ON THE EXPANSIONS OF REAL NUMBERS IN TWO MULTIPLICATIVELY DEPENDENT BASES

YANN BUGEAUD and DONG HAN KIM[∞]

(Received 21 September 2016; accepted 3 October 2016; first published online 1 December 2016)

Abstract

Let $r \ge 2$ and $s \ge 2$ be multiplicatively dependent integers. We establish a lower bound for the sum of the block complexities of the *r*-ary expansion and the *s*-ary expansion of an irrational real number, viewed as infinite words on $\{0, 1, ..., r-1\}$ and $\{0, 1, ..., s-1\}$, and we show that this bound is best possible.

2010 *Mathematics subject classification*: primary 11A63; secondary 68R15. *Keywords and phrases*: combinatorics on words, Sturmian word, complexity, *b*-ary expansion.

1. Introduction

Throughout this paper, $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x and $\lceil x \rceil$ denotes the smallest integer greater than or equal to x. Let $b \ge 2$ be an integer. For a real number ξ , write

$$\xi = \lfloor \xi \rfloor + \sum_{k \ge 1} \frac{a_k}{b^k} = \lfloor \xi \rfloor + 0.a_1 a_2 \dots,$$

where each digit a_k is an integer from $\{0, 1, ..., b-1\}$ and infinitely many digits a_k are not equal to b - 1. The sequence $\mathbf{a} := (a_k)_{k \ge 1}$ is uniquely determined by the fractional part of ξ . With a slight abuse of notation, we call it the *b*-ary expansion of ξ and we view it also as the infinite word $\mathbf{a} = a_1 a_2 \dots$ over the alphabet $\{0, 1, \dots, b-1\}$.

For an infinite word $\mathbf{x} = x_1 x_2 \dots$ over a finite alphabet and a positive integer *n*, set

$$p(n, \mathbf{x}) = \text{Card}\{x_{j+1} \dots x_{j+n} : j \ge 0\}.$$

This notion from combinatorics on words is now commonly used to measure the complexity of the *b*-ary expansion of a real number ξ . Indeed, for a positive integer *n*, we denote by $p(n, \xi, b)$ the total number of distinct blocks of *n* digits in the *b*-ary expansion **a** of ξ , that is,

$$p(n,\xi,b) := p(n,\mathbf{a}) = \text{Card}\{a_{j+1} \dots a_{j+n} : j \ge 0\}.$$

This work was supported by the National Research Foundation of Korea (NRF-2015R1A2A2A01007090) and the research program of Dongguk University, 2016.

^{© 2016} Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

Obviously, we have $1 \le p(n,\xi,b) \le b^n$ and both inequalities are sharp. If ξ is rational, then its *b*-ary expansion is ultimately periodic and the numbers $p(n,\xi,b)$, $n \ge 1$, are uniformly bounded by a constant depending only on ξ and *b*. If ξ is irrational, then, by a classical result of Morse and Hedlund [8], we know that $p(n,\xi,b) \ge n + 1$ for every positive integer *n*, and this inequality is sharp.

DEFINITION 1.1. A Sturmian word \mathbf{x} is an infinite word which satisfies

$$p(n, \mathbf{x}) = n + 1$$
 for $n \ge 1$.

A quasi-Sturmian word \mathbf{x} is an infinite word which satisfies

$$p(n, \mathbf{x}) = n + k$$
 for $n \ge n_0$

for some positive integers k and n_0 .

The following rather general problem was investigated in [2]. Recall that two positive integers x and y are called *multiplicatively independent* if the only pair of integers (m, n) such that $x^m y^n = 1$ is the pair (0, 0).

PROBLEM 1.2. Are there irrational real numbers having a 'simple' expansion in two multiplicatively independent bases?

We established in [3] that the complexity function of the *r*-ary expansion of an irrational real number and that of its *s*-ary expansion cannot both grow too slowly when *r* and *s* are multiplicatively independent positive integers.

THEOREM 1.3 [3]. Let r and s be multiplicatively independent positive integers. Any irrational real number ξ satisfies

$$\lim_{n \to +\infty} (p(n,\xi,r) + p(n,\xi,s) - 2n) = +\infty.$$

Said differently, ξ cannot have simultaneously a quasi-Sturmian r-ary expansion and a quasi-Sturmian s-ary expansion.

We complement Theorem 1.3 by the following statement addressing expansions of a real number in two multiplicatively dependent bases.

THEOREM 1.4. Let $r, s \ge 2$ be multiplicatively dependent integers and m, ℓ be the smallest positive integers such that $r^m = s^{\ell}$. Then there exist uncountably many real numbers ξ satisfying

 $\lim_{n \to +\infty} (p(n,\xi,r) + p(n,\xi,s) - 2n) = m + \ell$

and every irrational real number ξ satisfies

$$\lim_{n \to +\infty} (p(n,\xi,r) + p(n,\xi,s) - 2n) \ge m + \ell.$$

The next result, used in the proof of Theorem 1.4, has its own interest.

THEOREM 1.5. Let $b \ge 2$ be an integer and ρ, σ be positive integers. If σ divides ρ , then every real number whose b^{ρ} -ary expansion is quasi-Sturmian has a quasi-Sturmian b^{σ} -ary expansion. Moreover, every real number whose b^{ρ} -ary and b^{σ} -ary expansions are both quasi-Sturmian has a quasi-Sturmian b^{μ} -ary expansion, where μ is the least common multiple of ρ and σ .

We conclude by an immediate consequence of Theorems 1.3 and 1.4.

