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Abstract

Let r ≥ 2 and s ≥ 2 be multiplicatively dependent integers. We establish a lower bound for the sum of the
block complexities of the r-ary expansion and the s-ary expansion of an irrational real number, viewed as
infinite words on {0, 1, . . . , r − 1} and {0, 1, . . . , s − 1}, and we show that this bound is best possible.
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1. Introduction

Throughout this paper, bxc denotes the greatest integer less than or equal to x and dxe
denotes the smallest integer greater than or equal to x. Let b ≥ 2 be an integer. For a
real number ξ, write

ξ = bξc +
∑
k≥1

ak

bk = bξc + 0.a1a2 . . . ,

where each digit ak is an integer from {0, 1, . . . , b − 1} and infinitely many digits ak are
not equal to b − 1. The sequence a := (ak)k≥1 is uniquely determined by the fractional
part of ξ. With a slight abuse of notation, we call it the b-ary expansion of ξ and we
view it also as the infinite word a = a1a2 . . . over the alphabet {0, 1, . . . , b − 1}.

For an infinite word x = x1x2 . . . over a finite alphabet and a positive integer n, set

p(n, x) = Card{x j+1 . . . x j+n : j ≥ 0}.

This notion from combinatorics on words is now commonly used to measure the
complexity of the b-ary expansion of a real number ξ. Indeed, for a positive integer
n, we denote by p(n, ξ, b) the total number of distinct blocks of n digits in the b-ary
expansion a of ξ, that is,

p(n, ξ, b) := p(n, a) = Card{a j+1 . . . a j+n : j ≥ 0}.
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Obviously, we have 1 ≤ p(n, ξ, b) ≤ bn and both inequalities are sharp. If ξ is rational,
then its b-ary expansion is ultimately periodic and the numbers p(n, ξ, b), n ≥ 1, are
uniformly bounded by a constant depending only on ξ and b. If ξ is irrational, then, by
a classical result of Morse and Hedlund [8], we know that p(n, ξ, b) ≥ n + 1 for every
positive integer n, and this inequality is sharp.

Definition 1.1. A Sturmian word x is an infinite word which satisfies

p(n, x) = n + 1 for n ≥ 1.

A quasi-Sturmian word x is an infinite word which satisfies

p(n, x) = n + k for n ≥ n0

for some positive integers k and n0.

The following rather general problem was investigated in [2]. Recall that two
positive integers x and y are called multiplicatively independent if the only pair of
integers (m, n) such that xmyn = 1 is the pair (0, 0).

Problem 1.2. Are there irrational real numbers having a ‘simple’ expansion in two
multiplicatively independent bases?

We established in [3] that the complexity function of the r-ary expansion of an
irrational real number and that of its s-ary expansion cannot both grow too slowly
when r and s are multiplicatively independent positive integers.

Theorem 1.3 [3]. Let r and s be multiplicatively independent positive integers. Any
irrational real number ξ satisfies

lim
n→+∞

(p(n, ξ, r) + p(n, ξ, s) − 2n) = +∞.

Said differently, ξ cannot have simultaneously a quasi-Sturmian r-ary expansion and
a quasi-Sturmian s-ary expansion.

We complement Theorem 1.3 by the following statement addressing expansions of
a real number in two multiplicatively dependent bases.

Theorem 1.4. Let r, s ≥ 2 be multiplicatively dependent integers and m, ` be the
smallest positive integers such that rm = s`. Then there exist uncountably many real
numbers ξ satisfying

lim
n→+∞

(p(n, ξ, r) + p(n, ξ, s) − 2n) = m + `

and every irrational real number ξ satisfies

lim
n→+∞

(p(n, ξ, r) + p(n, ξ, s) − 2n) ≥ m + `.

