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On the continuity of multivariate Lagrange interpolation at
natural lattices

J.-P. Calvi and V. M. Phung

Abstract

We give a natural geometric condition that ensures that sequences of interpolation polynomials
(of fixed degree) of sufficiently differentiable functions with respect to the natural lattices
introduced by Chung and Yao converge to a Taylor polynomial.

1. Introduction

1.1. Stating the problem

When d+ 1 points a0, . . . , ad in R converge to a limit point a, the corresponding Lagrange
interpolation polynomial L[a0, . . . , ad; f ] of a function f at the points ai tends to the Taylor
polynomial of f at a to the order d and this under the sole assumption that f is d times
continuously differentiable on a neighbourhood of the limit point. This classical result is an easy
consequence of Newton’s formula for Lagrange interpolation and of the mean value theorem for
divided differences. In this paper, we study a multivariate analogue of this problem. We suppose
that the points of a multivariate interpolation lattice A of degree d in RN converge to a limit
point a ∈ RN and ask under what conditions we can assert that the corresponding multivariate
Lagrange interpolation polynomials of a function f converge to the Taylor polynomial of f at
a to the order d? The question is answered for a particular but important class of interpolation
lattices, the so-called natural lattices, see below.

1.2. A known criterion

In the multivariate case, a simple clear-cut answer for the above question cannot be expected.
We recall a rather general criterion (which actually works for Hermitian interpolations) which
can be found in [1]. Let us mention that the first results which appeared in the literature
concerned the case (of practical importance in finite elements theory) for which the lattices
are of the form A(t) = U (t)(A) where U (t) is a sequence of linear transformations whose norms
tend to 0 and A is a fixed lattice. We refer to [1] for details and references to earlier works.
We mention that the general problem of finding the possible limits for sequences of Lagrange
interpolation polynomials was investigated in several recent papers, see for example [5, 10, 11].

We denote by Pd(RN ) the space of polynomials in N real variables of degree at most d,
Xα is the monomial function corresponding to the N -index α, that is Xα(x) = xα1

1 . . . xαN

N for
x= (x1, . . . , xN ) ∈ RN . The length of α is the degree of Xα, |α|=

∑N
i=1 αi. We denote by md

the dimension of the vector space Pd(RN ). We have md =
(
N+d
d

)
. In the whole paper, N > 2.

Theorem 1.1 (Bloom and Calvi). Let A(s) be a sequence of interpolation lattices of degree
d in RN . If the following condition holds

|α|= d+ 1 =⇒ lim
s→∞

L[A(s);Xα] = 0, (1.1)
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then, for every function f of class Cmd−1 in a neighbourhood of the origin 0, we have

lim
s→∞

L[A(s); f ] = Td
0(f), (1.2)

where L[A(s); ·] (respectively Td
0(·)) denotes the Lagrange interpolation projector at the points

of A(s) (respectively the Taylor projector at 0 of order d).

Unfortunately condition (1.1) is not easy to verify, especially if the degree of interpolation is
not small, and it seems difficult to check it on general classes of interpolation lattices. Besides,
Theorem 1.1 requires a high order of smoothness. We point out, however, that although it
is not known whether the level of differentiability required in Theorem 1.1 is optimal (in the
case of Lagrange interpolation), examples do exist for which convergence does not hold for
functions of class Cd+1 but holds for functions of higher smoothness, see [1, Example 5.4].

The aim of this paper is to give a natural geometric condition in the case where the
interpolation lattices are natural lattices. From an algebraic point of view, they can be regarded
as the simplest interpolation lattices: every point is situated at the intersection ofN hyperplanes
chosen among a minimal family and the corresponding Lagrange fundamental polynomials are
products of affine forms. The definition and main properties of natural lattices are collected in
§ 2. Our criterion is given and commented in § 3. The proof is quite technical and is postponed
to § 4. It relies on a remainder formula due to Carl de Boor. The referee pointed out that the
basic idea of using invariances in remainder formula was previously used in [2, 6], see also
the survey paper [8].

We need very few facts from general interpolation theory. They are recalled in the following
subsection.

1.3. Basic facts on interpolation

Let E be a m-dimensional space of functions on RN and A= {a1, . . . , am} ⊂ RN . We say that
A is an interpolation lattice for E if for every function f defined on A there exists a unique
L ∈ E such that L= f on A. Given a basis f = (f1, . . . , fm) of E, we define the Vandermonde
determinant vdm(f ; A) by

vdm(f ; A) := det
(
fi(aj)

)m
i,j=1

. (1.3)

Then A is an interpolation lattice if and only if

vdm(f ; A) 6= 0. (1.4)

Of course, the condition is independent from the choice of the basis f . When (1.4) is satisfied,
we have

L=
m∑
i=1

f(ai) l(A, ai, ·), (1.5)

where l(A, ai, ·) is the unique element of E which vanishes on A\{ai} and takes the value 1 at
ai,

l(A, ai, x) =
vdm(f ; {a1, . . . , ai−1, x, ai+1, . . . , am})

vdm(f ; A)
, 1 6 i6m, x ∈ RN . (1.6)

In the case where E = Pd(RN ) we write L= L[A; f ] and call it the Lagrange interpolation of
f at A. We say that A is an interpolation lattice of degree d. The only other case that we
consider in this paper is E =Hd(RN ), the space of homogeneous polynomials of degree d in N
variables whose dimension is

(
N+d−1

d

)
.

Note that, as defined here, an interpolation lattice does not need to have an underlying affine
structure. We shall however focus our attention on natural lattices, see below, which possess
such underlying structure.
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2. Natural lattices

We recall the construction of the lattices and of some objects attached to them. Despite their
apparent simplicity, it seems that these configurations were first considered in Chung and
Yao’s 1977 paper [3]. Here, we essentially follow the presentation and notational conventions
of de Boor [4].