COROLLARY 1.6. Let $r, s \ge 2$ be distinct integers. No real number can have simultaneously a Sturmian r-ary expansion and a Sturmian s-ary expansion.

Our paper is organised as follows. Section 2 gathers auxiliary results on Sturmian and quasi-Sturmian words. Theorems 1.4 and 1.5 are established in Section 3.

2. Auxiliary results

We will make use of the following characterisation of quasi-Sturmian words.

LEMMA 2.1 [4]. An infinite word **x** written over a finite alphabet \mathcal{A} is quasi-Sturmian if and only if there are a finite word W, a Sturmian word **s** defined over $\{0, 1\}$ and a morphism ϕ from $\{0, 1\}^*$ into \mathcal{A}^* such that $\phi(01) \neq \phi(10)$ and

$$\mathbf{x} = W\phi(\mathbf{s}).$$

Throughout this paper, for a finite word W and an integer t, we write W^t for the concatenation of t copies of W and W^{∞} for the concatenation of infinitely many copies of W. We denote by |W| the length of W, that is, the number of letters composing W. A word U is called periodic if $U = W^t$ for some finite word W and an integer $t \ge 2$. If U is periodic, then the period of U is defined as the length of the shortest word W for which there exists an integer $t \ge 2$ such that $U = W^t$.

LEMMA 2.2. Let U be a finite word. Assume that there exist words U_1, U_2, V, W such that $U = U_1U_2$ and $UU = VU_2U_1W$, with $|U_1| \neq |V|$ and 0 < |V| < |U|. Then, the word U is periodic.

PROOF. Since V is a prefix of U and W is a suffix of U,

$$U = U_1 U_2 = VW;$$

thus, $VU_2U_1W = UU = VWVW$. This implies that

$$U_2U_1 = WV.$$

If $|U_1| < |V|$, then we can write $V = V'U_1$ for a nonempty word V' and thus $U_2 = WV'$. Therefore,

$$U_1WV' = U_1U_2 = VW = V'U_1W.$$

Our assumption 0 < |V| < |U| implies that the word $Z := U_1 W$ is nonempty. Since ZV' = V'Z, it follows from [1, Theorem 1.5.3] that U = ZV' is periodic. The proof of the case $|U_1| > |V|$ is similar.

LEMMA 2.3. Let \mathcal{A} be a finite set, \mathbf{s} a Sturmian word over $\{0, 1\}$ and ϕ a morphism from $\{0, 1\}^*$ into \mathcal{A}^* satisfying $\phi(01) \neq \phi(10)$. Then there exists an integer n_0 such that, for any factor A of \mathbf{s} of length greater than n_0 , if one can write $\phi(A)$ as $V_1\phi(b_2b_3...b_{m-1})V_2$, where $B = b_1b_2...b_{m-1}b_m$ is a factor of \mathbf{s} , the word V_1 is a nonempty suffix of $\phi(b_1)$ and V_2 is a nonempty prefix of $\phi(b_m)$, then it follows that $V_1 = \phi(b_1), V_2 = \phi(b_m)$ and A = B.

PROOF. We may assume that 1 is the isolated letter in s, that is, 11 is not a factor of s. Since s is balanced, there exists a positive integer k such that $10^t 1$ is a factor of s if and only if t = k or k + 1.

We first consider the case where $V_1 = \phi(b_1)$. Suppose that $A \neq B$. Then, by deleting the maximal common prefix of *A* and *B*, we may assume that *A* and *B* have no common prefix. Thus, the prefixes of *A* and *B* are 00 and 10.

If $\phi(00) = \phi(10)V_2$, then $\phi(0) = \phi(1)V_2 = V_2\phi(1)$ and there exist a word U and positive integers s, t such that $\phi(1) = U^s$ and $\phi(0) = U^t$. This gives a contradiction to $\phi(01) \neq \phi(10)$.

If $\phi(10) = \phi(0^h)V_2$ for some integer $h \ge 2$ and a nonempty prefix V_2 of $\phi(0)$, then, writing $\phi(0) = V_2V'$, we get $\phi(0) = V_2V' = V'V_2$. Thus, there exist a word U and positive integers *s*, *t* such that $\phi(1) = U^s$ and $\phi(0) = U^t$. This gives a contradiction to $\phi(01) \ne \phi(10)$.

If $\phi(10) = \phi(0^h)V_2$ for some integer $h \ge 2$ and a nonempty prefix V_2 of $\phi(1)$, then there exist a positive integer ℓ and a prefix V' of $\phi(0)$ such that $\phi(1) = \phi(0)^{\ell}V'$. Write $\phi(0) = V'V''$. Then $\phi(10) = \phi(0)^{\ell}V'\phi(0) = \phi(0)^{\ell+1}V'$ and we get $V'\phi(0) = \phi(0)V'$. Thus, there exist a word U and positive integers s, t such that $\phi(1) = U^s$ and $\phi(0) = U^t$. This gives a contradiction to $\phi(01) \neq \phi(10)$.

Similarly, we show that, if $V_2 = \phi(b_m)$, then A = B.

It only remains for us to treat the case where $V_1 \neq \phi(b_1)$ and $V_2 \neq \phi(b_m)$. There exists an integer n_0 such that any factor A of \mathbf{s} of length greater than n_0 contains $10^k 10^{k+1} 10$. It is sufficient to consider the case where $\phi(10^k 10^{k+1} 10) = V_1\phi(b_2b_3...b_{m-1})V_2$ for a factor $b_1b_2...b_m$ of \mathbf{s} and with V_1 a proper nonempty suffix of $\phi(b_1)$ and V_2 a proper nonempty prefix of $\phi(b_m)$.

