefix U^{\prime} of $U_{2} U_{1}$. It then follows from [5, Lemma 3(v)] that $\lambda_{1}=\lambda_{2}$ or

$$
\left|\phi\left(0^{k} 10\right)\right|<\lambda_{1}+\lambda_{2} \leq\left(k+\frac{1}{2}\right)|\phi(0)|+|\phi(1)|<\left|\phi\left(0^{k} 10\right)\right|,
$$

in which case we have a contradiction. If $\lambda_{1}=\lambda_{2}$, then λ_{1} divides $\left|\phi\left(0^{k} 10\right)\right|$ and $\left|\phi\left(10^{k}\right)\right|$; thus, λ_{1} divides $|\phi(0)|$ and $|\phi(1)|$. This implies that $\phi(01)=\phi(10)=U U \cdots U$, again giving a contradiction.

We end this section with an easy result on the convergents of irrational numbers.
Lemma 2.4. Let $\left(p_{k} / q_{k}\right)_{k \geq 0}$ be the sequence of convergents of an irrational number $\left[0 ; a_{1}, a_{2}, \ldots\right]$ in $(0,1)$ and $d \geq 2$ be an integer. Let c_{1}, c_{2} be integers not both multiples of d. Then, for any positive integer k, we have $c_{1} p_{k}+c_{2} q_{k} \not \equiv 0(\bmod d)$ or $c_{1} p_{k+1}+c_{2} q_{k+1} \not \equiv 0(\bmod d)$.

Proof. Since

$$
\begin{aligned}
& {\left[\begin{array}{cc}
p_{k} & p_{k+1} \\
q_{k} & q_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & a_{1}
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
1 & a_{2}
\end{array}\right] \ldots\left[\begin{array}{cc}
0 & 1 \\
1 & a_{k+1}
\end{array}\right]} \\
& {\left[c_{1} p_{k}+c_{2} q_{k}\right.} \\
& \left.c_{1} p_{k+1}+c_{2} q_{k+1}\right]=\left[\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & a_{1}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & a_{2}
\end{array}\right] \ldots\left[\begin{array}{cc}
0 & 1 \\
1 & a_{k+1}
\end{array}\right]
\end{aligned}
$$

thus,

$$
\left[\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right]=\left[\begin{array}{ll}
c_{1} p_{k}+c_{2} q_{k} & c_{1} p_{k+1}+c_{2} q_{k+1}
\end{array}\right]\left[\begin{array}{cc}
-a_{k+1} & 1 \\
1 & 0
\end{array}\right] \ldots\left[\begin{array}{cc}
-a_{2} & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-a_{1} & 1 \\
1 & 0
\end{array}\right] .
$$

Hence, if $\left[\begin{array}{cc}c_{1} p_{k}+c_{2} q_{k} & c_{1} p_{k+1}+c_{2} q_{k+1}\end{array}\right]=\left[\begin{array}{ll}0 & 0\end{array}\right]$ modulo d, then c_{1} and c_{2} are multiples of d.

3. Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.5. Let $b \geq 2$ be an integer and ρ, σ be positive integers. Assume that $\rho=d \sigma$ for some integer $d \geq 2$. Let ξ be a real number and assume that there are integers a_{1}, a_{2}, \ldots in $\left\{0,1, \ldots, b^{\rho}-1\right\}$ and k, n_{0} such that

$$
\xi=\lfloor\xi\rfloor+\sum_{i \geq 1} \frac{a_{i}}{b^{\rho i}} \quad \text { and } \quad p\left(n, \xi, b^{\rho}\right)=n+k \quad \text { for } n \geq n_{0}
$$

Then, by Lemma 2.1, there are a finite word W, a Sturmian word \mathbf{s} defined over $\{0,1\}$ and a morphism ϕ from $\{0,1\}^{*}$ into $\left\{0,1, \ldots, b^{\rho}-1\right\}^{*}$ such that $\phi(01) \neq \phi(10)$ and