We work in RN endowed with its canonical euclidean structure. The corresponding scalar
product is denoted by 〈·, ·〉.

A set of N hyperplanes H = {`1, . . . , `N} in RN is said to be in general position if the
intersection of the N hyperplanes is a singleton, that is

N⋂
i=1

`i = {ϑH}.

If `i = {x ∈ RN : 〈ni, x〉= ci}, i= 1, . . . , N , then H is in general position if and only if
det(n1, . . . , nN ) 6= 0.

Definition 1. A collection H of (at least N) distinct hyperplanes in RN is said to be in
general position if:

(i) every H ∈
(H
N

)
, that is, every subset of N hyperplanes in H, is in general position (as

defined above);
(ii) the map

H ∈
(

H
N

)
7−→ ϑH :=

⋂
`∈H

` ∈ RN (2.1)

is one-to-one. Here and in the sequel we identify the singleton
⋂
`∈H ` with its element.

As shown by the following theorem, the points obtained above as intersections of hyperplanes
form an interpolation lattice of a certain degree.

Theorem 2.1 (Chung and Yao [3]). Let H be a set of d>N hyperplanes in general
position in RN . The lattice

ΘH =
{
ϑH =

⋂
`∈H

` : H ∈
(

H
N

)}
(2.2)

is an interpolation lattice of degree d−N . Moreover, if ` ∈H is given by `= {x ∈ RN :
〈n`, x〉= c`} then we have the interpolation formula

L[ΘH ; f ](x) =
∑

H∈(H
N)
f(ϑH)

∏
`6∈H

〈n`, x〉 − c`
〈n`, ϑH〉 − c`

. (2.3)

The lattice ΘH is called a natural lattice (of degree d−N) and the interpolation formula is
called the Chung–Yao interpolation formula corresponding to H. In particular, we have

l(ΘH, ϑH , x) =
∏
`6∈H

〈n`, x〉 − c`
〈n`, ϑH〉 − c`

, H ∈
(

H
N

)
. (2.4)

When no confusion is possible, we omit the subscript H and write Θ instead of ΘH. Of course,
in (2.3), different equations for the hyperplanes yield the same formula. In the particular case
N = 1, every set of interpolation nodes may be regarded as a (trivial) natural lattice.

As shown by (2.3), interpolation polynomials at natural lattices are easy to compute. Some
difficulties, however, must be pointed out. In constructing a natural lattice, we start from a
family of hyperplanes and compute the interpolation points by solving, in principle, md linear
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systems (of order N). Besides, it is a difficult problem, even in the case N = 2, to decide how
to choose the hyperplanes if a special requirement is made on the location of the interpolation
points. For instance, we currently do not know what kind of limiting distribution we can obtain
with a growing number of Chung–Yao points (that is, points of natural lattices). We mention
that an interesting natural lattice was constructed by Sauer and Xu [9] on bi-dimensional disks.

3. Natural lattices of points converging to the origin

3.1. The convergence theorem

From now on, we shall identify an hyperplane ` with the affine form `(x) = 〈n, x〉 − c which
defines it, where n is normalized so that ‖n‖= 1. This abuse of language (each hyperplane has
two normalized equations) should not create confusion. Boldfaced n will be kept for normalized
vectors and vectors derived from them.

Supposing that the points of a sequence Θ(s) of natural lattices of the same degree converge
to the origin (or to any other fixed point), we study under what conditions the corresponding
interpolation operator converges to the Taylor projector at the origin. Our main result is
summarized in the following theorem.

Theorem 3.1. Let d>N . Let Θ(s), s ∈ N, be a sequence of natural lattices of degree d−N
in RN . We assume that Θ(s) is the lattice given by the family of hyperplanes

H(s) = {`(s)1 , . . . , `
(s)
d } with `

(s)
i = 〈n(s)

i , ·〉 − c(s)i , ‖n(s)
i ‖= 1, i= 1, . . . , d. (3.1)

Consider the following two conditions.

(C1) All the points of the lattice tend to 0 as s→∞, that is max{‖ϑ‖ : ϑ ∈Θ(s)}→ 0 as
s→∞.
(C2) The volumes

vol(n(s)
i1
, . . . , n(s)

iN
), 1 6 i1 < i2 < . . . < iN 6 d, (3.2)

of the parallelotope spanned by the vectors n(s)
i1
, . . . , n(s)

iN
are bounded from below, away from 0,

uniformly in s.

If conditions (C1) and (C2) are satisfied then, for every function f of class Cd−N+1 on a
neighbourhood of the origin, we have

lim
s→∞

L[Θ(s) ; f ] = Td−N
0 (f). (3.3)

Of course, (3.3) holds true in every normed vector space topology for Pd−N (RN ).

3.2. On condition (C2)

The condition on the volume of the parallelotopes is equivalent to the following,

lim inf
s→∞

min
16i1<...<iN 6d

|det(n(s)
i1
, . . . , n(s)

iN
)|> 0. (3.4)

In R2 we have
vol(n(s)

i , n(s)
j ) = sin(α(s)

ij ), (3.5)

where α(s)
ij ∈ ]0, π/2[ is the line angle between the lines `i and `j . Thus H satisfies condition

(C2) if and only if the angles between any two (distinct) lines in H(s) remain uniformly bounded
from below by a positive constant. An example of natural lattice of degree 2 in R2 and the
various parameters involved in Theorem 3.1 are shown in Figure 1.
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Figure 1. A bi-dimensional natural lattice.