If $b_2b_3...b_{m-1} = 0^{k+1}10^k1$, then $b_1 = 1$ and $b_m = 0$. It follows that $|V_1| < |\phi(1)|$ and $|V_2| < |\phi(0)|$, which contradicts

$$|V_1| + |V_2| < |\phi(1)| + |\phi(0)| = |\phi(10^k 10^{k+1} 10)| - |\phi(0^{k+1} 10^k 1)|.$$

Therefore, since any subword of **s** in which $10^{k}10$ and $10^{k+1}1$ do not occur is a factor of $0^{k+1}10^{k}1$, we deduce that if $\phi(10^{k}10^{k+1}10) = V_1\phi(b_2 \dots b_{m-1})V_2$ as above, then $b_2 \dots b_{m-1}$ contains $10^{k}10$ or $10^{k+1}1$.

We distinguish three cases.

Case (i).
$$\phi(10^k 10^{k+1} 10) = W_1 \phi(10^k 10) W_2$$
, where $0 < |W_1| < |\phi(10^k)|$. Then

$$\phi(10^k 10^k) = W_1 \phi(10^k) W_2', \quad \phi(0^k 100^k 10) = W_1' \phi(0^k 10) W_2,$$

where $|W'_2| = |W_2| - |\phi(0)|$ and $|W'_1| = |W_1|$.

Case (ii). $\phi(10^k 10^{k+1} 10) = W_1 \phi(10^k 10) W_2$, where $|\phi(10^k)| < |W_1| < |\phi(10^{k+1})|$. Then

$$\phi(10^k 10^k) = W_1' \phi(0^k 1) W_2', \quad \phi(0^k 100^k 10) = W_1'' \phi(0^k 10) W_2,$$

where $|W'_1| = |W_1| - |\phi(0^k)|$, $|W'_2| = |W_2| + |\phi(0^{k-1})|$ and $|W''_1| = |W_1|$. *Case* (iii). $\phi(10^k 10^{k+1} 10) = W_1 \phi(10^{k+1} 1) W_2$, where $0 < |W_1| < |\phi(10^{k+1})|$. Then

$$\phi(10^k 10^k) = W_1 \phi(10^k) W_2', \quad \phi(0^k 100^k 10) = W_1' \phi(0^{k+1} 1) W_2,$$

where $|W'_2| = |W_2| - |\phi(0)|$ and $|W'_1| = |W_1|$.

By Lemma 2.2, in each Case (i), (ii) and (iii), the factors $\phi(10^k)$ and $\phi(0^k10)$ are periodic. Denoting by λ_1, λ_2 the periods of $\phi(10^k), \phi(0^k10)$,

$$\lambda_1 \le \frac{|\phi(10^k)|}{2} = \frac{k|\phi(0)| + |\phi(1)|}{2}, \quad \lambda_2 \le \frac{|\phi(0^k 10)|}{2} = \frac{(k+1)|\phi(0)| + |\phi(1)|}{2}$$

Write $\phi(10^k) = U^t$ for a word U with $|U| = \lambda_1$ and an integer $t \ge 2$. Then $\phi(1) = U^{t_1}U_1$, $\phi(0^k) = U_2U^{t_2}$ for some words U_1, U_2 with $U = U_1U_2$ and some nonnegative integers t_1, t_2 satisfying $t_1 + t_2 = t - 1$. Thus,

$$\phi(0^{k}1) = U_{2}(U_{1}U_{2})^{t_{2}}(U_{1}U_{2})^{t_{1}}U_{1} = (U_{2}U_{1})^{t}, \quad |U_{2}U_{1}| = \lambda_{1}.$$

Since $\phi(0)$ is a prefix of $(U_2U_1)^t$, we deduce that $\phi(0^k 10) = (U_2U_1) \cdots (U_2U_1)U'$ for a prefix U' of U_2U_1 . It then follows from [5, Lemma 3(v)] that $\lambda_1 = \lambda_2$ or

$$|\phi(0^k 10)| < \lambda_1 + \lambda_2 \le (k + \frac{1}{2})|\phi(0)| + |\phi(1)| < |\phi(0^k 10)|,$$

in which case we have a contradiction. If $\lambda_1 = \lambda_2$, then λ_1 divides $|\phi(0^k 10)|$ and $|\phi(10^k)|$; thus, λ_1 divides $|\phi(0)|$ and $|\phi(1)|$. This implies that $\phi(01) = \phi(10) = UU \cdots U$, again giving a contradiction.

We end this section with an easy result on the convergents of irrational numbers.

LEMMA 2.4. Let $(p_k/q_k)_{k\geq 0}$ be the sequence of convergents of an irrational number $[0; a_1, a_2, \ldots]$ in (0, 1) and $d \geq 2$ be an integer. Let c_1 , c_2 be integers not both multiples of d. Then, for any positive integer k, we have $c_1p_k + c_2q_k \not\equiv 0 \pmod{d}$ or $c_1p_{k+1} + c_2q_{k+1} \not\equiv 0 \pmod{d}$.

