Annals of Actuarial Science (2024), 18, pp. 342-378
doi:10.1017/S1748499524000022 Institute
and Faculty

of Actuaries

ACTUARIAL SOFTWARE

GEMAct: a Python package for non-life (re)insurance
modeling

Gabriele Pittarello!®), Edoardo Luini? and Manfred Marvin Marchione'

Universita ‘La Sapienza’, Rome, Italy; and 2Universita Cattolica del Sacro Cuore, Milan, Italy
Corresponding author: Gabriele Pittarello; Email: gabriele.pittarello@uniromal.it

(Received 07 April 2023; revised 05 January 2024; accepted 10 January 2024; first published online 14 February 2024)

Abstract

This paper introduces gemact, a Python package for actuarial modeling based on the collective risk model.
The library supports applications to risk costing and risk transfer, loss aggregation, and loss reserving. We
add new probability distributions to those available in scipy, including the (a, b, 0) and (a, b, 1) discrete dis-
tributions, copulas of the Archimedean family, the Gaussian, the Student t and the Fundamental copulas.
We provide an implementation of the AEP algorithm for calculating the cumulative distribution function
of the sum of dependent, nonnegative random variables, given their dependency structure specified with a
copula. The theoretical framework is introduced at the beginning of each section to give the reader with a
sufficient understanding of the underlying actuarial models.

Keywords: Insurance; collective risk model; risk costing; loss aggregation; claims reserving; Python

1. Introduction

In non-life insurance, the accurate representation and quantification of future losses is a foun-
dational task, central to several areas ranging from pricing and reserving to risk management.
Indeed, the actuarial literature is rich in models that are relevant in such applications. Among
those, the collective risk model has been widely studied as it is mathematically tractable, it requires
little and general information, and it can be efficiently implemented (Embrechts & Frei, 2009;
Klugman et al., 2012; Parodi, 2014). In particular, by knowing the frequency and severity distri-
butions of the losses, it is possible to compute the distribution of the aggregate (total) losses. The
collective risk model represents the common thread of this work, and we developed gemact to
provide a collection of tools for (re)insurance modeling under a unified formal framework.

After a brief discussion on how to install the software in Section 2, we introduce the sta-
tistical framework of the collective risk model in Section 3. There, we define an aggregate loss
distribution as a random sum of i.i.d. random variables, which can be computed using the recur-
sive formula (Panjer, 1981), the discrete Fourier transform (DFT) (Bithlmann, 1984; Griibel &
Hermesmeier, 1999; Wang, 1998), and a Monte Carlo (MC) simulation approach (Klugman et al.,
2012, p. 467). Once the aggregate loss distribution is available, its expected value can be used for
costing purposes. In this respect, the package supports typical coverage modifiers like (individ-
ual and aggregate) deductibles, limits, and reinstatements (see Sundt, 1990). Also, we consider
different methods for the discretization of continuous distributions (Gerber, 1982).

Often, it is necessary to model the sum of a fixed number of dependent random variables. In
order to do so, in Section 4, we introduce the AEP algorithm (Arbenz et al., 2011) and a MC simu-
lation approach for evaluating the cumulative distribution function of a sum of random variables

© The Author(s), 2024. Published by Cambridge University Press on behalf of Institute and Faculty of Actuaries.This is an Open Access
article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022
https://orcid.org/0000-0003-3360-5826
https://orcid.org/0000-0002-6163-044X
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 343

with a given dependency structure. The dependency structure can be specified with the copulas
we implemented. These are listed in Section A and include copulas of the Archimedean family,
the Gaussian, the Student t, and the Fundamental copulas (Nelsen, 2007).

Lastly, assuming a collective risk model holds for the cells of a loss development triangle, it is
possible to define the stochastic claims reserving model in Ricotta & Clemente (2016), Clemente
et al. (2019). In this case, the user obtains information on the frequency and severity parameters
of the cells from the Fisher-Lange method (Fisher & Lange, 1973). Both these approaches are
described in Section 5.

1.1 Context, scope, and contributions

In the recent years, programming languages and statistical computing environments, such as
Python (Van Rossum & Drake, 2009) and R (R Core Team, 2017), have become increasingly pop-
ular (Ozgur et al., 2022). Currently, coding skills form part of the body of knowledge of actuaries
and actuarial science researchers. In R, an extensive implementation for aggregate loss mod-
eling based on the collective risk theory is the actuar package (Dutang ef al., 2008, 2022). An
available library in Python is aggregate, which implements the computation of compound prob-
ability distributions via fast Fourier transform (FFT) convolution algorithm (Mildenhall, 2022).
This package employs a specific grammar for the user to define insurance policy declarations and
distribution calculation features. Direct access to its objects and their components is also possible.

With regard to claims reserving, chainladder offers in Python standard aggregate reserving
techniques, like deterministic and stochastic chain-ladder methods, the Bornhuetter-Ferguson
model, and the Cape Cod model (Bogaardt, 2022). This package is available in R and Python
(Gesmann et al., 2022). Furthermore, apc provides the family of age-period-cohort approaches
for reserving. This package is also available in both the above-mentioned programming languages
(Nielsen, 2015).