Conditions (C1) and (C2) are independent. However, when we know that the second one
holds true, the first one is easily checked as shown by the following lemma.

Lemma 3.2. If (C2) is satisfied then (C1) is equivalent to:

(C3) lims→∞ maxi=1,...,d |c(s)i |= 0 where c
(s)
i is defined in (3.1).

Proof. We show that (C1) implies (C3). Consider H(s) ∈
(H(s)

N

)
with `

(s)
i ∈H(s). From

〈n(s)
i , ϑH(s)〉 − c(s)i = 0, we get

|c(s)i |6 ‖n
(s)
i ‖ · ‖ϑH(s)‖= ‖ϑH(s)‖→ 0, s→∞.

To show the converse, we observe that if H(s) = {`(s)i1 , . . . , `
(s)
iN
} then the coordinates (xk) of

ϑH(s) are solutions of the linear system
N∑
k=1

n(s)
ij k

xk = c
(s)
j , j = 1, . . . , N,

and the claim follows from Cramer’s formula in which, thanks to condition (C2), the
denominator remains away from 0 whereas the numerator tends to 0. 2

3.3. Affine transformations of natural lattices

Let L(x) = Λ(x) + b be an affine transformation (isomorphism) of RN with Λ its linear part.
If H is in general position so is L(H) := {L(`i) : i= 1, . . . , d} and L induces a one-to-one
correspondence between

(H
N

)
and

(L(H)
N

)
. Moreover if H ∈

(H
N

)
then

ϑL(H) = L(ϑH) and ΘL(H) = L(ΘH).

In the following theorem we translate the conditions of Theorem 3.1 when the points of a
natural lattice are sent to the origin by applying a sequence of affine transformations.

Theorem 3.3. Let H = {`1, . . . , `d} be a fixed collection of d hyperplanes in general position
in RN , d>N , with, as above, `i = {x ∈ RN : 〈ni, x〉 − ci = 0}, ‖ni‖= 1. Let Ls = Λs + bs,
s ∈ N, be a sequence of affine transformations of RN . We set

H(s) = Ls(H), s ∈ N. (3.6)
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We consider the sequence of natural lattices Θ(s) induced by H(s). The following assertions are
equivalent.

(i) The sequence Θ(s) satisfies conditions (C1) and (C2).
(ii) There exists a positive constant ∆ such that

|det Λs| ·
N∏
j=1

‖Λ−Ts (nij )‖6 ∆, 1 6 i1 < . . . < iN 6 d, s ∈ N, (3.7)

and

max
i=1,...,d

1
‖Λ−Ts (ni)‖

·
∣∣ci + 〈ni, Λ−1

s (bs)〉
∣∣→ 0, s→∞, (3.8)

where Λ−Ts denotes the transpose of the inverse of Λs.

Proof. It follows from the normalized equation of Ls(`i) together with Lemma 3.2. Indeed,
with `i(x) = 〈ni, x〉 − ci, we have

Ls(`i) = {x ∈ RN : 〈ni, L−1
s (x)〉 − ci = 0}.

Since for x ∈ Ls(`i),

0 = 〈ni, Λ−1
s (x− bs)〉 − ci = 〈ni, Λ−1

s (x)〉 −
(
ci + 〈ni, Λ−1

s (bs)〉
)

= 〈Λ−Ts (ni), x〉 −
(
ci + 〈ni, Λ−1

s (bs)〉
)
, (3.9)

a normalized equation of Ls(`i) is given by〈
Λ−Ts (ni)
‖Λ−Ts (ni)‖

, x

〉
− 1
‖Λ−Ts (ni)‖

{ci + 〈ni, Λ−1
s (bs)〉}. 2

3.4. Examples

In R2 any interpolation lattice of degree 1 is a natural lattice (based on the three distinct lines
defined by the interpolation points). Moreover, any such lattice is the image under an affine
isomorphism of the lattice Θ := {(0, 0), (1, 0), (0, 1)} constructed with the lines of equations
`1(x1, x2) = x1, `2(x1, x2) = x2 and `3(x1, x2) = x1 + x2 − 1.

Consider the affine transformations Ls defined by

Ls(x) =
(
t2 0
0 −t2u

) (
x1

x2

)
+
(
t
t

)
, x=

(
x1

x2

)
∈ R2, t= 1/s, s ∈ N?,

where u is a function of t such that limt→0 u(t) = 1, and the lattice

Θ(s) = Ls(Θ) = {(t, t), (t2 + t, t), (t,−t2u+ t)}, t= 1/s.

It is not difficult to see that Θ(s) satisfies conditions (C1) and (C2). For (C2) we use (3.5)
and observe that one of the angles is equal to π/2 while, thanks to the assumption on u, the
other two tend to π/4 as t→ 0. Hence, according to Theorem 3.1, the corresponding Lagrange
interpolation polynomials at Θ(s) of any twice continuously differentiable function f on a
neighbourhood of 0 converge to the Taylor polynomial of f . This example shows that the
assumptions of Theorem 3.1, even in the simple case of Theorem 3.3, are weaker than those
given in [1, Proposition 2.1]. Indeed, the assumption

‖(t, t)‖2 · |`(Θ(s), (t, t), ·)| → 0, t→ 0,

is required in that proposition whereas it clearly does not hold here since, as is easily checked,

`(Θ(s), (t, t), x) =
x2 − u x1 + (t2 + t) u− t

t2 u
.
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We now give an example showing that convergence to the Taylor projector no longer holds,
in general, when condition (C2) is not satisfied. We use a computation done in [1, Example 1.2].
We fix ε> 0 and define

ΘH(s) = {(0, 0), (t, t2+ε), (2t, 0)} ⊂ R2, t= 1/s, s ∈ N?.