PROOF. Since

$$\begin{bmatrix} p_k & p_{k+1} \\ q_k & q_{k+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & a_1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & a_2 \end{bmatrix} \cdots \begin{bmatrix} 0 & 1 \\ 1 & a_{k+1} \end{bmatrix},$$
$$[c_1 p_k + c_2 q_k \quad c_1 p_{k+1} + c_2 q_{k+1}] = [c_1 \quad c_2] \begin{bmatrix} 0 & 1 \\ 1 & a_1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & a_2 \end{bmatrix} \cdots \begin{bmatrix} 0 & 1 \\ 1 & a_{k+1} \end{bmatrix};$$

thus,

$$\begin{bmatrix} c_1 & c_2 \end{bmatrix} = \begin{bmatrix} c_1 p_k + c_2 q_k & c_1 p_{k+1} + c_2 q_{k+1} \end{bmatrix} \begin{bmatrix} -a_{k+1} & 1 \\ 1 & 0 \end{bmatrix} \cdots \begin{bmatrix} -a_2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -a_1 & 1 \\ 1 & 0 \end{bmatrix}$$

Hence, if $[c_1p_k + c_2q_k \quad c_1p_{k+1} + c_2q_{k+1}] = [0 \quad 0] \mod d$, then c_1 and c_2 are multiples of d.

3. Proofs of Theorems 1.4 and 1.5

PROOF OF THEOREM 1.5. Let $b \ge 2$ be an integer and ρ, σ be positive integers. Assume that $\rho = d\sigma$ for some integer $d \ge 2$. Let ξ be a real number and assume that there are integers a_1, a_2, \ldots in $\{0, 1, \ldots, b^{\rho} - 1\}$ and k, n_0 such that

$$\xi = \lfloor \xi \rfloor + \sum_{i \ge 1} \frac{a_i}{b^{\rho i}}$$
 and $p(n, \xi, b^{\rho}) = n + k$ for $n \ge n_0$.

Then, by Lemma 2.1, there are a finite word W, a Sturmian word s defined over $\{0, 1\}$ and a morphism ϕ from $\{0, 1\}^*$ into $\{0, 1, \dots, b^{\rho} - 1\}^*$ such that $\phi(01) \neq \phi(10)$ and

$$\mathbf{a} = a_1 a_2 \ldots = W \phi(\mathbf{s}).$$

Suppose *a* is in $\{0, 1, ..., b^{\rho} - 1\}$ and consider its representation in base b^{σ} given by $a = c_1 b^{(d-1)\sigma} + c_2 b^{(d-2)\sigma} + \cdots + c_d b^{0\cdot\sigma}$, where $c_1, ..., c_d$ are in $\{0, 1, ..., b^{\sigma} - 1\}$. Define the function $\phi_{\rho,\sigma}$ on $\{0, 1, ..., b^{\rho} - 1\}$ by setting $\phi_{\rho,\sigma}(a) = c_1 c_2 \dots c_d$. It extends to a morphism from $\{0, 1, ..., b^{\rho} - 1\}^*$ to $\{0, 1, ..., b^{\sigma} - 1\}^*$, which we also denote by $\phi_{\rho,\sigma}$. Then

$$\xi = \lfloor \xi \rfloor + \sum_{i \ge 1} \frac{d_i}{b^{\sigma i}} \quad \text{where } \mathbf{d} = d_1 d_2 \dots = \phi_{\rho, \sigma}(W)(\phi_{\rho, \sigma} \circ \phi)(\mathbf{s}).$$

We deduce from Lemma 2.1 that the b^{σ} -ary expansion of ξ is quasi-Sturmian. Thus, we have established the first assertion of the theorem.

For the second assertion of the theorem, we may assume that ρ and σ are relatively prime (otherwise, we replace *b* by b^g , where *g* is the greatest common divisor of ρ and σ).

Let ξ be a real number and write

$$\xi = \lfloor \xi \rfloor + \sum_{i \ge 1} \frac{a_i}{b^{\rho i}} = \lfloor \xi \rfloor + \sum_{j \ge 1} \frac{b_j}{b^{\sigma j}},$$

where a_1, a_2, \ldots are in $\{0, 1, \ldots, b^{\rho} - 1\}$ and b_1, b_2, \ldots are in $\{0, 1, \ldots, b^{\sigma} - 1\}$. Assume that $\mathbf{a} = a_1 a_2 \ldots$ and $\mathbf{b} = b_1 b_2 \ldots$ are both quasi-Sturmian. By Lemma 2.1, there are a finite word W, a Sturmian word \mathbf{s} defined over $\{0, 1\}$ and a morphism ϕ from $\{0, 1\}^*$ into $\{0, 1, \ldots, b^{\rho} - 1\}^*$ such that $\phi(01) \neq \phi(10)$ and

$$\mathbf{a} = a_1 a_2 \ldots = W \phi(\mathbf{s}).$$

We claim that $|\phi(0)| =: l_0$ and $|\phi(1)| =: l_1$ are both multiples of σ .

In order to deduce a contradiction, we suppose that σ does not divide at least one of l_0 and l_1 .

Let $\phi_{\rho,1}$ be the morphism $\phi_{\rho,\sigma}$ defined above in the case $\sigma = 1$. For each factor U of **s**, let

$$\Lambda(U) := \{0 \le j \le \sigma - 1 : \phi_{\rho,1}(\mathbf{a}) = V\phi_{\rho,1} \circ \phi(U) \text{ for some } V \text{ with } |V| \equiv j \pmod{\sigma}\}$$

denote the nonempty set of positions modulo σ where $\phi_{\rho,1} \circ \phi(U)$ occurs in $\phi_{\rho,1}(\mathbf{a})$. If U' is a prefix of U, then $\Lambda(U)$ is a subset of $\Lambda(U')$. Consequently, there exists N such that $\Lambda(s_1 \dots s_n) = \Lambda(s_1 \dots s_N)$ for each $n \ge N$.