When it comes to the topic of dependence modeling via copulas, in Python one can use the
copulas and copulae packages (Bok, 2022; Lab, 2022). Similarly, copula features in R are imple-
mented in copula; see the package and its extensions in Jun Yan (2007), Kojadinovic & Yan (2010),
and Hofert & Méichler (2011).

In this manuscript, we present an open-source Python package that extends the existing
software tools available to the actuarial community. Our work is primarily aimed at the aca-
demic audience, who can benefit from our implementation for research and teaching purposes.
Nonetheless, our package can also support non-life actuarial professionals in prototypes modeling,
benchmarking and comparative analyses, and ad hoc business studies.

From the perspective of the package design, gemact adopts an explicit, direct, and integrated
object-oriented programming (OOP) paradigm. In summary, our goal is to provide:

e A computational software environment that gives users control over mathematical aspects
and actuarial features, enabling the creation of models tailored to specific needs and require-
ments.

e An object-oriented system whose elements (i.e., objects, methods, and attributes) can be
accessed and managed via our API in such a way as to be interactive and suitable for users
familiar with OOP designs and with the underlying modeling framework.

e A collection of extensible libraries to make gemact survive over time. Our package is designed
in an attempt to be easily extended or integrated with new functionalities and modules and to
respect the attributes that qualify extensible software (Johansson & Lofgren, 2009). Namely,
a modification to the functionalities should involve the least number of changes to the least
number of possible elements (modifiability, Bass et al., 2003, p. 137), the addition of new
requirements should not raise new errors (maintainability, Sommerville, 2011, p. 25), and the

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

344 Gabriele Pittarello et al.

system should be able to expand in a chosen dimension without major modifications to its
architecture (scalability, Bondi, 2000).

From the perspective of actuarial advancements and developments, gemact provides an
implementation to established algorithms and methodologies. In particular, our package:

e Implements (a, b, 0) and (a, b, 1) classes of distributions for describing the loss frequency
(Klugman et al., 2012, p. 505), and further continuous distributions to model the loss severity,
like the generalized beta (Klugman et al, 2012, p. 493). Additional details can be found in
Section A. Moreover, it integrates these into scipy distributions (Virtanen et al., 2020).

e Offers the first open-source software implementation of the AEP algorithm (Arbenz et al.,
2011) for evaluating the cumulative distribution function of a sum of random variables with
a given dependency structure specified via a copula.

e Includes the Student t copula and a method for numerically approximating its cumulative
distribution function (Genz & Bretz,1999, 2002).

e Implements the stochastic claims reserving model described by Ricotta & Clemente (2016)
and Clemente ef al. (2019) based on the collective risk model apparatus.

2. Installation

The production version of the package is available on the Python Package Index (PyPi). Users
can install gemact via pip, using the following command in the operating system command line
interface.

pip install gemact==1.2.1

Examples on how to get started and utilize objects and functionalities of our package will be
shown below. This work refers to production version 1.2.1.

Furthermore, the developer version of gemact can be found on GitHub at:
https://github.com/gpitt71/gemact-code

Additional resources on our project, including installation guidelines, API reference, technical

documentations, and illustrative examples, can be found at:
https://gem-analytics.github.io/gemact/

3. Loss model

Within the framework of the collective risk model (Embrechts & Frei, 2009), all random variables
are defined on some fixed probability space (€2, F, P). Let

e N be a random variable taking values in Ny representing the claim frequency.
o {Zi};cn beasequence of i.i.d nonnegative random variables independent of N; Z is the random
variable representing the individual (claim) loss.

The aggregate loss X, also referred to as aggregate claim cost, is

N
X=Y 2z, (1)
i=1

with Z?zl Z; = 0. Details on the distribution functions of N, Z, and X are discussed in the next
sections. Equation (1) is often referred to as the frequency-severity loss model representation.
This can encompass common coverage modifiers present in (re)insurance contracts (Parodi, 2014,
p. 50). More specifically, let us consider:

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://github.com/gpitt71/gemact-code
https://gem-analytics.github.io/gemact/
https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 345

e For a € [0, 1], the function Q, apportioning the aggregate loss amount:

Qu(X) = aX. (2)
e For ¢, d > 0, the function L. 4 applied to the individual claim loss:
L.4(Z;) = min {max {0, Zi — d} , c} . (3)

Herein, for each and every loss, the excess to a deductible d (sometimes referred to as priority)
is considered up to a cover or limit c. In line with Albrecher et al. (2017, p. 34), we denote
[d, d + c] as layer. An analogous notation is found in Ladoucette & Teugels (2006) and Parodi
(2014, p. 46). Similarly to the individual loss Z;, Equation (3) can be applied to the aggregate
loss X.

Computing the aggregate loss distribution is relevant for several actuarial applications (Parodi,
2014, p. 93). The gemact package provides various methods for calculating the distribution of
the loss model in Equation (1) that allow the transformations of Equations (2) and (3) and their
combinations to be included.