This lattice satisfies (C1) but not (C2) and it is readily checked that

L[ΘH(s) ; X(2,0)](x) = 2tx1 −
x2

tε
,

which clearly does not converge to T1
0(X(2,0)) = 0 as s= 1/t→∞. The case ε= 0 shows that the

Lagrange polynomials may converge to a limit different from the Taylor polynomial. Note that
this does not mean that the sequence of operators f → L[ΘH(s) f ] converge. For the possible
limits of a sequence of Lagrange interpolation operators, we refer the reader to the works
mentioned in the introduction.

4. Further properties of natural lattices and proof of Theorem 3.1

4.1. de Boor’s identity

In the following, H always denotes a set of d>N hyperplanes in general position in RN and
Θ = ΘH the corresponding natural lattice. We will always assume that

H = {`1, . . . , `d}. (4.1)

The elements of H are ordered according to the indexes. Every subset of H is endowed with
the induced ordering.

If K is a subset of N − 1 elements in H, that is K ∈
( H
N−1

)
, then

⋂
`∈K ` is a line in RN

which contains d−N + 1 points of Θ. Indeed, it passes through every ϑH such that H ∈
(H
N

)
,

K ⊂H. The set of these d−N + 1 points is denoted by ΘK ,

ΘK = Θ ∩
(⋂
`∈K

`

)
, K ∈

(
H

N − 1

)
. (4.2)

Assume that K = {`i1 , . . . , `iN−1} with i1 < i2 < . . . < iN−1. Since the map

v ∈ RN 7→ det(v, ni1 , . . . , niN−1) (4.3)

is a linear form, there exists a vector, which we denote by nK , such that

det(v, ni1 , . . . , niN−1) = 〈v, nK〉, v ∈ RN . (4.4)

As defined, the value of nK depends on the ordering of the hyperplanes of K. A different
ordering may change nK into −nK . It is to avoid further discussion of this detail that we
assumed we start with a particular ordering of H and agreed that every subset of H is endowed
with the induced ordering.

Lemma 4.1. The direction of the line
⋂
`∈K ` is given by the (nonzero) vector nK . We have

‖nK‖6 1.

Proof. Let K = {`i1 , . . . , `iN−1}. The first claim is a consequence of the equations

〈nij , nK〉= 0, j = 1, . . . , N − 1,

which follows readily from (4.4). Next, by Hadamard’s inequality, the norm of the linear form
(4.3) is smaller than the product of the lengths ‖nij‖, which is smaller than one. Hence, in
view of (4.4), so is the norm of nK . 2
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The vectors nK play a fundamental role in our proof of Theorem 3.1.
Note in particular that if H ∈

(H
N

)
and ` ∈H then we may speak of nH\`. From now on, we

use H\`i for H\{`i}.

Lemma 4.2 (de Boor’s identity). If H ∈
(H
N

)
then we have

x= ϑH +
∑
`∈H

`(x)
˜̀(nH\`)

nH\`, x ∈ RN , (4.5)

where ˜̀ denotes the linear part of ` (thus ˜̀(x) = 〈n, x〉 if `(x) = 〈n, x〉 − c). In particular, for
every H, the vectors nH\`, ` ∈H, form a basis of RN .

Proof. See [4, p. 37]. 2

4.2. de Boor’s remainder formula

We now recall the definition of multivariate divided differences. Let Ω be an open convex set in
RN ; to every set A= {a0, . . . , as} ⊂ Ω (the points are not necessarily distinct) and f ∈ Cs(Ω),
we associate a s-linear form on (RN )s defined by

(RN )s 3 (v1, . . . , vs) 7−→

[a0, . . . , as | v1, . . . , vs]f :=
∫
[A]

Dv1 . . . Dvs
f =

∫
[A]

f (s)(·)(v1, . . . , vs), (4.6)

where f (s) denotes the sth total derivative of f ,∫
[A]

g =
∫
∆s

g

(
a0 +

s∑
i=1

ξi(ai − a0)
)
dξ1 . . . dξs

and ∆s is the standard simplex {ξ = (ξ1, . . . , ξs) : ξi > 0,
∑s
i=1 ξi 6 1}. This symmetric s-linear

form is called the multivariate divided difference of f at A. Note that, when f ∈ Cs(Ω) is fixed,
the function

Ωs+1 × (RN )s 3 (a0, . . . , as, v1, . . . , vs) 7−→ [a0, . . . , as | v1, . . . , vs]f

is continuous (as a function of its two groups of variables).
We now state a beautiful error formula due to Carl de Boor.

Theorem 4.3 (de Boor’s remainder formula). Let H = {`1, . . . , `d} be a collection of
d>N hyperplanes in general position in RN and Θ = ΘH the corresponding natural lattice.
For K ∈

( H
N−1

)
, we define the polynomial PK of degree d−N + 1 by the relation

PK(x) =
∏

`∈H\K

`(x)
˜̀(nK)

, (4.7)

where, as above, ˜̀ is used for the linear part of `.
The error between a function f of class Cd−N+1 on a convex neighbourhood Ω of Θ and the

Lagrange interpolation polynomial of f at Θ is given by the following formula:

f(x) = L[Θ; f ](x) +
∑

K∈( H
N−1)

PK(x) ·
[
ΘK , x | nK , . . . , nK︸ ︷︷ ︸

d−N+1

]
f, x ∈ Ω. (4.8)

Recall that for K ∈
( H
N−1

)
, ΘK is the subset formed by the d−N + 1 points of Θ lying on the

line
⋂
`∈K `, see (4.2).