Let $[0; a_1, a_2, ...]$ denote the continued fraction expansion of the slope of **s** and, for $k \ge 1$, let q_k be the denominator of the convergent $[0; a_1, ..., a_k]$ to this slope. Define the sequence $(M_k)_{k\ge 0}$ of finite words over $\{0, 1\}$ by

$$M_0 = 0$$
, $M_1 = 0^{a_1 - 1} 1$ and $M_{k+1} = (M_k)^{a_k} M_{k-1}$ $(k \ge 1)$.

For $k \ge 1$, the word M_k is a factor of length q_k of s (see, for example, [7]). Since there are p_k occurrences of the digit 1 in M_k ,

$$|\phi(M_k)| = l_0(q_k - p_k) + l_1 p_k = (l_1 - l_0)p_k + l_0 q_k.$$

By Lemma 2.4 and the assumption that σ does not divide at least one of l_0 and l_1 , we conclude that at least one of $|\phi(M_k)|$ and $|\phi(M_{k+1})|$ is not a multiple of σ .

Let *U* be a factor of **s**. Then *U* is a factor of M_k for some integer *k*. Since $M_k M_k$ is a factor of $M_{k+2}M_{k+1} = (M_{k+1})^{a_{k+2}}M_k(M_k)^{a_{k+1}}M_{k-1}$, which is a factor of **s**, there are two positions of $\phi(U)$ which differ by $|\phi(M_k)|$. Thus, there exist two occurrences of $\phi(U)$ in $\phi(\mathbf{s})$ separated by exactly $\rho|\phi(M_k)|$ letters. Replacing *k* by k + 1 is necessary, we can assume that $\rho|\phi(M_k)|$ is not a multiple of σ and we deduce that $|\Lambda(U)| \ge 2$ for any factor *U* of **s**.

A finite word *U* is called right special if *U* is a prefix of two different factors of **s** of the same length. If the initial word $s_1 ldots s_n$ of **s** is not a prefix of a right special word, then either $s_{j+1} ldots s_{j+n} \neq s_1 ldots s_n$ for all $j \ge 1$ or **s** is periodic. Since a Sturmian word is recurrent and not periodic (see, for example, [6, page 158]), there are infinitely many prefixes $s_1 ldots s_n$ of **s** which are right special. Let $n \ge N$ be such that $s_1 ldots s_n$ is right special. Then there exists a letter *c* such that $c \neq s_{n+1}$ and $s_1 ldots s_n c$ is a factor of **s**. Thus,

$$\Lambda(s_1 \dots s_n s_{n+1}) = \Lambda(s_1 \dots s_n) \supset \Lambda(s_1 \dots s_n c)$$

Choose *i*, *j* in $\Lambda(s_1 \dots s_n c)$ with $0 \le i < j \le \sigma - 1$. Then we can write

$$\phi_{\rho,1}(\mathbf{a}) = UU_1\phi_{\rho,1} \circ \phi(s_1 \dots s_n c)U'_1 \dots = U'U_2\phi_{\rho,1} \circ \phi(s_1 \dots s_n s_{n+1})U'_2 \dots$$

and

$$\phi_{\rho,1}(\mathbf{a}) = VV_1\phi_{\rho,1} \circ \phi(s_1 \dots s_n c)V_1' \dots = V'V_2\phi_{\rho,1} \circ \phi(s_1 \dots s_n s_{n+1})V_2' \dots$$

for some words $U, U', V, V', U_1, U_2, V_1, V_2, U'_1, U'_2, V'_1, V'_2$ written over $\{0, \dots, b-1\}$ and satisfying

$$\begin{split} |U_1| = |U_2| = i, \quad |V_1| = |V_2| = j, \quad |U| \equiv |U'| \equiv |V| \equiv |V'| \equiv 0 \pmod{\sigma}, \\ 0 \le |U_1'| = |U_2'| \le \sigma - 1, \quad 0 \le |V_1'| = |V_2'| \le \sigma - 1, \end{split}$$

and σ divides $i + (n + 1)\rho + |U'_1|$ and $j + (n + 1)\rho + |V'_1|$. Thus, there exist u_1, u_2, v_1, v_2 in $\{0, 1, ..., b^{\sigma} - 1\}$ and words X, Y, A_1, A_2, B_1, B_2 written over $\{0, 1, ..., b^{\sigma} - 1\}$ with

$$|X| = \left\lfloor \frac{i + n\rho}{\sigma} \right\rfloor - 1, \quad |Y| = \left\lfloor \frac{j + n\rho}{\sigma} \right\rfloor - 1$$

and

$$A_1 \neq A_2, \quad B_1 \neq B_2, \quad |A_1| = |A_2| < \frac{\rho}{\sigma} + 2, \quad |B_1| = |B_2| < \frac{\rho}{\sigma} + 2$$

such that

$$U_{1}\phi_{\rho,1} \circ \phi(s_{1} \dots s_{n}c)U'_{1} = \phi_{\sigma,1}(u_{1}XA_{1}),$$

$$U_{2}\phi_{\rho,1} \circ \phi(s_{1} \dots s_{n}s_{n+1})U'_{2} = \phi_{\sigma,1}(u_{2}XA_{2}),$$

$$V_{1}\phi_{\rho,1} \circ \phi(s_{1} \dots s_{n}c)V'_{1} = \phi_{\sigma,1}(v_{1}YB_{1}),$$

$$V_{2}\phi_{\rho,1} \circ \phi(s_{1} \dots s_{n}s_{n+1})V'_{2} = \phi_{\sigma,1}(v_{2}YB_{2}).$$

Here, $\phi_{\sigma,1}$ is defined analogously to $\phi_{\rho,1}$. Therefore, u_1XA_1 , u_2XA_2 and v_1YB_1 , v_2YB_2 are all factors of $\phi_{\sigma,1}^{-1}(\phi_{\rho,1}(\phi(\mathbf{s})))$. Denoting by *A* (respectively, by *B*) the longest common prefix (it could be the empty word) of A_1 and A_2 (respectively, of B_1 and B_2), we deduce that *XA* and *YB* are both right special.