The next result, used in the proof of Theorem 1.4, has its own interest.
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Theorem 1.5. Let b ≥ 2 be an integer and ρ,σ be positive integers. If σ divides ρ, then
every real number whose bρ-ary expansion is quasi-Sturmian has a quasi-Sturmian
bσ-ary expansion. Moreover, every real number whose bρ-ary and bσ-ary expansions
are both quasi-Sturmian has a quasi-Sturmian bµ-ary expansion, where µ is the least
common multiple of ρ and σ.

We conclude by an immediate consequence of Theorems 1.3 and 1.4.

Corollary 1.6. Let r, s ≥ 2 be distinct integers. No real number can have
simultaneously a Sturmian r-ary expansion and a Sturmian s-ary expansion.

Our paper is organised as follows. Section 2 gathers auxiliary results on Sturmian
and quasi-Sturmian words. Theorems 1.4 and 1.5 are established in Section 3.

2. Auxiliary results

We will make use of the following characterisation of quasi-Sturmian words.

Lemma 2.1 [4]. An infinite word x written over a finite alphabet A is quasi-Sturmian
if and only if there are a finite word W, a Sturmian word s defined over {0, 1} and a
morphism φ from {0, 1}∗ intoA∗ such that φ(01) , φ(10) and

x = Wφ(s).

Throughout this paper, for a finite word W and an integer t, we write W t for the
concatenation of t copies of W and W∞ for the concatenation of infinitely many copies
of W. We denote by |W | the length of W, that is, the number of letters composing W.
A word U is called periodic if U = W t for some finite word W and an integer t ≥ 2. If
U is periodic, then the period of U is defined as the length of the shortest word W for
which there exists an integer t ≥ 2 such that U = W t.

Lemma 2.2. Let U be a finite word. Assume that there exist words U1,U2,V,W such
that U = U1U2 and UU = VU2U1W, with |U1| , |V | and 0 < |V | < |U |. Then, the word
U is periodic.

Proof. Since V is a prefix of U and W is a suffix of U,

U = U1U2 = VW;

thus, VU2U1W = UU = VWVW. This implies that

U2U1 = WV.

If |U1| < |V |, then we can write V = V ′U1 for a nonempty word V ′ and thus U2 = WV ′.
Therefore,

U1WV ′ = U1U2 = VW = V ′U1W.

Our assumption 0 < |V | < |U | implies that the word Z := U1W is nonempty. Since
ZV ′ = V ′Z, it follows from [1, Theorem 1.5.3] that U = ZV ′ is periodic. The proof of
the case |U1| > |V | is similar. �
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Lemma 2.3. Let A be a finite set, s a Sturmian word over {0, 1} and φ a morphism
from {0, 1}∗ into A∗ satisfying φ(01) , φ(10). Then there exists an integer n0 such
that, for any factor A of s of length greater than n0, if one can write φ(A) as
V1φ(b2b3 . . . bm−1)V2, where B = b1b2 . . . bm−1bm is a factor of s, the word V1 is a
nonempty suffix of φ(b1) and V2 is a nonempty prefix of φ(bm), then it follows that
V1 = φ(b1),V2 = φ(bm) and A = B.

Proof. We may assume that 1 is the isolated letter in s, that is, 11 is not a factor of s.
Since s is balanced, there exists a positive integer k such that 10t1 is a factor of s if and
only if t = k or k + 1.

We first consider the case where V1 = φ(b1). Suppose that A , B. Then, by deleting
the maximal common prefix of A and B, we may assume that A and B have no common
prefix. Thus, the prefixes of A and B are 00 and 10.

If φ(00) = φ(10)V2, then φ(0) = φ(1)V2 = V2φ(1) and there exist a word U and
positive integers s, t such that φ(1) = U s and φ(0) = U t. This gives a contradiction
to φ(01) , φ(10).

If φ(10) = φ(0h)V2 for some integer h ≥ 2 and a nonempty prefix V2 of φ(0), then,
writing φ(0) = V2V ′, we get φ(0) = V2V ′ = V ′V2. Thus, there exist a word U and
positive integers s, t such that φ(1) = U s and φ(0) = U t. This gives a contradiction to
φ(01) , φ(10).