3.1 Risk costing

In this section, we describe an application of the collective risk model of Equation (1). The
expected value of the aggregate loss of a portfolio constitutes the building block of an insurance
tariff. This expected amount is called pure premium or loss cost, and its calculation is referred as
risk costing (Parodi, 2014, p. 282). Insurers frequently cede parts of their losses to reinsurers, and
risk costing takes this transfers into account. Listed below are some examples of basic reinsurance
contracts whose pure premium can be computed using gemact.

e The Quota Share (QS), where a share a of the aggregate loss ceded to the reinsurance (along
with the respective premium) and the remaining part is retained:

P =E[Q, (X)]. 4)

o The Excess-of-loss (XL), where the insurer cedes to the reinsurer each and every loss exceeding
a deductible d, up to an agreed limit or cover ¢, with ¢, d > 0:

N
PXL = [Z Lc,d<z,-)} : (5)
i=1

e The Stop Loss (SL), where the reinsurer covers the aggregate loss exceedance of a (aggregate)
deductible v, up to a (aggregate) limit or cover u, with u, v> 0:

PSL=E [L,,(X)]. (6)

The model introduced by Equation (1) and implemented in gemact can be used for costing con-
tracts like the XL with Reinstatements (RS) in Sundt (1990). Assuming the aggregate cover u is
equal to (K + 1), with K € Z*:

PRS _ E [Luy(X)]
14+ 15K BE [Lognern(X)]

where K is the number of reinstatement layers and I € [0, 1] is the reinstatement premium per-
centage, with k=1, ..., K. When [, =0, the k-th resinstatement is said to be free. In detail, the
logic we implemented implies that whenever a layer is used the cedent pays a reinstatement pre-
mium, that is, PR, and the cover ¢ is thus reinstated. The reinstatement premium will usually be
paid in proportion to the amount that needs to be reinstated (Parodi, 2014, p. 52). In practice, the
reinstatement premium percentage Iy is a contractual element, given a priori as a percentage of the

(7)

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

346 Gabriele Pittarello et al.

premium paid for the initial layer. In fact, in gemact I} is provided by the user. The mathematics
behind the derivation of PRS is beyond the scope of this manuscript; the interested reader can refer
to Sundt (1990), Parodi (2014, p. 325), and Antal (2009, p. 57).

3.2 Computational methods for the aggregate loss distribution
The cumulative distribution function (cdf) of the aggregate loss in Equation (1) is

Fx(x)=P[X <x] =) _ piF3(x) ®8)
k=0

where py = P[N =k], Fz(x) = P[Z < x] and F;k(x) =P[Zi+...+7Z<x].
Moreover, the characteristic function of the aggregate loss ¢x : R — C can be expressed in the
form:

ox(t) =Pn (9z(1), 9

where Py (t) = E [V] is the probability generating function of the frequency N and ¢y(t) is the
characteristic function of the severity Z (Klugman et al., 2012, p. 153).

The distribution in Equation (8), except in a few cases, cannot be computed analytically,
and its direct calculation is numerically expensive (Parodi, 2014, p. 239). For this reason, dif-
ferent approaches have been analyzed to approximate the distribution function of the aggregate
loss, including parametric and numerical quasi-exact methods (for a detailed treatment refer to
Shevchenko, 2010). Among the latter, gemact implements MC simulation (Klugman et al., 2012, p.
467), DFT (Bithlmann, 1984; Griibel & Hermesmeier, 1999; Wang, 1998), and the so-called recur-
sive formula (Panjer, 1981). A brief comparison of accuracy, flexibility, and speed of these methods
can be found in Parodi (2014, p. 260) and Wiithrich (2023, p. 127). This section details these last
two computational methods based on discrete mathematics to approximate the aggregate loss
distribution.

Henceforth, let us consider, for j=0,1,2,...,m —1 and h > 0, an arithmetic severity distri-
bution with probability sequence:

{f} = {f())fh e ’fmfl})

where fj = P[Z =j - h]. The discrete version of Equation (8) becomes

00
&= Zpkfs*k’
k=0

where g; = P[X =s] and

1 ifk=0ands=0
fs*j:: 0 ifk=0andseN
Y Ve ks o,

3.2.1 Discrete fourier transform
The DFT of the severity {f} is, for k=0, ..., m — 1, the sequence

B =Vohi- o fur)

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 347

where
o~ 2mikj
K=Y fem. (10)

The original sequence can be reconstructed with the inverse DFT:

m—1

1~
fi=— D e

k=0

The sequence of probabilities {g} ={g0,1,...,gm—1} can be approximated taking the inverse
DFT of

@ =Py (10). (an

The original sequence can be computed efficiently with a FFT algorithm, when m is a power of 2
(Embrechts & Frei, 2009).

3.2.2 Recursive formula
Assume that the frequency distribution belongs to the (a, b,0) class, that is, for k> 1 and
a,beR:

b
Pr= (Q+E> DPk—1- (12)

Here, py is an additional parameter of the distribution (Klugman et al, 2012, p. 505). The (a, b, 0)
class can be generalized to the (g, b, 1) class assuming that the recursion in Equation (12) holds
fork=2,3,...

The recursive formula was developed to compute the distribution of the aggregate loss when the
frequency distribution belongs to the (a, b, 0) or the (g, b, 1) class. The sequence of probabilities
{g} can obtained recursively using the following formula:

[p1 = (@+b)po] fe + 370 (a+ bj/s)fjge—
gS == > (13)
1 — afy

with 1 <s <m — 1 and given the initial condition gy = Py (fo).