Let W_0 be the longest common prefix of the words $\phi_{\rho,1} \circ \phi(s_1 \dots s_n s_{n+1})$ and $\phi_{\rho,1} \circ \phi(s_1 \dots s_n c)$. Then there exist finite words W_1, W_2, W_1', W_2' over $\{0, \dots, b-1\}$ satisfying $|W_1| = \sigma - i$, $|W_2| = \sigma - j$, $|W_1'| < \sigma$, $|W_2'| < \sigma$ and

$$W_0 = W_1 \phi_{\sigma,1}(XA) W_1' = W_2 \phi_{\sigma,1}(YB) W_2'$$

Thus, we get $|XA| \le |YB| \le |XA| + 1$.

Suppose that XA is a suffix of YB. Then there exists a nonempty finite word W' of length less than σ such that

$$W_0 = W_2 W' \phi_{\sigma,1}(XA) W'_1 = W_2 \phi_{\sigma,1}(XA) W'_2 \quad \text{if } |XA| = |YB|,$$

$$W_0 = W_1 \phi_{\sigma,1}(XA) W'_1 = W_1 W' \phi_{\sigma,1}(XA) W'_2 \quad \text{if } |XA| + 1 = |YB|.$$

It then follows from [1, Theorem 1.5.2] that we have $W_0 = W_2(W')^t W'' W'_1$ or $W_1(W')^t W'' W'_2$, respectively, for some integer *t* and a prefix W'' of W'. Since ρ, σ are fixed and **s** is Sturmian, we deduce from [3, Lemma 2.3] that $(W')^t$ cannot be a factor of $\phi_{\rho,1} \circ \phi(s_1 \dots s_n)$ when *n* is sufficiently large. This shows that the lengths of *XA* and *YB* are bounded independently of *n*.

Consequently, the right special words *XA* and *YB* are not suffixes of each other if *n* is sufficiently large. Hence, there are arbitrarily large integers *m* such that $\phi_{\sigma,1}^{-1} \circ \phi_{\rho,1} \circ \phi(\mathbf{s})$ has two distinct right special words of length *m*. This implies that $\mathbf{b} = \phi_{\sigma,1}^{-1} \circ \phi_{\rho,1}(\mathbf{a})$ is not quasi-Sturmian, which gives a contradiction. Therefore, we have established that $|\phi(0)|$ and $|\phi(1)|$ are both multiples of σ .

Write

$$\xi = \lfloor \xi \rfloor + \sum_{i \ge 1} \frac{c_i}{b^{\rho \sigma i}}, \quad \mathbf{c} = c_1 c_2 \cdots = \phi_{\rho \sigma, \rho}^{-1}(\mathbf{a}) = \phi_{\rho \sigma, \rho}^{-1}(W \phi(\mathbf{s})).$$

Put $|W| = h\sigma + d$ for integers $h \ge 0$ and d with $0 \le d < \sigma$. Suppose $\phi(0) = X_1X_2$, $\phi(1) = Y_1Y_2$, where $|X_1| = |Y_1| = \sigma - d$. Assume that 11 is not a factor of **s**. Then there exists a positive integer k such that $10^m 1$ is a factor of **s** if and only if m = k or k + 1. Thus, we can represent **s** as

$$\mathbf{s} = 0^{w} t_0 t_1 t_2 t_3, \dots, \quad t_0 = 10^{k}, \quad t_i \in \{10^{k}, 0\}, \quad 0 \le w \le k+1.$$

380

It is not difficult to check that $\mathbf{t} := t_0 t_1 t_2 \dots$ is Sturmian. Define ϕ' by

$$\phi'(10^k) = X_2 Y_1 Y_2 (X_1 X_2)^{k-1} X_1, \quad \phi'(0) = X_2 X_1.$$

Then

$$\phi(\mathbf{s}) = (X_1 X_2)^w Y_1 Y_2 (X_1 X_2)^{k-1} X_1 \phi'(t_1 t_2 t_3 \dots);$$

thus,

$$\mathbf{c} = \phi_{\rho\sigma,\rho}^{-1}(W\phi(\mathbf{s})) = \phi_{\rho\sigma,\rho}^{-1}(W(X_1X_2)^w Y_1Y_2(X_1X_2)^{k-1}X_1)(\phi_{\rho\sigma,\rho}^{-1} \circ \phi')(t_1t_2t_3\dots).$$

Since $|\phi(0)|$ and $|\phi(1)|$ are both multiples of σ , the morphism $\phi_{\rho\sigma,\rho}^{-1} \circ \phi'$ is well defined. We conclude that **c** is quasi-Sturmian and the proof of the theorem is complete.