$$
\mathbf{a}=a_{1} a_{2} \ldots=W \phi(\mathbf{s}) .
$$

Suppose a is in $\left\{0,1, \ldots, b^{\rho}-1\right\}$ and consider its representation in base b^{σ} given by $a=c_{1} b^{(d-1) \sigma}+c_{2} b^{(d-2) \sigma}+\cdots+c_{d} b^{0 \cdot \sigma}$, where c_{1}, \ldots, c_{d} are in $\left\{0,1, \ldots, b^{\sigma}-1\right\}$. Define the function $\phi_{\rho, \sigma}$ on $\left\{0,1, \ldots, b^{\rho}-1\right\}$ by setting $\phi_{\rho, \sigma}(a)=c_{1} c_{2} \ldots c_{d}$. It extends to a morphism from $\left\{0,1, \ldots, b^{\rho}-1\right\}^{*}$ to $\left\{0,1, \ldots, b^{\sigma}-1\right\}^{*}$, which we also denote by $\phi_{\rho, \sigma}$. Then

$$
\xi=\lfloor\xi\rfloor+\sum_{i \geq 1} \frac{d_{i}}{b^{\sigma i}} \quad \text { where } \mathbf{d}=d_{1} d_{2} \ldots=\phi_{\rho, \sigma}(W)\left(\phi_{\rho, \sigma} \circ \phi\right)(\mathbf{s}) .
$$

We deduce from Lemma 2.1 that the b^{σ}-ary expansion of ξ is quasi-Sturmian. Thus, we have established the first assertion of the theorem.

For the second assertion of the theorem, we may assume that ρ and σ are relatively prime (otherwise, we replace b by b^{g}, where g is the greatest common divisor of ρ and σ).

Let ξ be a real number and write

$$
\xi=\lfloor\xi\rfloor+\sum_{i \geq 1} \frac{a_{i}}{b^{\rho i}}=\lfloor\xi\rfloor+\sum_{j \geq 1} \frac{b_{j}}{b^{\sigma j}},
$$

where a_{1}, a_{2}, \ldots are in $\left\{0,1, \ldots, b^{\rho}-1\right\}$ and b_{1}, b_{2}, \ldots are in $\left\{0,1, \ldots, b^{\sigma}-1\right\}$. Assume that $\mathbf{a}=a_{1} a_{2} \ldots$ and $\mathbf{b}=b_{1} b_{2} \ldots$ are both quasi-Sturmian. By Lemma 2.1, there are a finite word W, a Sturmian word \mathbf{s} defined over $\{0,1\}$ and a morphism ϕ from $\{0,1\}^{*}$ into $\left\{0,1, \ldots, b^{\rho}-1\right\}^{*}$ such that $\phi(01) \neq \phi(10)$ and

$$
\mathbf{a}=a_{1} a_{2} \ldots=W \phi(\mathbf{s})
$$

We claim that $|\phi(0)|=: l_{0}$ and $|\phi(1)|=: l_{1}$ are both multiples of σ.
In order to deduce a contradiction, we suppose that σ does not divide at least one of l_{0} and l_{1}.

Let $\phi_{\rho, 1}$ be the morphism $\phi_{\rho, \sigma}$ defined above in the case $\sigma=1$. For each factor U of \mathbf{s}, let

$$
\Lambda(U):=\left\{0 \leq j \leq \sigma-1: \phi_{\rho, 1}(\mathbf{a})=V \phi_{\rho, 1} \circ \phi(U) \text { for some } V \text { with }|V| \equiv j(\bmod \sigma)\right\}
$$

denote the nonempty set of positions modulo σ where $\phi_{\rho, 1} \circ \phi(U)$ occurs in $\phi_{\rho, 1}(\mathbf{a})$. If U^{\prime} is a prefix of U, then $\Lambda(U)$ is a subset of $\Lambda\left(U^{\prime}\right)$. Consequently, there exists N such that $\Lambda\left(s_{1} \ldots s_{n}\right)=\Lambda\left(s_{1} \ldots s_{N}\right)$ for each $n \geq N$.