3.3 Severity discretization

The calculation of the aggregate loss with DFT or with the recursive formula requires an arith-
metic severity distribution (Embrechts & Frei, 2009). Conversely, the severity distribution in
Equation (1) is often calibrated on a continuous support. In general, one needs to choose a dis-
cretization approach to arithmetize the original distribution. This section illustrates the methods
for the discretization of a continuous severity distribution available in the gemact package.

Let F,: Rt — [0,1] be the cdf of the distribution to be discretized. For a bandwidth, or
discretization step, h > 0 and an integer m, a probability f; is assigned to each point hj, with
j=0,...,m— 1. Four alternative methods for determining the values for f; are implemented in
gemact.

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

348 Gabriele Pittarello et al.

1. The method of mass dispersal:
Fz (%) j=0
f=Fz (hj+4) =z (= 4) j=1...m—2
1—Fz(hj—§) j=m—1.
2. The method of the upper discretization:
Fz (hj+h) —Fz (hj) j=0,...,m—2
jZ{I—Fz(hJ') j=m—1.
3. The method of the lower discretization:
Fz(0) j=0
fi= Fz (hj) —Fz (hi—h) j=1,...,m—1.

4. The method of local moment matching:

E[ZAh .
1 — ElZrh j=0

fi= 2E[ZAhj]—E[ZAh(—1)]—E[ZAh(j+1)]
h

where E[Z A B] = ["__ tdF,(t) + h[1 — F.(h)).

Fig. 1 illustrates and graphically contrasts the four different discretization techniques.

The default discretization method in gemact is the method of the mass dispersal, in which each
hj point is assigned with the probability mass of the h-span interval containing it (Fig. 1 top left).
The upper discretization and lower discretization methods generate, respectively, pointwise upper
and lower bounds to the true cdf. Hence, these can be used to provide a range where the original
F, is contained (see Fig. 1, top right and bottom left graphs). The method of local moment match-
ing (Fig. 1 bottom right) allows the moments of the original distribution F, to be preserved in the
arithmetic distribution. A more general definition of this approach can be found in Gerber (1982).
We limited this approach to the first moment as, for higher moments, it is not well defined and
it can potentially lead to a negative probability mass on certain lattice points (Embrechts & Frei,
2009). The method of local moment matching shall be preferred for large bandwidths. However,
considering that there is no established analytical procedure to determine the optimal step, we
remark that the choice of the discretization step is an educated guess and it really depends on the
problem at hand. In general, i should be chosen such that it is neither too small nor too large rela-
tive to the severity losses. In the first case, the hj points are not sufficient to capture the full range of
the loss amount and the probability in the tail of the distribution exceeding the last discretization
node h(m — 1) is too large. In the second case, the granularity of the severity distribution is not suf-
ficient, and small losses are over-approximated. Additional rules of thumb and guidelines for the
choice of discretization parameters can be found in Parodi (2014, p. 248). For example, one option
is to perform the calculation with decreasing values of & and check, graphically or according to a
predefined criterion, whether the aggregate distribution changes substantially (Embrechts & Frei,
2009). The reader should refer to Klugman et al. (2012, p. 179) and Embrechts & Frei (2009) for a
more detailed treatment and discussion of discretization methods.

The above-mentioned discretization methods are modified accordingly to reflect the cases
where the transformation of Equation (3) is applied to the severity (Klugman et al., 2012, p. 517).
Below, we illustrate how to perform severity discretization in gemact.

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 349

Method of Mass Dispersal Method of Upper Discretisation
1.0 1.0
0.8 0.8
0.6 0.6
Y -—
kel Ee)
o v
0.4 0.4
0.2 0.2
0.0 0.0
0 5 10 15 0 5 10 15
z z
Method of Lower Discretisation Method of Local Moment Matching
1.0 1.0
0.8 0.8
0.6 0.6
Y -—
T Ee)
o o
0.41 0.4
0.2 0.2
0.01 0.0
0 5 10 15 0 5 10 15
z z

Figure 1. Illustration of the discretization methods applied to a gamma(a = 5) severity. The graphs compare the original cdf
(blue line) and the discretized (red line) cdf for mass dispersal (top left), upper discretization (top right), lower discretization
(bottom left), and local moment matching (bottom right) methods. No coverage modifiers are present.

Once a continuous distribution is selected from those supported in our package (see
Section A), the severity distribution is defined via the Severity class.

>>> from gemact.lossmodel import Severity
>>> severity = Severity(dist='gamma', par={'a': 5})

The dist argument contains the name of the distribution, and the par argument specifies,
as a dictionary, the distribution parameters. In the latter, each item key-value pair represents
a distribution parameter name and its value. Refer to distributions module for a list of the
distribution names and their parameter specifications.

The discretize method of the Severity class produces the discrete severity probability
sequence according to the approaches described above. Below, we provide an example for mass
dispersal.