If φ(10) = φ(0h)V2 for some integer h ≥ 2 and a nonempty prefix V2 of φ(1), then
there exist a positive integer ` and a prefix V ′ of φ(0) such that φ(1) = φ(0)`V ′. Write
φ(0) = V ′V ′′. Then φ(10) = φ(0)`V ′φ(0) = φ(0)`+1V ′ and we get V ′φ(0) = φ(0)V ′.
Thus, there exist a word U and positive integers s, t such that φ(1) = U s and φ(0) = U t.
This gives a contradiction to φ(01) , φ(10).

Similarly, we show that, if V2 = φ(bm), then A = B.
It only remains for us to treat the case where V1 , φ(b1) and V2 , φ(bm).

There exists an integer n0 such that any factor A of s of length greater than n0
contains 10k10k+110. It is sufficient to consider the case where φ(10k10k+110) =

V1φ(b2b3 . . . bm−1)V2 for a factor b1b2 . . . bm of s and with V1 a proper nonempty suffix
of φ(b1) and V2 a proper nonempty prefix of φ(bm).

If b2b3 . . . bm−1 = 0k+110k1, then b1 = 1 and bm = 0. It follows that |V1| < |φ(1)|
and |V2| < |φ(0)|, which contradicts

|V1| + |V2| < |φ(1)| + |φ(0)| = |φ(10k10k+110)| − |φ(0k+110k1)|.

Therefore, since any subword of s in which 10k10 and 10k+11 do not occur is a factor
of 0k+110k1, we deduce that if φ(10k10k+110) = V1φ(b2 . . . bm−1)V2 as above, then
b2 . . . bm−1 contains 10k10 or 10k+11.

We distinguish three cases.

Case (i). φ(10k10k+110) = W1φ(10k10)W2, where 0 < |W1| < |φ(10k)|. Then

φ(10k10k) = W1φ(10k)W ′
2, φ(0k100k10) = W ′

1φ(0k10)W2,

where |W ′2| = |W2| − |φ(0)| and |W ′1| = |W1|.
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Case (ii). φ(10k10k+110) = W1φ(10k10)W2, where |φ(10k)| < |W1| < |φ(10k+1)|. Then

φ(10k10k) = W ′1φ(0k1)W ′2, φ(0k100k10) = W ′′1 φ(0k10)W2,

where |W ′
1| = |W1| − |φ(0k)|, |W ′

2| = |W2| + |φ(0k−1)| and |W ′′1 | = |W1|.

Case (iii). φ(10k10k+110) = W1φ(10k+11)W2, where 0 < |W1| < |φ(10k+1)|. Then

φ(10k10k) = W1φ(10k)W ′2, φ(0k100k10) = W ′1φ(0k+11)W2,

where |W ′
2| = |W2| − |φ(0)| and |W ′1| = |W1|.

By Lemma 2.2, in each Case (i), (ii) and (iii), the factors φ(10k) and φ(0k10) are
periodic. Denoting by λ1, λ2 the periods of φ(10k), φ(0k10),

λ1 ≤
|φ(10k)|

2
=

k|φ(0)| + |φ(1)|
2

, λ2 ≤
|φ(0k10)|

2
=

(k + 1)|φ(0)| + |φ(1)|
2

.

Write φ(10k) = U t for a word U with |U | = λ1 and an integer t ≥ 2. Then φ(1) = U t1 U1,
φ(0k) = U2U t2 for some words U1,U2 with U = U1U2 and some nonnegative integers
t1, t2 satisfying t1 + t2 = t − 1. Thus,

φ(0k1) = U2(U1U2)t2 (U1U2)t1 U1 = (U2U1)t, |U2U1| = λ1.