Proof. See [4, Theorem 3.1]. 2
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4.3. Some algebraic identities

We now prove two auxiliary lemmas. The first one (Lemma 4.4) shows that the points nK ,
K ∈

( H
N−1

)
, themselves form a certain interpolation lattice. The second one (Lemma 4.6) is a

somewhat mysterious representation formula for symmetric multi-linear forms.

Lemma 4.4. Let H = {`1, . . . , `d} be a collection of d hyperplanes in general position in RN
with d>N . The set

V :=
{
nK :K ∈

(
H

N − 1

)}
(4.9)

is an interpolation lattice for the space Hd−N+1(RN ) of homogeneous polynomials of degree
d−N + 1.

Proof. It suffices to prove the following two assertions.
(i) The cardinality of V is equal to the dimension ofHd−N+1(RN ) which is

(
d

d−N+1

)
=
(

d
N−1

)
.

(ii) For every nK in V there exists HK ∈Hd−N+1(RN ) such that HK(nK) = 1 but HK

vanishes on V\{nK}.
To verify the first point, we just need to check that if K, K ′ ∈

( H
N−1

)
and K 6=K ′

then nK 6= nK′ . But, if K 6=K ′ there exists ` ∈K\K ′ with `(x) = 〈n, x〉 − c. Assume that
K ′ = {`i1 , . . . , `iN−1}. Since ` ∪K ′ is a set of N hyperplanes in general position, we have
det(n, ni1 , . . . , niN−1) 6= 0 hence, in view of (4.4), 〈n, nK′〉 6= 0. On the other hand, since ` ∈K,
〈n, nK〉= 0. Hence nK 6= nK′ .

As for the second point, for K ∈
( H
N−1

)
, we set

HK := P̃K(x) =
∏

`∈H\K

˜̀(x)
˜̀(nK)

. (4.10)

This clearly defines a homogeneous polynomial of degree d−N + 1 in RN satisfying
HK(nK) = 1. Moreover, if K ′ ∈

( H
N−1

)
, K ′ 6=K, then we can find ` in (H\K) ∩K ′. Since ` 6∈K,

the factor ˜̀(nK′) appears in HK(nK′). However, since ` ∈K ′, ˜̀(nK′) = 〈n, nK′〉= 0. Hence
HK(nK′) = 0. 2

Applying the interpolation formula corresponding to the above interpolation lattice to the
homogeneous polynomial v→ φ(vd−N+1) where φ is a symmetric multi-linear form we obtain
the following identity. We use the polynomials HK = P̃K in (4.10).

Corollary 4.5. With the assumptions of the lemma, for every symmetric (d−N + 1)-
linear form φ on RN , we have

φ(vd−N+1) =
∑

K∈( H
N−1)

P̃K(v) · φ(nd−N+1
K ), v ∈ RN , (4.11)

where we use ud−N+1 := (u, . . . , u) (d−N + 1 times).

Lemma 4.6. Let H = {`1, . . . , `d} be a collection of hyperplanes in RN in general position
with d>N . We set

Hi = {`1, . . . , `i}, 1 6 i6 d, (4.12)

and

P
[i−1]
K (x) =

∏
`∈Hi−1\K

`(x)
˜̀(nK)

, K ∈
(

Hi−1

N − 1

)
, N 6 i6 d+ 1. (4.13)
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Then for every symmetric (d−N + 1)-linear form φ on RN , we have

φ(xd−N+1) =
d+1∑
i=N

∑
K∈(Hi−1

N−1)

P
[i−1]
K (x) · φ(xd−i , ϑK∪`i , ni−NK ), x ∈ RN . (4.14)

The notation in the above formula must be understood as follows:
(1) when d− i (respectively i−N) is not positive then x (respectively nK) does not appear

in φ(xd−i, ϑK∪`i , n
i−N
K ); and

(2) when i= d+ 1 then x and ϑK∪`i do not appear;
(3) likewise, if the product in the definition of P [i−1]

K is empty then its value is taken to be
1. (This happens when i=N .)

To deal with the case N > 3 we need the following simple observation.

Lemma 4.7. Let H = {`1, . . . , `d+1} be a collection of hyperplanes in RN in general position
with d>N > 3. As above, we write Hd = {`1, . . . , `d}. Let K ′ ∈

( Hd

N−2

)
. If K ∈

( Hd

N−1

)
and

K ′ *K then

P̃
[d]
K (nK′∪`d+1) = 0 where P̃

[d]
K =

∏
`∈Hd\K

˜̀(·)
˜̀(nK)

.

Proof. Take `i ∈K ′ ∩ (Hd\K). The fact that `i ∈K ′ gives

0 = 〈ni, nK′∪`d+1〉= ˜̀
i(nK′∪`d+1)

and since `i ∈Hd\K it follows that ˜̀
i(nK′∪`d+1) is a factor of P̃ [d]

K (nK′∪`d+1). 2

Proof of Lemma 4.6. We prove identity (4.14) by induction on d>N .
(A) We start with the case d=N . In that case (4.14) reduces to

φ(x) =
∑

K∈(HN−1
N−1 )

P
[N−1]
K (x)φ(ϑK∪`N ) +

∑
K∈( HN

N−1)
P

[N ]
K (x)φ(nK) (4.15)

= φ(ϑHN
) +

N∑
i=1

`i(x)
˜̀
i(nHN\`i)

φ(nHN\`i). (4.16)

Since φ is a linear form, the claim follows from de Boor’s identity (4.5).
(B) We assume that (4.14) holds true for d and prove it for d+ 1. Take φ a symmetric

(d+ 2−N)-linear form. Fix y ∈ RN and define φy on (RN )d+1−N by

φy(v1, . . . , vd+1−N ) = φ(v1, . . . , vd+1−N , y).