>>> massdispersal = severity.discretize(
discr_method='massdispersal',
n_discr_nodes =50000,
discr_step=.01,
deductible =0
)

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

350 Gabriele Pittarello et al.

In order to perform the discretization, the following arguments are needed:

e The chosen discretization method via discr_method.

e The number of nodes (1) set in then_discr_nodes argument.

e The severity discretization step (h) is in the discr_step argument.

e If necessary, a deductible specifying where the discretization begins. The default value is
Zero.

After the discretization is achieved, the mean of the discretized distribution can be calculated.

>>> import numpy as np

>>> discrete_mean = np.sum(massdispersal['nodes'] * massdispersall['fj'])
>>> print('Mean of the discretised distribution:', discrete_mean)

Mean of the discretised distribution: 5.000000000000079

Additionally, the arithmetic distribution obtained via the severity discretization can be visually
examined using the plot_discretized_severity_cdf. This method is based on the pyplot
interface to matplotlib (Hunter, 2007). Hence, plot_discretized_severity_cdf can be used
together with pyplot functions and can receive pyplot.plot arguments to change its out-
put. In the following code blocks, we adopt the plot_discretized_severity_cdf method
in conjunction with the plot function from matplotlib.pyplot to compare the cdf of a
gamma distribution with mean and variance equal to 5, with the arithmetic distribution obtained
with the method of mass dispersal above. We first import the gamma distribution from the
distributions module and compute the true cdf.

>>> from gemact import distributions
>>> dist = distributions.Gamma(a=>5)
>>> nodes = np.arange(0, 20)

>>> true_cdf = dist.cdf (nodes)

Next, we plot the discrete severity using the plot_discr_sev_cdf method.

>>> import matplotlib.pyplot as plt
>>> severity.plot_discr_sev_cdf(
discr_method='massdispersal',
n_discr_nodes =20,
discr_step=1,
deductible =0,
color="#a71429'
)
>>> plt.plot(nodes, true_cdf, color='#4169E1"')
>>> plt.title('Method of Mass Dispersal')
>>> plt.xlabel('z')
>>> plt.show()

The arguments discr_method, n_discr_nodes, discr_step, and deductible can be
used in the same manner as those described in the discretize method. The argument color
is from the matplotlib.pyplot.plot method. The methods title and xlabel were also
exported from matplotlib.pyplot.plot to add custom labels for the title and the x-axis
(Hunter, 2007).

The output of the previous code is shown in the top left graph of Fig. 1. To obtain the other
graphs, simply set discr_method to the desired approach, that is, ‘upper_discretisation,’
‘lower_discretisation’, or localmoments.’

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 351

3.4 Supported distributions

The gemact package makes for the first time the (a, b, 0) and (g, b, 1) distribution classes (Klugman
et al., 2012, p. 81) available in Python. In the following code block, we show how to use our
implementation of the zero-truncated Poisson from the distributions module.

>>> ztpois = distributions.ZTPoisson(mu=2)

Each distribution supported in gemact has various methods and can be used in a similar fash-
ion to any scipy distribution. Next, we show how to compute the approximated mean via MC
simulation, with the random generator method for the ZTPoisson class.

>>> random_variates = ztpois.rvs(10%*5, random_state =1)
>>> print('Simulated Mean: ', np.mean(random_variates))
Simulated Mean: 2.3095

>>> print('Exact Mean: ', ztpois.mean())

Exact Mean: 2.3130352854993315

Furthermore, supported copula functions can be accessed via the copulas module. Below, we
compute the cdf of a two-dimensional Gumbel copula.

>>> from gemact import copulas

>>> gumbel_copula = copulas.GumbelCopula(par=1.2, dim=2)

>>> values = np.array([[.5, .5]1)

>>> print(' Gumbel copula cdf: ', gumbel_copula.cdf (values) [0])
Gumbel copula cdf: 0.2908208406483879

In the above example, it is noted that the copula parameter and dimension are defined by
means of the par and the dim arguments, respectively. The argument of the cdf method must
be a numpy array whose dimensions meet the following requirements. Its first component is the
number of points where the function shall be evaluated and its second component equals the
copula dimension (values. shape of the example is in fact (1,2)).

The complete list of the distributions and copulas supported by gemact is available in Section A.
We remark that the implementation of some distributions is available in both gemact and
scipy.stats. However, the objects of the distributions module include additional methods that
are specific to their use in actuarial science. Examples are 1ev and censored_moment methods,
which allow the calculation of the limited expected value and censored moments of continuous
distributions. Furthermore, the choice of providing a Severity class is in order to have a dedi-
cated object that includes functionalities relevant only for the calculation of a loss model and not
for distribution modeling in general. An example of this is the discretize method. A similar
reasoning applies to the Frequency class.

3.5 Illlustration 1ossmodel

The following are examples of how to get started and use lossmodel module and its classes for
costing purposes. As an overview, Fig. 2 schematizes the class diagram of the 1ossmodel module,
highlighting its structure and the dependencies of the LossModel class.

The Frequency and the Severity classes represent, respectively, the frequency and the sever-
ity components of a loss model. In these, dist identifies the name of the distribution and par
specifies its parameters as a dictionary, in which each item key-value pair corresponds to a dis-
tribution parameter name and value. Please refer to distributions module for the full list of
the distribution names and their parameter specifications. The code block below shows how to
initiate a frequency model.