Let $\left[0 ; a_{1}, a_{2}, \ldots\right]$ denote the continued fraction expansion of the slope of \mathbf{s} and, for $k \geq 1$, let q_{k} be the denominator of the convergent $\left[0 ; a_{1}, \ldots, a_{k}\right]$ to this slope. Define the sequence $\left(M_{k}\right)_{k \geq 0}$ of finite words over $\{0,1\}$ by

$$
M_{0}=0, \quad M_{1}=0^{a_{1}-1} 1 \quad \text { and } \quad M_{k+1}=\left(M_{k}\right)^{a_{k}} M_{k-1} \quad(k \geq 1) .
$$

For $k \geq 1$, the word M_{k} is a factor of length q_{k} of \mathbf{s} (see, for example, [7]). Since there are p_{k} occurrences of the digit 1 in M_{k},

$$
\left|\phi\left(M_{k}\right)\right|=l_{0}\left(q_{k}-p_{k}\right)+l_{1} p_{k}=\left(l_{1}-l_{0}\right) p_{k}+l_{0} q_{k} .
$$

By Lemma 2.4 and the assumption that σ does not divide at least one of l_{0} and l_{1}, we conclude that at least one of $\left|\phi\left(M_{k}\right)\right|$ and $\left|\phi\left(M_{k+1}\right)\right|$ is not a multiple of σ.

Let U be a factor of \mathbf{s}. Then U is a factor of M_{k} for some integer k. Since $M_{k} M_{k}$ is a factor of $M_{k+2} M_{k+1}=\left(M_{k+1}\right)^{a_{k+2}} M_{k}\left(M_{k}\right)^{a_{k+1}} M_{k-1}$, which is a factor of \mathbf{s}, there are two positions of $\phi(U)$ which differ by $\left|\phi\left(M_{k}\right)\right|$. Thus, there exist two occurrences of $\phi(U)$ in $\phi(\mathbf{s})$ separated by exactly $\rho\left|\phi\left(M_{k}\right)\right|$ letters. Replacing k by $k+1$ is necessary, we can assume that $\rho\left|\phi\left(M_{k}\right)\right|$ is not a multiple of σ and we deduce that $|\Lambda(U)| \geq 2$ for any factor U of \mathbf{s}.

A finite word U is called right special if U is a prefix of two different factors of \mathbf{s} of the same length. If the initial word $s_{1} \ldots s_{n}$ of \mathbf{s} is not a prefix of a right special word, then either $s_{j+1} \ldots s_{j+n} \neq s_{1} \ldots s_{n}$ for all $j \geq 1$ or \mathbf{s} is periodic. Since a Sturmian word is recurrent and not periodic (see, for example, [6, page 158]), there are infinitely many prefixes $s_{1} \ldots s_{n}$ of \mathbf{s} which are right special. Let $n \geq N$ be such that $s_{1} \ldots s_{n}$ is right special. Then there exists a letter c such that $c \neq s_{n+1}$ and $s_{1} \ldots s_{n} c$ is a factor of s. Thus,

$$
\Lambda\left(s_{1} \ldots s_{n} s_{n+1}\right)=\Lambda\left(s_{1} \ldots s_{n}\right) \supset \Lambda\left(s_{1} \ldots s_{n} c\right)
$$

Choose i, j in $\Lambda\left(s_{1} \ldots s_{n} c\right)$ with $0 \leq i<j \leq \sigma-1$. Then we can write

$$
\phi_{\rho, 1}(\mathbf{a})=U U_{1} \phi_{\rho, 1} \circ \phi\left(s_{1} \ldots s_{n} c\right) U_{1}^{\prime} \ldots=U^{\prime} U_{2} \phi_{\rho, 1} \circ \phi\left(s_{1} \ldots s_{n} s_{n+1}\right) U_{2}^{\prime} \ldots
$$

and

$$
\phi_{\rho, 1}(\mathbf{a})=V V_{1} \phi_{\rho, 1} \circ \phi\left(s_{1} \ldots s_{n} c\right) V_{1}^{\prime} \ldots=V^{\prime} V_{2} \phi_{\rho, 1} \circ \phi\left(s_{1} \ldots s_{n} s_{n+1}\right) V_{2}^{\prime} \ldots
$$

for some words $U, U^{\prime}, V, V^{\prime}, U_{1}, U_{2}, V_{1}, V_{2}, U_{1}^{\prime}, U_{2}^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}$ written over $\{0, \ldots, b-1\}$ and satisfying