LEMMA 3.1. Let $b \ge 2$, $d \ge 2$, ρ and σ be positive integers with $\rho = d\sigma$. Let $x_1x_2...$ be a quasi-Sturmian word over $\{0, 1, ..., b^{\rho} - 1\}$. Then there exists an integer n_0 such that the real number $\xi = \sum_{k\ge 1} x_k/b^{\rho k}$ satisfies

$$p(nd,\xi,b^{\sigma}) \ge (n+1)d \quad for \ n \ge n_0.$$

Furthermore, if $s_1 s_2 \dots$ is a Sturmian word written over $\{0, 1\}$, then there exists an integer n_0 such that the real number $\xi = \sum_{k \ge 1} s_k / b^{\rho k}$ satisfies

$$p(n,\xi,b^{\sigma}) = n+d \quad for \ n \ge n_0.$$

PROOF. Set $\mathcal{A} := \{0, 1, \dots, b^{\rho} - 1\}$. There exist a Sturmian word **s** written over $\{0, 1\}$, a morphism ϕ from $\{0, 1\}^*$ into \mathcal{A}^* satisfying $\phi(01) \neq \phi(10)$ and a factor W of $\mathbf{x} := x_1 x_2 \dots$ such that $\mathbf{x} = W\phi(\mathbf{s})$. Then the word

$$\mathbf{y} := \phi_{\rho,\sigma}(\mathbf{x}) = \phi_{\rho,\sigma}(W\phi(\mathbf{s})) = \phi_{\rho,\sigma}(W)(\phi_{\rho,\sigma} \circ \phi)(\mathbf{s})$$

is quasi-Sturmian.

Let *n* be a positive integer larger than the integer n_0 given by Lemma 2.3 applied to the morphism $\phi_{\rho,\sigma} \circ \phi$. We claim that if $U_1\phi_{\rho,\sigma}(A_1)V_1 = U_2\phi_{\rho,\sigma}(A_2)V_2$, where A_1, A_2 are factors of $\phi(\mathbf{s})$ of length *n* and U_1, U_2 (respectively, V_1, V_2) are nonempty suffixes (respectively, proper prefixes) of words of the form $\phi_{\rho,\sigma}(a)$ for *a* in \mathcal{A} , then $U_1 = U_2$, $A_1 = A_2$ and $V_1 = V_2$.

Suppose not. Then we may assume that there exist A_1, A_2 and U, V such that

$$\phi_{\rho,\sigma}(A_1)V = U\phi_{\rho,\sigma}(A_2).$$

Thus, there exist a_1, a_2 in \mathcal{A} , a factor A of $\phi(\mathbf{s})$ of length n and a factor A' of $\phi(\mathbf{s})$ of length n - 1 such that $\phi_{\rho,\sigma}(A) = W_1\phi_{\rho,\sigma}(A')W_2$, where W_1 (respectively, W_2) is a nonempty proper suffix (respectively, prefix) of $\phi_{\rho,\sigma}(a_1)$ (respectively, of $\phi_{\rho,\sigma}(a_2)$). Consequently, there exist b, b', c, c' in $\{0, 1\}$ and factors B, B' of \mathbf{s} such that $A = U\phi(B)V, a_1A'a_2 = U'\phi(B')V'$, where U (respectively, U') is a nonempty suffix of $\phi(b)$ (respectively, $\phi(b')$) and V (respectively, V') is a nonempty prefix of $\phi(c)$ (respectively,

 $\phi(c')$). Then $A' = U''\phi(B')V''$ for words U'', V'' such that $U' = a_1U'', V' = V''a_2$. Therefore,

$$\phi_{\rho,\sigma}(A) = \phi_{\rho,\sigma}(U)(\phi_{\rho,\sigma} \circ \phi)(B)\phi_{\rho,\sigma}(V) = W_1\phi_{\rho,\sigma}(U'')(\phi_{\rho,\sigma} \circ \phi)(B')\phi_{\rho,\sigma}(V'')W_2.$$

We deduce from Lemma 2.3 that $\phi_{\rho,\sigma}(U) = W_1\phi_{\rho,\sigma}(U'')$, $\phi_{\rho,\sigma}(V) = \phi_{\rho,\sigma}(V'')W_2$ and B = B'. This is a contradiction to the fact that W_1 (respectively, W_2) is a nonempty proper suffix (respectively, prefix) of $\phi_{\rho,\sigma}(a_1)$ (respectively, of $\phi_{\rho,\sigma}(a_2)$). Hence, the representation of $X = U\phi_{\rho,\sigma}(A)V$ is unique.

If $\phi(s)$ is written over an alphabet of three letters or more, then

$$p(n-1, \phi(\mathbf{s})) \ge (n-1) + 2 = n + 1,$$

which implies that the number of factors *X* of $(\phi_{\rho,\sigma} \circ \phi)(\mathbf{s})$ of length *nd* is at least equal to (n + 1)d. If $\phi(\mathbf{s})$ is written over an alphabet of two letters, say over the alphabet $\mathcal{A} = \{a, b\}$, then we can put $\phi_{\rho,\sigma}(a) = ZX$ and $\phi_{\rho,\sigma}(b) = ZY$, where *Z* is the longest common prefix of $\phi_{\rho,\sigma}(a), \phi_{\rho,\sigma}(b)$ and the first letters of *X*, *Y* are different. If |V| > |Z|, then, for each right special factor *A* of **s**, there are two distinct factors $\phi_{\rho,\sigma}(A)V_1$, $\phi_{\rho,\sigma}(A)V_2$ in $\phi(\mathbf{s})$. If $|V| \le |Z|$, then $|U| \ge |X| = |Y|$; thus, for each left special factor *B* of **s**, there are two factors $U_1\phi_{\rho,\sigma}(B), U_2\phi_{\rho,\sigma}(B)$ in $\phi(\mathbf{s})$. For each $c = 0, \ldots, d - 1$, the number of factors $X = U\phi_{\rho,\sigma}(A)V$ of $(\phi_{\rho,\sigma} \circ \phi)(\mathbf{s})$ of length *nd* with |A| = n - 1 and |U| = d - |V| = c is at least equal to $p(n - 1, \phi(\mathbf{s})) + 1$. Therefore,