Thus φy is a symmetric (d+ 1−N)-linear form to which we may apply the induction hypothesis
to get

φy(xd−N+1) =
d+1∑
i=N

∑
K∈(Hi−1

N−1)

P
[i−1]
K (x)φy(xd−i, ϑK∪`i , n

i−N
K ). (4.17)

Putting y = x in the above expression, we obtain

φ(xd−N+2) =
d+1∑
i=N

∑
K∈(Hi−1

N−1)

P
[i−1]
K (x)φx(xd−i, ϑK∪`i , n

i−N
K ). (4.18)
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On the other hand, we need to prove

φ(xd−N+2) =
d+2∑
i=N

∑
K∈(Hi−1

N−1)

P
[i−1]
K (x)φ(xd+1−i, ϑK∪`i , n

i−N
K ). (4.19)

Expressions (4.18) and (4.19) differ only for i= d+ 2 and i= d+ 1 (observe that x appears
for i= d+ 1 in (4.18) but not in (4.19). Thus, to establish (4.19), it suffices to prove that the
term corresponding to d+ 1 in (4.18) equals the sum of the terms corresponding to d+ 1 and
d+ 2 in (4.19), that is∑

K∈( Hd
N−1)

P
[d]
K (x)φ(nd+1−N

K , x) =
∑

K∈( Hd
N−1)

P
[d]
K (x)φ(ϑK∪`d+1 , n

d+1−N
K )

+
∑

K∈(Hd+1
N−1)

P
[d+1]
K (x)φ(nd+2−N

K ). (4.20)

For K ∈
( Hd

N−1

)
and x ∈ RN , using de Boor’s identity (4.5) with H =K ∪ `d+1, we may write

x= ϑK∪`d+1 +
∑

`∈K∪`d+1

`(x)
˜̀(n(K∪`d+1)\`)

n(K∪`d+1)\`

= ϑK∪`d+1 +
`d+1(x)

˜̀
d+1(nK)

nK +
∑
`∈K

`(x)
˜̀(n(K\`)∪`d+1)

n(K\`)∪`d+1 .

Substituting x with the above expression in the φ-term of the left-hand side of (4.20), we
arrive to ∑

K∈( Hd
N−1)

P
[d]
K (x) · φ(nd+1−N

K , x) =
∑

K∈( Hd
N−1)

P
[d]
K (x) · φ(ϑK∪`d+1 , n

d+1−N
K )

+
∑

K∈( Hd
N−1)

P
[d]
K (x)

`d+1(x)
˜̀
d+1(nK)

· φ(nd+2−N
K )

+
∑

K∈( Hd
N−1)

∑
`∈K

P
[d]
K (x)

`(x)
˜̀(n(K\`)∪`d+1)

· φ(nd+1−N
K , n(K\`)∪`d+1). (4.21)

Now, for K ∈
( Hd

N−1

)
, we have

P
[d]
K (x)

`d+1(x)
˜̀
d+1(nK)

= P
[d+1]
K (x).

Hence, we may regard the second term on the right-hand side of (4.21) as a sum over
(Hd+1
N−1

)
to obtain ∑

K∈(Hd+1
N−1), `d+1 6∈K

P
[d+1]
K (x) · φ(nd+2−N

K ). (4.22)

Thus, since K ∈
(Hd+1
N−1

)
, `d+1 ∈K means K =K ′ ∪ {`d+1} with K ′ ∈

( Hd

N−2

)
; to prove (4.20), it

remains to establish∑
K∈( Hd

N−1)

∑
`∈K

P
[d]
K (x)

`(x)
˜̀(n(K\`)∪`d+1)

· φ(nd+1−N
K , n(K\`)∪`d+1)

=
∑

K′∈( Hd
N−2)

P
[d+1]
K′∪`d+1

(x) · φ(nd+2−N
K′∪`d+1

). (4.23)
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Observe that in the case N = 2, since K ′ = ∅, the sum on the right-hand side reduces to a
single element.

We first concentrate on the term

P
[d]
K (x)

`(x)
˜̀(n(K\`)∪`d+1)

=
{ ∏
h∈Hd\K

h(x)
h̃(nK)

}
· `(x)

˜̀(n(K\`)∪`d+1)

on the left-hand side of (4.23). Since ` ∈K we have

P
[d]
K (x)

`(x)
˜̀(n(K\`)∪`d+1)

=
∏

h∈Hd\(K\`)

h(x)
h̃(n(K\`)∪`d+1)

·
∏

h∈Hd\K

h̃(n(K\`)∪`d+1)

h̃(nK)
(4.24)

= P
[d+1]
(K\`)∪`d+1

(x) · P̃ [d]
K (n(K\`)∪`d+1). (4.25)

We now use this expression in the left-hand side of (4.23). Observing again that when K runs
over

( Hd

N−1

)
and ` runs over K then K\` runs over

( Hd

N−2

)
we arrive at∑

K∈( Hd
N−1)

∑
`∈K

P
[d]
K (x)

`(x)
˜̀(n(K\`)∪`d+1)

· φ(nd−N+1
K , n(K\`)∪`d+1)

=
∑

K∈( Hd
N−1)

∑
`∈K

P
[d+1]
(K\`)∪`d+1

(x) P̃ [d]
K (n(K\`)∪`d+1) · φ(nd−N+1

K , n(K\`)∪`d+1)

=
∑

K′∈( Hd
N−2)

P
[d+1]
K′∪`d+1

(x)
∑

K′⊂K∈( Hd
N−1)

P̃
[d]
K (nK′∪`d+1) · φ(nd−N+1

K , nK′∪`d+1). (4.26)