$$
\begin{gathered}
\left|U_{1}\right|=\left|U_{2}\right|=i, \quad\left|V_{1}\right|=\left|V_{2}\right|=j, \quad|U| \equiv\left|U^{\prime}\right| \equiv|V| \equiv\left|V^{\prime}\right| \equiv 0 \quad(\bmod \sigma), \\
0 \leq\left|U_{1}^{\prime}\right|=\left|U_{2}^{\prime}\right| \leq \sigma-1, \quad 0 \leq\left|V_{1}^{\prime}\right|=\left|V_{2}^{\prime}\right| \leq \sigma-1,
\end{gathered}
$$

and σ divides $i+(n+1) \rho+\left|U_{1}^{\prime}\right|$ and $j+(n+1) \rho+\left|V_{1}^{\prime}\right|$. Thus, there exist $u_{1}, u_{2}, v_{1}, v_{2}$ in $\left\{0,1, \ldots, b^{\sigma}-1\right\}$ and words $X, Y, A_{1}, A_{2}, B_{1}, B_{2}$ written over $\left\{0,1, \ldots, b^{\sigma}-1\right\}$ with

$$
|X|=\left\lfloor\frac{i+n \rho}{\sigma}\right\rfloor-1, \quad|Y|=\left\lfloor\frac{j+n \rho}{\sigma}\right\rfloor-1
$$

and

$$
A_{1} \neq A_{2}, \quad B_{1} \neq B_{2}, \quad\left|A_{1}\right|=\left|A_{2}\right|<\frac{\rho}{\sigma}+2, \quad\left|B_{1}\right|=\left|B_{2}\right|<\frac{\rho}{\sigma}+2
$$

such that

$$
\begin{aligned}
U_{1} \phi_{\rho, 1} \circ \phi\left(s_{1} \ldots s_{n} c\right) U_{1}^{\prime} & =\phi_{\sigma, 1}\left(u_{1} X A_{1}\right), \\
U_{2} \phi_{\rho, 1} \circ \phi\left(s_{1} \ldots s_{n} s_{n+1}\right) U_{2}^{\prime} & =\phi_{\sigma, 1}\left(u_{2} X A_{2}\right), \\
V_{1} \phi_{\rho, 1} \circ \phi\left(s_{1} \ldots s_{n} c\right) V_{1}^{\prime} & =\phi_{\sigma, 1}\left(v_{1} Y B_{1}\right), \\
V_{2} \phi_{\rho, 1} \circ \phi\left(s_{1} \ldots s_{n} s_{n+1}\right) V_{2}^{\prime} & =\phi_{\sigma, 1}\left(v_{2} Y B_{2}\right) .
\end{aligned}
$$

Here, $\phi_{\sigma, 1}$ is defined analogously to $\phi_{\rho, 1}$. Therefore, $u_{1} X A_{1}, u_{2} X A_{2}$ and $v_{1} Y B_{1}, v_{2} Y B_{2}$ are all factors of $\phi_{\sigma, 1}^{-1}\left(\phi_{\rho, 1}(\phi(\mathbf{s}))\right)$. Denoting by A (respectively, by B) the longest common prefix (it could be the empty word) of A_{1} and A_{2} (respectively, of B_{1} and B_{2}), we deduce that $X A$ and $Y B$ are both right special.

Let W_{0} be the longest common prefix of the words $\phi_{\rho, 1} \circ \phi\left(s_{1} \ldots s_{n} s_{n+1}\right)$ and $\phi_{\rho, 1} \circ \phi\left(s_{1} \ldots s_{n} c\right)$. Then there exist finite words $W_{1}, W_{2}, W_{1}^{\prime}, W_{2}^{\prime}$ over $\{0, \ldots, b-1\}$ satisfying $\left|W_{1}\right|=\sigma-i,\left|W_{2}\right|=\sigma-j,\left|W_{1}^{\prime}\right|<\sigma,\left|W_{2}^{\prime}\right|<\sigma$ and

$$
W_{0}=W_{1} \phi_{\sigma, 1}(X A) W_{1}^{\prime}=W_{2} \phi_{\sigma, 1}(Y B) W_{2}^{\prime} .
$$