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

352 Gabriele Pittarello et al.

Layer
Frequency Severity PolicyStructure
LossModel

Figure 2. Class diagram of the lossmodel module. A rectangle represents a class; an arrow connecting two classes indi-
cates that the target class employs the origin class as an attribute. In this case, a LossModel object entails Frequency,
Severity, and PolicyStructure class instances. These correspond to the frequency model, the severity model, and the
policy structure, respectively. The latter, in particular, is in turn specified via one or more Layer objects, which include
coverage modifiers of each separate policy component.

>>> from gemact.lossmodel import Frequency
>>> frequency = Frequency(
dist='poisson',
par={'mu': 43},
threshold=0
)

In practice, losses are reported only above a certain threshold (the reporting threshold) and
the frequency model can be estimated only above another, higher threshold called the analysis
threshold (Parodi, 2014, p. 323). This can be specified in Frequency with the optional parameter
threshold, whose default value is O (i.e., the analysis threshold equals the reporting threshold).
Severity models in gemact always refer to the reporting threshold.

A loss model is defined and computed through the LossModel class. Specifically, Frequency
and Severity objects are assigned to frequency and severity arguments of LossModel to
set the parametric assumptions of the frequency and the severity components. Below, we use the
severity object we instanced in Subsection 3.3.

>>> from gemact.lossmodel import LossModel
>>> 1m_mc = LossModel(
frequency=frequency,
severity=severity,
aggr_loss_dist_method='mc',
n_sim=10%x%5,
random_state=1
)
INFO:lossmodel | Approximating aggregate loss distribution via Monte Carlo
simulation
INFO:lossmodel |MC simulation completed

In the previous example, in more detail, 1m_mc object adopts the MC simulation for the calcu-
lation of the aggregate loss distribution. This approach is set via the aggr_loss_dist_method
equal to ‘mc.” The additional parameters required for the simulation are as follows:

e the number of simulationsn_sim,
o the (pseudo)random number generator initializer random_state.

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science

The cdf of the aggregate loss distribution can be displayed
method. Moreover, a recap of the computation specifications
print_aggr_loss_specs method.

>>> 1m_mc.print_aggr_loss_method_specs()
Aggregate Loss Distribution: layer 1

353

with the plot_dist_cdf
can be printed with the

Quantity Value

Aggregate loss dist. method mc
Number of simulation 100000
Random state 1

The aggregate loss mean, standard deviation, and skewness can be accessed with the mean, std,
and skewness methods, respectively. The code below shows how to use these methods.

>>> 1m_mc.mean(use_dist=True)
19.963155575580227

>>> 1m_mc.mean(use_dist=False)

20.0

>>> 1m_mc.coeff_variation(use_dist=True)
0.5496773171375182

>>> 1m_mc.coeff_variation(use_dist=False)
0.5477225575051661

>>> 1m_mc.skewness (use_dist=True)
0.6410913579225725

>>> 1m_mc.skewness(use_dist=False)
0.6390096504226938

When the use_dist argument is set to True (default value), the quantity is derived from the
approximated aggregate loss distribution (dist property). Conversely, when it is False, the cal-
culation relies on the closed-form formulas of the moments of the aggregate loss random variable.
These can be obtained directly from the closed-form moments of the frequency and the sever-
ity model transformed according to the coverage modifiers (Parodi, 2014, p. 322). This option is
available for mean, std, var (i.e., the variance), coeff_variation (i.e., the coefficient of varia-
tion), and skewness methods. It should be noted that the calculation with use_dist=False is
not viable when aggregate coverage modifiers are present. In such circumstance, the method must
necessarily be based on the approximated aggregate loss distribution. In any situations, it is pos-
sible to get the moments of the approximated aggregate loss distribution via the moment method.
The central and n arguments specify, respectively, whether the moment is central and the order
of the moment.

>>> 1m_mc.moment (central=False, n=1)
19.963155575580227

Furthermore, for the aggregate loss distribution, the user can simulate random variates via
the rvs method. The quantile and the cdf functions can be computed via the ppf and the cdf
methods. Below is an example of the ppf method returning the 0.80- and 0.70-level quantiles.

>>> 1m_mc.ppf(q=1[0.80, 0.70])
array([28.81343738, 24.85497983])

The following code block shows the costing of a "20 excess 5" XL reinsurance contract. Coverage
modifiers are set in a PolicyStructure object.

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

354 Gabriele Pittarello et al.

>>> from gemact.lossmodel import PolicyStructure, Layer

>>> policystructure = PolicyStructure(
layers=Layer(

cover =20,
deductible=5
))

More precisely, in the Layer class, the contract cover and the deductible are provided. Once
the model assumptions are set and the policy structure is specified, the aggregate loss distribution

can be computed.

>>> 1m_XL = LossModel(
frequency=frequency,
severity=severity,
policystructure=policystructure,
aggr_loss_dist_method='fft',
sev_discr_method='massdispersal',
n_aggr_dist_nodes =2x%x*17

)

INFO:lossmodel | Approximating aggregate loss distribution via FFT
INFO:lossmodel |FFT completed

It can be noted that, in the previous code block, we determined the aggregate loss distribution
with ‘fft’ as aggr_loss_dist_method. In such case, LossModel requires additional arguments
for defining the computation process, namely:

e The number of nodes of the aggregate loss distribution n_aggr_dist_nodes.

e The method to discretize the severity distribution sev_discr_method. Above, we opted for
the method of mass dispersal ('massdispersal").

e The number of nodes of the discretized severityn_sev_discr_nodes (optional).

e The discretization step sev_discr_step (optional). When a cover is present, gemact auto-
matically adjusts the discretization step parameter to have the correct number of nodes in the
transformed severity support.