Since φ(0) is a prefix of (U2U1)t, we deduce that φ(0k10) = (U2U1) · · · (U2U1)U′ for a
prefix U′ of U2U1. It then follows from [5, Lemma 3(v)] that λ1 = λ2 or

|φ(0k10)| < λ1 + λ2 ≤ (k + 1
2 )|φ(0)| + |φ(1)| < |φ(0k10)|,

in which case we have a contradiction. If λ1 = λ2, then λ1 divides |φ(0k10)| and |φ(10k)|;
thus, λ1 divides |φ(0)| and |φ(1)|. This implies that φ(01) = φ(10) = UU · · ·U, again
giving a contradiction. �

We end this section with an easy result on the convergents of irrational numbers.

Lemma 2.4. Let (pk/qk)k≥0 be the sequence of convergents of an irrational number
[0; a1, a2, . . .] in (0, 1) and d ≥ 2 be an integer. Let c1, c2 be integers not both
multiples of d. Then, for any positive integer k, we have c1 pk + c2qk . 0 (mod d)
or c1 pk+1 + c2qk+1 . 0 (mod d).

Proof. Since [
pk pk+1
qk qk+1

]
=

[
0 1
1 a1

] [
0 1
1 a2

]
· · ·

[
0 1
1 ak+1

]
,

[
c1 pk + c2qk c1 pk+1 + c2qk+1

]
=

[
c1 c2

] [0 1
1 a1

] [
0 1
1 a2

]
· · ·

[
0 1
1 ak+1

]
;

thus, [
c1 c2

]
=

[
c1 pk + c2qk c1 pk+1 + c2qk+1

] [−ak+1 1
1 0

]
· · ·

[
−a2 1

1 0

] [
−a1 1

1 0

]
.

Hence, if
[
c1 pk + c2qk c1 pk+1 + c2qk+1

]
=

[
0 0

]
modulo d, then c1 and c2 are

multiples of d. �
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3. Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.5. Let b ≥ 2 be an integer and ρ, σ be positive integers. Assume
that ρ = dσ for some integer d ≥ 2. Let ξ be a real number and assume that there are
integers a1, a2, . . . in {0, 1, . . . , bρ − 1} and k, n0 such that

ξ = bξc +
∑
i≥1

ai

bρi and p(n, ξ, bρ) = n + k for n ≥ n0.

Then, by Lemma 2.1, there are a finite word W, a Sturmian word s defined over {0, 1}
and a morphism φ from {0, 1}∗ into {0, 1, . . . , bρ − 1}∗ such that φ(01) , φ(10) and

a = a1a2 . . . = Wφ(s).

Suppose a is in {0, 1, . . . , bρ − 1} and consider its representation in base bσ given by
a = c1b(d−1)σ + c2b(d−2)σ + · · · + cdb0·σ, where c1, . . . , cd are in {0, 1, . . . , bσ − 1}.
Define the function φρ,σ on {0, 1, . . . , bρ − 1} by setting φρ,σ(a) = c1c2 . . . cd. It extends
to a morphism from {0, 1, . . . , bρ − 1}∗ to {0, 1, . . . , bσ − 1}∗, which we also denote by
φρ,σ. Then

ξ = bξc +
∑
i≥1

di

bσi where d = d1d2 . . . = φρ,σ(W)(φρ,σ ◦ φ)(s).

We deduce from Lemma 2.1 that the bσ-ary expansion of ξ is quasi-Sturmian. Thus,
we have established the first assertion of the theorem.

For the second assertion of the theorem, we may assume that ρ and σ are relatively
prime (otherwise, we replace b by bg, where g is the greatest common divisor of ρ
and σ).

Let ξ be a real number and write

ξ = bξc +
∑
i≥1

ai

bρi = bξc +
∑
j≥1

b j

bσ j ,

where a1, a2, . . . are in {0, 1, . . . , bρ − 1} and b1, b2, . . . are in {0, 1, . . . , bσ − 1}. Assume
that a = a1a2 . . . and b = b1b2 . . . are both quasi-Sturmian. By Lemma 2.1, there are
a finite word W, a Sturmian word s defined over {0, 1} and a morphism φ from {0, 1}∗

into {0, 1, . . . , bρ − 1}∗ such that φ(01) , φ(10) and

a = a1a2 . . . = Wφ(s).