Thus, we get $|X A| \leq|Y B| \leq|X A|+1$.
Suppose that $X A$ is a suffix of $Y B$. Then there exists a nonempty finite word W^{\prime} of length less than σ such that

$$
\begin{gathered}
W_{0}=W_{2} W^{\prime} \phi_{\sigma, 1}(X A) W_{1}^{\prime}=W_{2} \phi_{\sigma, 1}(X A) W_{2}^{\prime} \quad \text { if }|X A|=|Y B|, \\
W_{0}=W_{1} \phi_{\sigma, 1}(X A) W_{1}^{\prime}=W_{1} W^{\prime} \phi_{\sigma, 1}(X A) W_{2}^{\prime} \quad \text { if }|X A|+1=|Y B| .
\end{gathered}
$$

It then follows from [1, Theorem 1.5.2] that we have $W_{0}=W_{2}\left(W^{\prime}\right)^{t} W^{\prime \prime} W_{1}^{\prime}$ or $W_{1}\left(W^{\prime}\right)^{t} W^{\prime \prime} W_{2}^{\prime}$, respectively, for some integer t and a prefix $W^{\prime \prime}$ of W^{\prime}. Since ρ, σ are fixed and \mathbf{s} is Sturmian, we deduce from [3, Lemma 2.3] that $\left(W^{\prime}\right)^{t}$ cannot be a factor of $\phi_{\rho, 1} \circ \phi\left(s_{1} \ldots s_{n}\right)$ when n is sufficiently large. This shows that the lengths of $X A$ and $Y B$ are bounded independently of n.

Consequently, the right special words $X A$ and $Y B$ are not suffixes of each other if n is sufficiently large. Hence, there are arbitrarily large integers m such that $\phi_{\sigma, 1}^{-1} \circ \phi_{\rho, 1} \circ \phi(\mathbf{s})$ has two distinct right special words of length m. This implies that $\mathbf{b}=\phi_{\sigma, 1}^{-1} \circ \phi_{\rho, 1}(\mathbf{a})$ is not quasi-Sturmian, which gives a contradiction. Therefore, we have established that $|\phi(0)|$ and $|\phi(1)|$ are both multiples of σ.

Write

$$
\xi=\lfloor\xi\rfloor+\sum_{i \geq 1} \frac{c_{i}}{b^{\rho \sigma i}}, \quad \mathbf{c}=c_{1} c_{2} \cdots=\phi_{\rho \sigma, \rho}^{-1}(\mathbf{a})=\phi_{\rho \sigma, \rho}^{-1}(W \phi(\mathbf{s})) .
$$

Put $|W|=h \sigma+d$ for integers $h \geq 0$ and d with $0 \leq d<\sigma$. Suppose $\phi(0)=X_{1} X_{2}$, $\phi(1)=Y_{1} Y_{2}$, where $\left|X_{1}\right|=\left|Y_{1}\right|=\sigma-d$. Assume that 11 is not a factor of \mathbf{s}. Then there exists a positive integer k such that $10^{m} 1$ is a factor of \mathbf{s} if and only if $m=k$ or $k+1$. Thus, we can represent \mathbf{s} as

$$
\mathbf{s}=0^{w} t_{0} t_{1} t_{2} t_{3}, \ldots, \quad t_{0}=10^{k}, \quad t_{i} \in\left\{10^{k}, 0\right\}, \quad 0 \leq w \leq k+1 .
$$

It is not difficult to check that $\mathbf{t}:=t_{0} t_{1} t_{2} \ldots$ is Sturmian. Define ϕ^{\prime} by

$$
\phi^{\prime}\left(10^{k}\right)=X_{2} Y_{1} Y_{2}\left(X_{1} X_{2}\right)^{k-1} X_{1}, \quad \phi^{\prime}(0)=X_{2} X_{1} .
$$

Then

$$
\phi(\mathbf{s})=\left(X_{1} X_{2}\right)^{w} Y_{1} Y_{2}\left(X_{1} X_{2}\right)^{k-1} X_{1} \phi^{\prime}\left(t_{1} t_{2} t_{3} \ldots\right) ;
$$

thus,

$$
\mathbf{c}=\phi_{\rho \sigma, \rho}^{-1}(W \phi(\mathbf{s}))=\phi_{\rho \sigma, \rho}^{-1}\left(W\left(X_{1} X_{2}\right)^{w} Y_{1} Y_{2}\left(X_{1} X_{2}\right)^{k-1} X_{1}\right)\left(\phi_{\rho \sigma, \rho}^{-1} \circ \phi^{\prime}\right)\left(t_{1} t_{2} t_{3} \ldots\right)
$$

Since $|\phi(0)|$ and $|\phi(1)|$ are both multiples of σ, the morphism $\phi_{\rho \sigma, \rho}^{-1} \circ \phi^{\prime}$ is well defined. We conclude that \mathbf{c} is quasi-Sturmian and the proof of the theorem is complete.