Now, for a fixed K ′ ∈
( Hd

N−2

)
, using Lemma 4.7 for the first equality in the case N > 3 (we

add null terms) and Corollary 4.5 for the second one, we get∑
K′⊂K∈( Hd

N−1)
P̃

[d]
K (nK′∪`d+1)φ(nd−N+1

K , nK′∪`d+1)

=
∑

K∈( Hd
N−1)

P̃
[d]
K (nK′∪`d+1)φ(nd−N+1

K , nK′∪`d+1) = φ(nd−N+2
K′∪`d+1

). (4.27)

Using (4.27) in the last term of (4.26), we finally arrive at∑
K∈( Hd

N−1)

∑
`∈K

P
[d]
K (x)

`(x)
˜̀(n(K\`)∪`d+1)

φ(nd−N+1
K , n(K\`)∪`d+1)

=
∑

K′∈( Hd
N−2)

P
[d+1]
K′∪`d+1

(x) · φ(nd−N+2
K′∪`d+1

), (4.28)

which is (4.23). This completes the proof of the lemma. 2

Corollary 4.8. Let H = {`1, . . . , `d} be a collection of d>N hyperplanes in general
position in RN . For every function f of class Cd−N+1 on a convex neighbourhood Ω of the
origin in RN we have

f(x)−Td−N
0 (f)(x)

=
d+1∑
i=N

∑
K∈(Hi−1

N−1)

P
[i−1]
K (x) ·

∫
[0, . . . , 0︸ ︷︷ ︸

d−N+1

, x]

f (d−N+1)(·)
(
xd−i, ϑK∪`i , ni−NK

)
, x ∈ Ω.
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Proof. The remainder formula for Taylor polynomials (as a special case of Kergin
interpolation, see for example [7, Theorem 3]) gives us,

f(x)−Td−N
0 (f)(x) =

[
0, . . . , 0︸ ︷︷ ︸
d−N+1

, x | x, . . . , x︸ ︷︷ ︸
d−N+1

]
f =

∫
[0,...,0,x]

f (d−N+1)(·)(x, . . . , x). (4.29)

The corollary then follows directly from Lemma 4.6 since, for every a ∈ Ω, f (d−N+1)(a) is a
symmetric (d−N + 1)-linear form on RN . 2

4.4. Proof of Theorem 3.1

Let Ω be a neighbourhood of the origin on which f is of class Cd+1. We may assume that:
(i) Ω contains B(0, R), the closed euclidean ball of centre the origin and radius R and, in

view of condition (C1);
(ii) all the points of Θ(s) = ΘH(s) lie in B(0, R), s ∈ N.

We set

M = max
a∈B(0,R)

‖f (d−N+1)(a)‖<∞, (4.30)

where ‖ · ‖ here denotes the usual norm of a multi-linear form. We use condition (C2) in the
form given by (3.4) taking (4.4) into account as follows.

(iii) There exists δ > 0 such that

|〈ni, nK〉|> δ, K ∈
(

H(s)

N − 1

)
, `i 6∈K, s ∈ N. (4.31)

(A) We first derive an estimate on the polynomials PK = P
[d]
K defined in (4.7). We claim that

|P [d]
K (x)|6

(
2R
δ

)d−N+1

, x ∈B(0, R), K ∈
(

H(s)

N − 1

)
, s ∈ N. (4.32)

Indeed, if K ∈
(H(s)

N−1

)
and `i ∈H(s)\K, since ϑK∪`i ∈ `i, we have

|ci|= |〈ni, ϑK∪`i〉|6 ‖ϑK∪`i‖6R.

Next, using (4.31) and ‖ni‖= 1, we have∣∣∣∣ `i(x)
˜̀
i(nK)

∣∣∣∣6 |〈ni, x〉|+ |ci||〈ni, nK〉|
6

2R
δ
, `i ∈H(s)\K, (4.33)

which readily implies (4.32).
(B) We now use Theorem 4.3 and Corollary 4.8 to estimate the difference between a Taylor

polynomial and a Chung–Yao interpolation polynomial of a same function. To simplify, we
omit the index s in the formulas. We have

L[Θ; f ](x)−Td−N
0 (f)(x) = [f(x)−Td−N

0 (f)(x)]− [f(x)− L[Θ; f ](x)]

=
∑

K∈( Hd
N−1)

P
[d]
K (x)([0, . . . , 0, x | nK , . . . , nK ]f − [ΘK , x | nK , . . . , nK ]f)

+
d∑

i=N

∑
K∈(Hi−1

N−1)

P
[i−1]
K (x)

∫
[0,...,0,x]

f (d−N+1)(·)(xd−i, ϑK∪`i , ni−NK ),

x ∈B(0, R). (4.34)
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We call the terms in the above sum S1(x) and S2(x) and prove that, for every x ∈B(0, R),
both of them tend to 0 as s→∞. This will achieve the proof. Simple convergence on a compact
set of nonempty interior is sufficient since it implies convergence on any normed vector space
topology on Pd−N (RN ) (but the proof actually leads to uniform bounds indicated below).

(C) Since, in view of (4.32), the polynomials P [d]
K are bounded uniformly in s, that S1(x)→ 0

for x ∈B(0, R) follows from∣∣∣[0, . . . , 0︸ ︷︷ ︸
d−N+1

, x | nK , . . . , nK︸ ︷︷ ︸
d−N+1

]f − [ΘK , x | nK , . . . , nK ]f
∣∣∣→ 0, (4.35)

which is a consequence of the fact that the points of Θ = Θ(s) tend to 0 together with the
continuity of the divided differences of f as a function of the two groups of its arguments, see
§ 4.2.