We claim that |φ(0)| =: l0 and |φ(1)| =: l1 are both multiples of σ.
In order to deduce a contradiction, we suppose that σ does not divide at least one

of l0 and l1.
Let φρ,1 be the morphism φρ,σ defined above in the case σ = 1. For each factor U of

s, let

Λ(U) := {0 ≤ j ≤ σ − 1 : φρ,1(a) = Vφρ,1 ◦ φ(U) for some V with |V | ≡ j (mod σ)}
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denote the nonempty set of positions modulo σ where φρ,1 ◦ φ(U) occurs in φρ,1(a).
If U′ is a prefix of U, then Λ(U) is a subset of Λ(U′). Consequently, there exists N
such that Λ(s1 . . . sn) = Λ(s1 . . . sN) for each n ≥ N.

Let [0; a1, a2, . . .] denote the continued fraction expansion of the slope of s and, for
k ≥ 1, let qk be the denominator of the convergent [0; a1, . . . , ak] to this slope. Define
the sequence (Mk)k≥0 of finite words over {0, 1} by

M0 = 0, M1 = 0a1−11 and Mk+1 = (Mk)ak Mk−1 (k ≥ 1).

For k ≥ 1, the word Mk is a factor of length qk of s (see, for example, [7]). Since there
are pk occurrences of the digit 1 in Mk,

|φ(Mk)| = l0(qk − pk) + l1 pk = (l1 − l0)pk + l0qk.

By Lemma 2.4 and the assumption that σ does not divide at least one of l0 and l1, we
conclude that at least one of |φ(Mk)| and |φ(Mk+1)| is not a multiple of σ.

Let U be a factor of s. Then U is a factor of Mk for some integer k. Since Mk Mk
is a factor of Mk+2Mk+1 = (Mk+1)ak+2 Mk(Mk)ak+1 Mk−1, which is a factor of s, there are
two positions of φ(U) which differ by |φ(Mk)|. Thus, there exist two occurrences of
φ(U) in φ(s) separated by exactly ρ|φ(Mk)| letters. Replacing k by k + 1 is necessary,
we can assume that ρ|φ(Mk)| is not a multiple of σ and we deduce that |Λ(U)| ≥ 2 for
any factor U of s.

A finite word U is called right special if U is a prefix of two different factors of s
of the same length. If the initial word s1 . . . sn of s is not a prefix of a right special
word, then either s j+1 . . . s j+n , s1 . . . sn for all j ≥ 1 or s is periodic. Since a Sturmian
word is recurrent and not periodic (see, for example, [6, page 158]), there are infinitely
many prefixes s1 . . . sn of s which are right special. Let n ≥ N be such that s1 . . . sn is
right special. Then there exists a letter c such that c , sn+1 and s1 . . . snc is a factor of
s. Thus,

Λ(s1 . . . snsn+1) = Λ(s1 . . . sn) ⊃ Λ(s1 . . . snc).

Choose i, j in Λ(s1 . . . snc) with 0 ≤ i < j ≤ σ − 1. Then we can write

φρ,1(a) = UU1φρ,1 ◦ φ(s1 . . . snc)U′1 . . . = U′U2φρ,1 ◦ φ(s1 . . . snsn+1)U′2 . . .

and

φρ,1(a) = VV1φρ,1 ◦ φ(s1 . . . snc)V ′1 . . . = V ′V2φρ,1 ◦ φ(s1 . . . snsn+1)V ′2 . . .

for some words U,U′,V,V ′,U1,U2,V1,V2,U′1,U
′
2,V

′
1,V

′
2 written over {0, . . . , b − 1}

and satisfying

|U1| = |U2| = i, |V1| = |V2| = j, |U | ≡ |U′| ≡ |V | ≡ |V ′| ≡ 0 (mod σ),
0 ≤ |U′1| = |U