Lemma 3.1. Let $b \geq 2, d \geq 2, \rho$ and σ be positive integers with $\rho=d \sigma$. Let $x_{1} x_{2} \ldots$ be a quasi-Sturmian word over $\left\{0,1, \ldots, b^{\rho}-1\right\}$. Then there exists an integer n_{0} such that the real number $\xi=\sum_{k \geq 1} x_{k} / b^{\rho k}$ satisfies

$$
p\left(n d, \xi, b^{\sigma}\right) \geq(n+1) d \quad \text { for } n \geq n_{0} .
$$

Furthermore, if $s_{1} s_{2} \ldots$ is a Sturmian word written over $\{0,1\}$, then there exists an integer n_{0} such that the real number $\xi=\sum_{k \geq 1} s_{k} / b^{\rho k}$ satisfies

$$
p\left(n, \xi, b^{\sigma}\right)=n+d \quad \text { for } n \geq n_{0} .
$$

Proof. Set $\mathcal{A}:=\left\{0,1, \ldots, b^{\rho}-1\right\}$. There exist a Sturmian word \mathbf{s} written over $\{0,1\}$, a morphism ϕ from $\{0,1\}^{*}$ into \mathcal{A}^{*} satisfying $\phi(01) \neq \phi(10)$ and a factor W of $\mathbf{x}:=x_{1} x_{2} \ldots$ such that $\mathbf{x}=W \phi(\mathbf{s})$. Then the word

$$
\mathbf{y}:=\phi_{\rho, \sigma}(\mathbf{x})=\phi_{\rho, \sigma}(W \phi(\mathbf{s}))=\phi_{\rho, \sigma}(W)\left(\phi_{\rho, \sigma} \circ \phi\right)(\mathbf{s})
$$

is quasi-Sturmian.
Let n be a positive integer larger than the integer n_{0} given by Lemma 2.3 applied to the morphism $\phi_{\rho, \sigma} \circ \phi$. We claim that if $U_{1} \phi_{\rho, \sigma}\left(A_{1}\right) V_{1}=U_{2} \phi_{\rho, \sigma}\left(A_{2}\right) V_{2}$, where A_{1}, A_{2} are factors of $\phi(\mathbf{s})$ of length n and U_{1}, U_{2} (respectively, V_{1}, V_{2}) are nonempty suffixes (respectively, proper prefixes) of words of the form $\phi_{\rho, \sigma}(a)$ for a in \mathcal{A}, then $U_{1}=U_{2}$, $A_{1}=A_{2}$ and $V_{1}=V_{2}$.

Suppose not. Then we may assume that there exist A_{1}, A_{2} and U, V such that

$$
\phi_{\rho, \sigma}\left(A_{1}\right) V=U \phi_{\rho, \sigma}\left(A_{2}\right) .
$$

Thus, there exist a_{1}, a_{2} in \mathcal{A}, a factor A of $\phi(\mathbf{s})$ of length n and a factor A^{\prime} of $\phi(\mathbf{s})$ of length $n-1$ such that $\phi_{\rho, \sigma}(A)=W_{1} \phi_{\rho, \sigma}\left(A^{\prime}\right) W_{2}$, where W_{1} (respectively, W_{2}) is a nonempty proper suffix (respectively, prefix) of $\phi_{\rho, \sigma}\left(a_{1}\right)$ (respectively, of $\phi_{\rho, \sigma}\left(a_{2}\right)$). Consequently, there exist $b, b^{\prime}, c, c^{\prime}$ in $\{0,1\}$ and factors B, B^{\prime} of \mathbf{s} such that $A=$ $U \phi(B) V, a_{1} A^{\prime} a_{2}=U^{\prime} \phi\left(B^{\prime}\right) V^{\prime}$, where U (respectively, U^{\prime}) is a nonempty suffix of $\phi(b)$ (respectively, $\phi\left(b^{\prime}\right)$) and V (respectively, V^{\prime}) is a nonempty prefix of $\phi(c)$ (respectively,
$\left.\phi\left(c^{\prime}\right)\right)$. Then $A^{\prime}=U^{\prime \prime} \phi\left(B^{\prime}\right) V^{\prime \prime}$ for words $U^{\prime \prime}, V^{\prime \prime}$ such that $U^{\prime}=a_{1} U^{\prime \prime}, V^{\prime}=V^{\prime \prime} a_{2}$. Therefore,