The same arguments shall be specified while computing the aggregate loss distribution with the
recursive formula, that is, aggr _loss_dist_method set to "recursive."
The costing specifications of a LossModel object can be accessed with the method

print_costing_specs().

>>> 1m_XL.print_costing_specs()

Costing Summary: Layer 1

Quantity Value

Cover 20.0

Deductible 5.0

Aggregate cover inf

Aggregate deductible 0

Pure premium (dist est.) before share partecip. 3.51
Pure premium before share partecip. 3.51

Share partecip. 1

Pure premium (dist est.) 3.51

Pure premium 3.51

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 355

The previous output exhibits a summary of the contract structure (cover, deductible, aggregate
cover, and aggregate deductible) and details about the costing results. It is noted that the default
value of the share participation equals 1, that is, a is equal to 1 in Equation (2).

Similar to the previous example, user can access moments of the aggregate loss calculated from
the approximated distribution and from the closed-from solution.

>>> 1m_XL.mean(use_dist=True)
3.509346100359707

>>> 1m_XL.mean(use_dist=False)
3.50934614394912

>>> 1m_XL.coeff_variation(use_dist=True)
1.0001481880266856

>>> 1m_XL.coeff_variation(use_dist=False)
1.0001481667319252

>>> 1m_XL.skewness(use_dist=True)
1.3814094240544392

>>> 1m_XL.skewness (use_dist=False)
1.3814094309741256

The next example illustrates the costing of an XL with RS. The PolicyStructure object is set
as follows.

>>> policystructure_RS = PolicyStructure(
layers=Layer(
cover =100,
deductible =0,
aggr_deductible =100,
reinst_percentage=1,
n_reinst=2

))

The relevant parameters are as follows:

o the aggregate deductible parameter aggr_deductible,
e the number of reinstatements n_reinst,
o the reinstatement percentage reinst_percentage.

Below, we compute the pure premium of Equation (7), given the parametric assumptions on
the frequency and the severity of the loss model.

>>> 1m_RS = LossModel (
frequency=Frequency(
dist='poisson',
par={'mu': .5}
),
severity=Severity(
dist="'pareto2',
par={'scale': 100, 'shape': 1.2}
),
policystructure = policystructure_RS,
aggr_loss_dist_method='fft',
sev_discr_method='massdispersal',
n_aggr_dist_nodes = 2x*x*17

)

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

356 Gabriele Pittarello et al.

>>> print(Pure premium (RS):, lm_RS.pure_premium_dist[0])
Pure premium (RS): 4.319350355177216

A PolicyStructure object can handle multiple independent layers simultaneously. These
can overlap and do not need to be contiguous. The length property indicates the number of
layers. The code block below deals with three Layer objects, the first without aggregate coverage
modifiers and (participation) share of 0.5, the second with reinstatements, and the third with an
aggregate cover.

>>> policystructure=PolicyStructure(

layers=[

Layer (cover =100, deductible =100, share=0.5),

Layer (cover =200, deductible =100, n_reinst=2,

reinst_percentage =0.6),

Layer(cover =100, deductible =100, aggr_cover =200)

D
>>> lossmodel_multiple = LossModel(

frequency=Frequency(

dist="'poisson',

par={'mu': .5}

),

severity=Severity(

dist="'genpareto',

par={'loc': 0, 'scale': 83.34, 'c': 0.834}

),

policystructure=policystructure

)
WARNING:lossmodel|Aggregate loss distribution calculation is omitted as

aggr_loss_dist_method is missing

WARNING:lossmodel|Layer 2: costing is omitted as aggr_loss_dist_method is
missing
WARNING:lossmodel|Layer 3: costing is omitted as aggr_loss_dist_method is
missing

As outlined by the warning messages, since the instantiation of lossmodel_multiple lacks
of aggr_loss_dist_method, the calculation of the aggregate loss distribution is omitted.
Therefore, costing results are accessible solely for the first Layer, since this is the only one without
aggregate coverage modifiers. This fact is reflected in pure_premium and pure_premium_dist
properties, containing the premiums derived from the closed-form means and the approximated
aggregate loss distribution means, respectively. The latter are indeed not available.

>>> lossmodel_multiple.pure_premium
[8.479087307840043, None, None]

>>> lossmodel_multiple.pure_premium_dist
[None, None, None]

Contrarily, once the aggregate loss distribution is determined (via dist_calculate method),
all layer premiums in pure_premium_dist are available from the costing (costing method). As
expected, pure_premium content remains unaffected.