′
2| ≤ σ − 1, 0 ≤ |V ′1| = |V

′
2| ≤ σ − 1,

and σ divides i + (n + 1)ρ + |U′1| and j + (n + 1)ρ + |V ′1|. Thus, there exist u1, u2, v1, v2
in {0, 1, . . . , bσ − 1} and words X,Y, A1, A2, B1, B2 written over {0, 1, . . . , bσ − 1} with

|X| =
⌊ i + nρ

σ

⌋
− 1, |Y | =

⌊ j + nρ
σ

⌋
− 1
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and
A1 , A2, B1 , B2, |A1| = |A2| <

ρ

σ
+ 2, |B1| = |B2| <

ρ

σ
+ 2

such that

U1φρ,1 ◦ φ(s1 . . . snc)U′1 = φσ,1(u1XA1),
U2φρ,1 ◦ φ(s1 . . . snsn+1)U′2 = φσ,1(u2XA2),

V1φρ,1 ◦ φ(s1 . . . snc)V ′1 = φσ,1(v1YB1),
V2φρ,1 ◦ φ(s1 . . . snsn+1)V ′2 = φσ,1(v2YB2).

Here, φσ,1 is defined analogously to φρ,1. Therefore, u1XA1, u2XA2 and v1YB1, v2YB2
are all factors of φ−1

σ,1(φρ,1(φ(s))). Denoting by A (respectively, by B) the longest
common prefix (it could be the empty word) of A1 and A2 (respectively, of B1 and
B2), we deduce that XA and YB are both right special.

Let W0 be the longest common prefix of the words φρ,1 ◦ φ(s1 . . . snsn+1) and
φρ,1 ◦ φ(s1 . . . snc). Then there exist finite words W1,W2,W ′

1,W
′
2 over {0, . . . , b − 1}

satisfying |W1| = σ − i, |W2| = σ − j, |W ′
1| < σ, |W ′

2| < σ and

W0 = W1φσ,1(XA)W ′
1 = W2φσ,1(YB)W ′2.

Thus, we get |XA| ≤ |YB| ≤ |XA| + 1.
Suppose that XA is a suffix of YB. Then there exists a nonempty finite word W ′ of

length less than σ such that

W0 = W2W ′φσ,1(XA)W ′
1 = W2φσ,1(XA)W ′

2 if |XA| = |YB|,
W0 = W1φσ,1(XA)W ′

1 = W1W ′φσ,1(XA)W ′2 if |XA| + 1 = |YB|.

It then follows from [1, Theorem 1.5.2] that we have W0 = W2(W ′)tW ′′W ′1 or
W1(W ′)tW ′′W ′

2, respectively, for some integer t and a prefix W ′′ of W ′. Since ρ, σ
are fixed and s is Sturmian, we deduce from [3, Lemma 2.3] that (W ′)t cannot be a
factor of φρ,1 ◦ φ(s1 . . . sn) when n is sufficiently large. This shows that the lengths of
XA and YB are bounded independently of n.

Consequently, the right special words XA and YB are not suffixes of each other
if n is sufficiently large. Hence, there are arbitrarily large integers m such that
φ−1
σ,1 ◦ φρ,1 ◦ φ(s) has two distinct right special words of length m. This implies that

b = φ−1
σ,1 ◦ φρ,1(a) is not quasi-Sturmian, which gives a contradiction. Therefore, we

have established that |φ(0)| and |φ(1)| are both multiples of σ.
Write

ξ = bξc +
∑
i≥1

ci

bρσi , c = c1c2 · · · = φ−1
ρσ,ρ(a) = φ−1

ρσ,ρ(Wφ(s)).