$$
\phi_{\rho, \sigma}(A)=\phi_{\rho, \sigma}(U)\left(\phi_{\rho, \sigma} \circ \phi\right)(B) \phi_{\rho, \sigma}(V)=W_{1} \phi_{\rho, \sigma}\left(U^{\prime \prime}\right)\left(\phi_{\rho, \sigma} \circ \phi\right)\left(B^{\prime}\right) \phi_{\rho, \sigma}\left(V^{\prime \prime}\right) W_{2} .
$$

We deduce from Lemma 2.3 that $\phi_{\rho, \sigma}(U)=W_{1} \phi_{\rho, \sigma}\left(U^{\prime \prime}\right), \phi_{\rho, \sigma}(V)=\phi_{\rho, \sigma}\left(V^{\prime \prime}\right) W_{2}$ and $B=B^{\prime}$. This is a contradiction to the fact that W_{1} (respectively, W_{2}) is a nonempty proper suffix (respectively, prefix) of $\phi_{\rho, \sigma}\left(a_{1}\right)$ (respectively, of $\left.\phi_{\rho, \sigma}\left(a_{2}\right)\right)$. Hence, the representation of $X=U \phi_{\rho, \sigma}(A) V$ is unique.

If $\phi(\mathbf{s})$ is written over an alphabet of three letters or more, then

$$
p(n-1, \phi(\mathbf{s})) \geq(n-1)+2=n+1,
$$

which implies that the number of factors X of $\left(\phi_{\rho, \sigma} \circ \phi\right)(\mathbf{s})$ of length $n d$ is at least equal to $(n+1) d$. If $\phi(\mathbf{s})$ is written over an alphabet of two letters, say over the alphabet $\mathcal{A}=\{a, b\}$, then we can put $\phi_{\rho, \sigma}(a)=Z X$ and $\phi_{\rho, \sigma}(b)=Z Y$, where Z is the longest common prefix of $\phi_{\rho, \sigma}(a), \phi_{\rho, \sigma}(b)$ and the first letters of X, Y are different. If $|V|>|Z|$, then, for each right special factor A of \mathbf{s}, there are two distinct factors $\phi_{\rho, \sigma}(A) V_{1}$, $\phi_{\rho, \sigma}(A) V_{2}$ in $\phi(\mathbf{s})$. If $|V| \leq|Z|$, then $|U| \geq|X|=|Y|$; thus, for each left special factor B of \mathbf{s}, there are two factors $U_{1} \phi_{\rho, \sigma}(B), U_{2} \phi_{\rho, \sigma}(B)$ in $\phi(\mathbf{s})$. For each $c=0, \ldots, d-1$, the number of factors $X=U \phi_{\rho, \sigma}(A) V$ of $\left(\phi_{\rho, \sigma} \circ \phi\right)(\mathbf{s})$ of length $n d$ with $|A|=n-1$ and $|U|=d-|V|=c$ is at least equal to $p(n-1, \phi(\mathbf{s}))+1$. Therefore,

$$
p\left(n d, \xi, b^{\sigma}\right) \geq p\left(n d,\left(\phi_{\rho, \sigma} \circ \phi\right)(\mathbf{s})\right) \geq(n+1) d .
$$

Since the function $m \mapsto p\left(m, \xi, b^{\sigma}\right)$ is strictly increasing, this implies the first assertion of the lemma.