$$p(nd, \xi, b^{\sigma}) \ge p(nd, (\phi_{\rho, \sigma} \circ \phi)(\mathbf{s})) \ge (n+1)d.$$

Since the function $m \mapsto p(m, \xi, b^{\sigma})$ is strictly increasing, this implies the first assertion of the lemma.

For the second assertion, let $\mathbf{s} = s_1 s_2 \dots$ be a Sturmian word written over the subset $\{0, 1\}$ of $\{0, 1, \dots, b^{\rho} - 1\}$ and define

$$\xi = \sum_{i \ge 1} \frac{s_i}{b^{\rho i}}.$$

Since $\phi_{\rho,\sigma}(0) = 0^d$ and $\phi_{\rho,\sigma}(1) = 0^{d-1}1$ for $n \ge 1$, any factor of length dn of $\phi_{\rho,\sigma}(\mathbf{s})$ is a suffix of $\phi_{\rho,\sigma}(A)0^k$, where A is a factor of length n in \mathbf{s} and $0 \le k \le d-1$. Since 0^{d-1} is a prefix of $\phi_{\rho,\sigma}(A)0^k$, the number of suffixes of $\phi_{\rho,\sigma}(A)0^k$ of length nd is d(n+1) and thus

$$p(dn,\xi,b^{\sigma}) = d(n+1) = dn+d.$$

Since the function $m \mapsto p(m, \xi, b^{\sigma})$ is strictly increasing, this completes the proof of the lemma.

PROOF OF THEOREM 1.4. Suppose that the two bases $r \ge 2$ and $s \ge 2$ are multiplicatively dependent and let m, ℓ be the coprime positive integers satisfying $r^m = s^{\ell}$. Then there exists a positive integer b such that $r = b^{\ell}$ and $s = b^m$.

Let $\mathbf{s} = s_1 s_2 \dots$ be a Sturmian word over the subset $\{0, 1\}$ of $\{0, 1, \dots, b^{m\ell} - 1\}$ and define

$$\xi = \sum_{i\geq 1} \frac{s_i}{b^{m\ell i}}.$$

[10]

By the second assertion of Lemma 3.1, there exists an integer n_0 such that

 $p(n,\xi,b^{\ell}) = n + m$ and $p(n,\xi,b^m) = n + \ell$ for $n \ge n_0$.

Thus,

$$\lim_{n \to +\infty} (p(n,\xi,r) + p(n,\xi,s) - 2n) = m + \ell.$$

This proves the first assertion of the theorem.

For the second assertion of the theorem, it is sufficient to consider a real number ξ whose b^{ℓ} -ary and b^m -ary expansions are both quasi-Sturmian. By Theorem 1.5, the $b^{\ell m}$ -ary expansion of ξ is also quasi-Sturmian and we deduce from the first assertion of Lemma 3.1 that there exists an integer n_0 such that

 $p(mn,\xi,b^{\ell}) \ge m(n+1)$ and $p(\ell n,\xi,b^m) \ge \ell(n+1)$ for $n \ge n_0$.

Therefore,

$$\lim_{n \to +\infty} (p(n,\xi,r) + p(n,\xi,s) - 2n) \ge m + \ell.$$

This completes the proof of the theorem.

References

- [1] J.-P. Allouche and J. Shallit, *Automatic Sequences: Theory, Applications, Generalizations* (Cambridge University Press, Cambridge, 2003).
- [2] Y. Bugeaud, 'On the expansions of a real number to several integer bases', *Rev. Mat. Iberoam.* 28 (2012), 931–946.
- [3] Y. Bugeaud and D. H. Kim, 'On the expansions of real numbers in two integer bases', Preprint.
- [4] J. Cassaigne, 'Sequences with grouped factors', in: *DLT'97, Developments in Language Theory III* (ed. S. Bozapalidis) (Aristotle University of Thessaloniki, Thessaloniki, 1998), 211–222.
- [5] C. H. Choe and D. H. Kim, 'The first return time test for pseudorandom numbers', J. Comput. Appl. Math. 143 (2002), 263–274.
- [6] N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794 (eds. V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel) (Springer, Berlin, 2002).
- [7] M. Lothaire, *Algebraic Combinatorics on Words*, Encyclopedia of Mathematics and its Applications, 90 (Cambridge University Press, Cambridge, 2002).
- [8] M. Morse and G. A. Hedlund, 'Symbolic dynamics II: Sturmian sequences', Amer. J. Math. 62 (1940), 1–42.

YANN BUGEAUD, IRMA, U.M.R. 7501, Université de Strasbourg et CNRS, 7 rue René Descartes, 67084 Strasbourg, France e-mail: bugeaud@math.unistra.fr

DONG HAN KIM, Department of Mathematics Education, Dongguk University–Seoul, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea e-mail: kim2010@dongguk.edu 383