Put |W | = hσ + d for integers h ≥ 0 and d with 0 ≤ d < σ. Suppose φ(0) = X1X2,
φ(1) = Y1Y2, where |X1| = |Y1| = σ − d. Assume that 11 is not a factor of s. Then
there exists a positive integer k such that 10m1 is a factor of s if and only if m = k or
k + 1. Thus, we can represent s as

s = 0wt0t1t2t3, . . . , t0 = 10k, ti ∈ {10k, 0}, 0 ≤ w ≤ k + 1.
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It is not difficult to check that t := t0t1t2 . . . is Sturmian. Define φ′ by

φ′(10k) = X2Y1Y2(X1X2)k−1X1, φ′(0) = X2X1.

Then
φ(s) = (X1X2)wY1Y2(X1X2)k−1X1φ

′(t1t2t3 . . . );

thus,

c = φ−1
ρσ,ρ(Wφ(s)) = φ−1

ρσ,ρ(W(X1X2)wY1Y2(X1X2)k−1X1)(φ−1
ρσ,ρ ◦ φ

′)(t1t2t3 . . . ).

Since |φ(0)| and |φ(1)| are both multiples of σ, the morphism φ−1
ρσ,ρ ◦ φ

′ is well defined.
We conclude that c is quasi-Sturmian and the proof of the theorem is complete. �

Lemma 3.1. Let b ≥ 2, d ≥ 2, ρ and σ be positive integers with ρ = dσ. Let x1x2 . . . be
a quasi-Sturmian word over {0, 1, . . . , bρ − 1}. Then there exists an integer n0 such that
the real number ξ =

∑
k≥1 xk/bρk satisfies

p(nd, ξ, bσ) ≥ (n + 1)d for n ≥ n0.

Furthermore, if s1s2 . . . is a Sturmian word written over {0, 1}, then there exists an
integer n0 such that the real number ξ =

∑
k≥1 sk/bρk satisfies

p(n, ξ, bσ) = n + d for n ≥ n0.

Proof. Set A := {0, 1, . . . , bρ − 1}. There exist a Sturmian word s written over {0, 1},
a morphism φ from {0, 1}∗ into A∗ satisfying φ(01) , φ(10) and a factor W of
x := x1x2 . . . such that x = Wφ(s). Then the word

y := φρ,σ(x) = φρ,σ(Wφ(s)) = φρ,σ(W)(φρ,σ ◦ φ)(s)

is quasi-Sturmian.
Let n be a positive integer larger than the integer n0 given by Lemma 2.3 applied to

the morphism φρ,σ ◦ φ. We claim that if U1φρ,σ(A1)V1 = U2φρ,σ(A2)V2, where A1, A2

are factors of φ(s) of length n and U1,U2 (respectively, V1,V2) are nonempty suffixes
(respectively, proper prefixes) of words of the form φρ,σ(a) for a in A, then U1 = U2,
A1 = A2 and V1 = V2.

Suppose not. Then we may assume that there exist A1, A2 and U,V such that

φρ,σ(A1)V = Uφρ,σ(A2).

Thus, there exist a1, a2 in A, a factor A of φ(s) of length n and a factor A′ of φ(s)
of length n − 1 such that φρ,σ(A) = W1φρ,σ(A′)W2, where W1 (respectively, W2) is a
nonempty proper suffix (respectively, prefix) of φρ,σ(a1) (respectively, of φρ,σ(a2)).
Consequently, there exist b, b′, c, c′ in {0, 1} and factors B, B′ of s such that A =

Uφ(B)V , a1A′a2 = U′φ(B′)V ′, where U (respectively, U′) is a nonempty suffix of φ(b)
(respectively, φ(b′)) and V (respectively, V ′) is a nonempty prefix of φ(c) (respectively,
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φ(c′)). Then A′ = U′′φ(B′)V ′′ for words U′′, V ′′ such that U′ = a1U′′, V ′ = V ′′a2.
Therefore,

φρ,σ(A) = φρ,σ(U)(φρ,σ ◦ φ)(B)φρ,σ(V) = W1φρ,σ(U′′)(φρ,σ ◦ φ)(B′)φρ,σ(V ′′)W2.