For the second assertion, let $\mathbf{s}=s_{1} s_{2} \ldots$ be a Sturmian word written over the subset $\{0,1\}$ of $\left\{0,1, \ldots, b^{\rho}-1\right\}$ and define

$$
\xi=\sum_{i \geq 1} \frac{s_{i}}{b^{p i}}
$$

Since $\phi_{\rho, \sigma}(0)=0^{d}$ and $\phi_{\rho, \sigma}(1)=0^{d-1} 1$ for $n \geq 1$, any factor of length $d n$ of $\phi_{\rho, \sigma}(\mathbf{s})$ is a suffix of $\phi_{\rho, \sigma}(A) 0^{k}$, where A is a factor of length n in \mathbf{s} and $0 \leq k \leq d-1$. Since 0^{d-1} is a prefix of $\phi_{\rho, \sigma}(A) 0^{k}$, the number of suffixes of $\phi_{\rho, \sigma}(A) 0^{k}$ of length $n d$ is $d(n+1)$ and thus

$$
p\left(d n, \xi, b^{\sigma}\right)=d(n+1)=d n+d
$$

Since the function $m \mapsto p\left(m, \xi, b^{\sigma}\right)$ is strictly increasing, this completes the proof of the lemma.

Proof of Theorem 1.4. Suppose that the two bases $r \geq 2$ and $s \geq 2$ are multiplicatively dependent and let m, ℓ be the coprime positive integers satisfying $r^{m}=s^{\ell}$. Then there exists a positive integer b such that $r=b^{\ell}$ and $s=b^{m}$.

Let $\mathbf{s}=s_{1} s_{2} \ldots$ be a Sturmian word over the subset $\{0,1\}$ of $\left\{0,1, \ldots, b^{m \ell}-1\right\}$ and define

$$
\xi=\sum_{i \geq 1} \frac{s_{i}}{b^{m \ell i}} .
$$

By the second assertion of Lemma 3.1, there exists an integer n_{0} such that

$$
p\left(n, \xi, b^{\ell}\right)=n+m \quad \text { and } \quad p\left(n, \xi, b^{m}\right)=n+\ell \quad \text { for } n \geq n_{0} .
$$

Thus,

$$
\lim _{n \rightarrow+\infty}(p(n, \xi, r)+p(n, \xi, s)-2 n)=m+\ell .
$$

This proves the first assertion of the theorem.
For the second assertion of the theorem, it is sufficient to consider a real number ξ whose b^{ℓ}-ary and b^{m}-ary expansions are both quasi-Sturmian. By Theorem 1.5, the $b^{\ell m}$-ary expansion of ξ is also quasi-Sturmian and we deduce from the first assertion of Lemma 3.1 that there exists an integer n_{0} such that

$$
p\left(m n, \xi, b^{\ell}\right) \geq m(n+1) \quad \text { and } \quad p\left(\ell n, \xi, b^{m}\right) \geq \ell(n+1) \quad \text { for } n \geq n_{0} .
$$

Therefore,

$$
\lim _{n \rightarrow+\infty}(p(n, \xi, r)+p(n, \xi, s)-2 n) \geq m+\ell
$$

This completes the proof of the theorem.

References

[1] J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations (Cambridge University Press, Cambridge, 2003).
[2] Y. Bugeaud, 'On the expansions of a real number to several integer bases', Rev. Mat. Iberoam. 28 (2012), 931-946.
[3] Y. Bugeaud and D. H. Kim, 'On the expansions of real numbers in two integer bases', Preprint.
[4] J. Cassaigne, 'Sequences with grouped factors', in: DLT'97, Developments in Language Theory III (ed. S. Bozapalidis) (Aristotle University of Thessaloniki, Thessaloniki, 1998), 211-222.
[5] C. H. Choe and D. H. Kim, 'The first return time test for pseudorandom numbers', J. Comput. Appl. Math. 143 (2002), 263-274.
[6] N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794 (eds. V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel) (Springer, Berlin, 2002).
[7] M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, 90 (Cambridge University Press, Cambridge, 2002).
[8] M. Morse and G. A. Hedlund, 'Symbolic dynamics II: Sturmian sequences', Amer. J. Math. 62 (1940), 1-42.

YANN BUGEAUD, IRMA, U.M.R. 7501, Université de Strasbourg et CNRS, 7 rue René Descartes, 67084 Strasbourg, France e-mail: bugeaud@math.unistra.fr

DONG HAN KIM, Department of Mathematics Education, Dongguk University-Seoul,
30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea
e-mail: kim2010@dongguk.edu

[^0]: This work was supported by the National Research Foundation of Korea (NRF-2015R1A2A2A01007090) and the research program of Dongguk University, 2016.
 (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