(D) As for the term S2(x), since the right-hand side goes to 0 as s→∞, the conclusion
follows from the following estimate.

|S2(x)|6 M

(d−N + 1)!
Rd−N

(
1 +

2
δ

)d−1

‖Θ‖, x ∈B(0, R), (4.36)

where ‖Θ‖= ‖Θ(s)‖ := max{‖ϑ‖ : ϑ ∈Θ}. To prove this, we observe that if N 6 i6 d and
K ∈

(Hi−1
N−1

)
, the bound (4.32) (in which H is replaced by Hi−1) gives

|P [i−1]
K (x)|6

(
2R
δ

)i−N
, x ∈B(0, R). (4.37)

Moreover, for every a ∈B(0, R), using ‖nK‖6 1, we have

|f (d−N+1)(a)(xd−i, ϑK∪`i , n
i−N
K )|6M‖x‖d−i‖ϑK∪`i‖‖nK‖i−N 6MRd−i · ‖Θ‖. (4.38)

Hence, since vol(∆d−N+1) = 1/(d−N + 1)!, for x ∈B(0, R) we have∣∣∣∣∫
[0,...,0,x]

f (d−N+1)(·)(xd−i, ϑK∪`i , ni−NK )
∣∣∣∣6 M

(d−N + 1)!
Rd−i‖Θ‖. (4.39)

Combining the above estimates, we obtain

|S2(x)|6
d∑

i=N

(
i− 1
N − 1

)(
2R
δ

)i−N
M

(d−N + 1)!
Rd−i‖Θ‖ (4.40)

=
M

(d−N + 1)!
‖Θ‖Rd−N

d∑
i=N

(
i− 1
i−N

)(
2
δ

)i−N
(4.41)

6
M

(d−N + 1)!
‖Θ‖Rd−N

d−1∑
j=0

(
d− 1
j

)(
2
δ

)j
(4.42)

=
M

(d−N + 1)!
‖Θ‖Rd−N

(
1 +

2
δ

)d−1

. (4.43)

This concludes the proof of Theorem 3.1. 2

4.5. An estimate on the error

The proof actually yields a uniform bound on the error between Chung–Yao interpolation
polynomials and the Taylor polynomial at the origin. It is shown in the following corollary.
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Corollary 4.9. We assume that the assumptions of Theorem 3.1 are satisfied. If f ∈
Cd−N+2(Ω) then

max
x∈B(0,R)

‖L[Θ(s); f ](x)−Td−N
0 (f)(x)‖

=O

(
‖θ(s)‖ ·

{
max

a∈B(0,R)
‖f (d−N+1)(a)‖+ max

a∈B(0,R)
‖f (d−N+2)(a)‖

})
, (4.44)

where the constant involved in the symbol O does not depend on f .

Proof. We turn to the term S1(x) in the previous proof. For simplicity, we set m= d−N + 1.
Since f ∈ Cm+1(Ω), for all K ∈

( Hd

N−1

)
, the mean value inequality gives

|[0, . . . , 0, x | nK , . . . , nK ]f − [ΘK , x | nK , . . . , nK ]f |

=
∣∣∣∣∫

∆m

{
f (m)

(
x+

m∑
j=1

(0− x)ξj

)
(nmK)− f (m)

(
x+

m∑
j=1

(θKj − x)ξj

)
(nmK)

}
dξ

∣∣∣∣
6

∫
∆m

max
B(0,R)

‖f (m+1)‖
∥∥∥∥ m∑
j=1

θKjξj

∥∥∥∥ ‖nK‖mdξ 6
1
m!

max
B(0,R)

‖f (m+1)‖ ‖Θ‖, (4.45)

where ΘK = {θKj : j = 1, . . . , m}. Using (4.36) and (4.45) in (4.34), we finally get

max
x∈B(0,R)

‖L[Θ, f ](x)−Td−N
0 (f)(x)‖

6

(
d

N − 1

)(
2R
δ

)d−N+1 1
(d−N + 1)!

max
B(0,R)

‖f (d−N+2)‖ ‖Θ‖

+
1

(d−N + 1)!
max
B(0,R)

‖f (d−N+1)‖Rd−N
(

1 +
2
δ

)d−1

‖Θ‖

=
(
M1 max

B(0,R)
‖f (d−N+1)‖+M2 max

B(0,R)
‖f (d−N+2)‖

)
‖Θ‖. (4.46)
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Université de Toulouse III and CNRS

(UMR 5219)
31062, Toulouse Cedex 9, France

jean-paul.calvi@math.univ-toulouse.fr

V. M. Phung
Department of Mathematics
Hanoi University of Education
136 Xuan Thuy Street
Caugiay, Hanoi, Vietnam

manhlth@gmail.com

https://doi.org/10.1112/S1461157013000016 Published online by Cambridge University Press

http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-006-0634-7
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
http://dx.doi.org/10.1007/s00365-008-9016-0
mailto:jean-paul.calvi@math.univ-toulouse.fr
mailto:manhlth@gmail.com
https://doi.org/10.1112/S1461157013000016

	1. Introduction
	1.1. Stating the problem
	1.2. A known criterion
	1.3. Basic facts on interpolation

	2. Natural lattices
	3. Natural lattices of points converging to the origin
	3.1. The convergence theorem
	3.2. On condition (C2)
	3.3. Affine transformations of natural lattices
	3.4. Examples

	4. Further properties of natural lattices and proof of Theorem 3.1
	4.1. de Boor's identity
	4.2. de Boor's remainder formula
	4.3. Some algebraic identities
	4.4. Proof of Theorem 3.1
	4.5. An estimate on the error

	References