We deduce from Lemma 2.3 that φρ,σ(U) = W1φρ,σ(U′′), φρ,σ(V) = φρ,σ(V ′′)W2 and
B = B′. This is a contradiction to the fact that W1 (respectively, W2) is a nonempty
proper suffix (respectively, prefix) of φρ,σ(a1) (respectively, of φρ,σ(a2)). Hence, the
representation of X = Uφρ,σ(A)V is unique.

If φ(s) is written over an alphabet of three letters or more, then

p(n − 1, φ(s)) ≥ (n − 1) + 2 = n + 1,

which implies that the number of factors X of (φρ,σ ◦ φ)(s) of length nd is at least equal
to (n + 1)d. If φ(s) is written over an alphabet of two letters, say over the alphabet
A = {a, b}, then we can put φρ,σ(a) = ZX and φρ,σ(b) = ZY , where Z is the longest
common prefix of φρ,σ(a), φρ,σ(b) and the first letters of X, Y are different. If |V | > |Z|,
then, for each right special factor A of s, there are two distinct factors φρ,σ(A)V1,
φρ,σ(A)V2 in φ(s). If |V | ≤ |Z|, then |U | ≥ |X| = |Y |; thus, for each left special factor
B of s, there are two factors U1φρ,σ(B), U2φρ,σ(B) in φ(s). For each c = 0, . . . , d − 1,
the number of factors X = Uφρ,σ(A)V of (φρ,σ ◦ φ)(s) of length nd with |A| = n − 1 and
|U | = d − |V | = c is at least equal to p(n − 1, φ(s)) + 1. Therefore,

p(nd, ξ, bσ) ≥ p(nd, (φρ,σ ◦ φ)(s)) ≥ (n + 1)d.

Since the function m 7→ p(m, ξ, bσ) is strictly increasing, this implies the first assertion
of the lemma.

For the second assertion, let s = s1s2 . . . be a Sturmian word written over the subset
{0, 1} of {0, 1, . . . , bρ − 1} and define

ξ =
∑
i≥1

si

bρi .

Since φρ,σ(0) = 0d and φρ,σ(1) = 0d−11 for n ≥ 1, any factor of length dn of φρ,σ(s) is a
suffix of φρ,σ(A)0k, where A is a factor of length n in s and 0 ≤ k ≤ d − 1. Since 0d−1 is
a prefix of φρ,σ(A)0k, the number of suffixes of φρ,σ(A)0k of length nd is d(n + 1) and
thus

p(dn, ξ, bσ) = d(n + 1) = dn + d.

Since the function m 7→ p(m, ξ, bσ) is strictly increasing, this completes the proof of
the lemma. �

Proof of Theorem 1.4. Suppose that the two bases r ≥ 2 and s ≥ 2 are multiplicatively
dependent and let m, ` be the coprime positive integers satisfying rm = s`. Then there
exists a positive integer b such that r = b` and s = bm.

Let s = s1s2 . . . be a Sturmian word over the subset {0, 1} of {0, 1, . . . , bm` − 1} and
define

ξ =
∑
i≥1

si

bm`i .
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By the second assertion of Lemma 3.1, there exists an integer n0 such that

p(n, ξ, b`) = n + m and p(n, ξ, bm) = n + ` for n ≥ n0.

Thus,
lim

n→+∞
(p(n, ξ, r) + p(n, ξ, s) − 2n) = m + `.

This proves the first assertion of the theorem.
For the second assertion of the theorem, it is sufficient to consider a real number

ξ whose b`-ary and bm-ary expansions are both quasi-Sturmian. By Theorem 1.5, the
b`m-ary expansion of ξ is also quasi-Sturmian and we deduce from the first assertion
of Lemma 3.1 that there exists an integer n0 such that

p(mn, ξ, b`) ≥ m(n + 1) and p(`n, ξ, bm) ≥ `(n + 1) for n ≥ n0.

Therefore,
lim

n→+∞
(p(n, ξ, r) + p(n, ξ, s) − 2n) ≥ m + `.

This completes the proof of the theorem. �
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