>>> lossmodel_multiple.dist_calculate(
aggr_loss_dist_method='fft',
sev_discr_method='massdispersal',
n_aggr_dist_nodes =2x%x*17

)

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 357

INFO:lossmodel|Computation of layers started
INFO:lossmodel|Computing layer: 1

INFO:lossmodel | Approximating aggregate loss distribution via FFT
INFO:lossmodel |FFT completed

INFO:lossmodel |Computing layer: 2

INFO:lossmodel | Approximating aggregate loss distribution via FFT
INFO:lossmodel |FFT completed

INFO:lossmodel |Computing layer: 3

INFO:lossmodel | Approximating aggregate loss distribution via FFT
INFO:lossmodel |FFT completed

INFO:lossmodel|Computation of layers completed

>>> lossmodel_multiple.costing()

>>> lossmodel_multiple.pure_premium_dist

[8.479087307062226, 25.99131088702302, 16.88704720494799]
>>>lossmodel_multiple.pure_premium

[8.479087307840043, None, None]

At last, it is remarked that each Layer in PolicyStructure is associated with an index idx,
starting from 0, based on the layer order of the instantiation of the PolicyStructure object.
This is of help when the user needs to retrieve particular information and features, or to apply
methods to one specific layer. All the methods that include the idx argument have 0 as default
value, meaning that they are applied to the first (or only) layer unless otherwise specified. For
example, the print_policy_layer_specs method produces a table of recap of the features
of the layer indicated by the idx argument. Below idx equals 1, namely the second Layer in
policystructure.

>>> lossmodel _multiple.print_policy_layer_specs(idx=1)
Policy Structure Summary: layer 2

Specification Value

Deductible 100.0

Cover 200.0

Aggregate deductible 0
Reinstatements (no.) 2
Reinst. layer percentage 1 0.6
Reinst. layer percentage 2 0.6
Share partecipation 1

Likewise, the code block below returns the aggregate loss distribution mean of the third Layer,
as idx is set to 2.

>>> lossmodel_multiple.mean(idx=2)
16.88704720494799

3.6 Comparison of the methods for computing the aggregate loss distribution

In this section, we analyze accuracy and speed of the computation of the aggregate loss distribution
using FFT, recursive formula (recursion), and MC simulation approaches, as the number of nodes,
the discretization step, and the number of simulations vary.

For this purpose, a costing example was chosen such that the analytical solutions of the
moments of the aggregate loss distributions are known and can be compared to those obtained

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

358 Gabriele Pittarello et al.

from the approximated aggregate loss distribution. The values of the parameters of the severity
and frequency models are taken from the illustration in Parodi (2014, p. 262). Specifically, these
and the policy structure specifications are as follows.

e Severity: lognormal distribution with parameters shape = 1.3 and scale = 36315.49, hence
whose mean and standard deviation are 84541.68 and 177728.30, respectively.

e Frequency: Poisson distribution with parameter p = 3, with analysis threshold d. It belongs
to the (a, b, 0) family described in Subsection 3.2.2 with parameters a = 0, b = 3 and py = .

e Policy structure: contract with deductible 4 = 10000.

In particular, the accuracy in the approximation of the aggregate loss distribution has been
assessed using the relative error in the estimate of the mean, coefficient of variation (CoV), and
skewness, with respect to their reference values (i.e., error = estimate/reference - 1). The latter are
obtained using the following closed-form expressions (Bean, 2000, p. 382):

E [X]=uE [Lixo(2)],

211/2
CoV [X] = B [Laoc(2)’]

C PPRE [Liso(2)]

E [Ld,oo(z)a]
W2 [Lyoo(2)?]

Skewness [X] =

Their values for the example are in the top part of Table 1. The test of the speed of our implementa-
tion has been carried out by measuring the execution time of the approximation of the aggregate
loss distribution function with the built-in timeit library. In line with best practice (Martelli
et al., 2005, Chapter 18), the observed minimum execution time of independent repetitions of the
function call was adopted.

The results of the analysis are reported in Table 1. We considered for FFT and recursion the
values 50, 100, 200, and 400 for the discretization step h, and 214 216 718 for the number of nodes.
It can be noted that FFT and recursion produce similar figures in terms of accuracy, but the former
is drastically faster. This is expected as FFT takes essentially O(m log (m)) operations, compared
to the O(m?) operations for recursion (Embrechts & Frei, 2009). Furthermore, for this example, in
both FFT and recursion, when & increases, the error reduces. Finally, MC approach lies in between
the two other alternatives, when it comes to computing time.

3.7 Comparison with aggregate FFT implementation

The aggregate package (Mildenhall, 2022) allows to compute the aggregate loss distribution using
FFT. In this section, we compare our implementation with aggregate (version 0.9.3) implemen-
tation to show that the two provide similar results. We adopt the same underlying frequency and
severity assumptions of Subsection 3.6 and contracts with different combinations of individual
and aggregate coverage modifiers. In particular, we first consider no reinsurance, then an XL, with
individual-only coverage modifiers, a SL, and finally an XL with individual and aggregate cover-
age modifiers (XL w/agg.). In line with the example in Parodi (2014, p. 262), individual coverage
modifiers are ¢ = 1000000 and d = 10000, and aggregate coverage modifiers are 1 = 1000000 and
v=50000. The number of nodes m is set to 222 in all the calculations.

The comparison of the speed of the two implementations has been carried out by means of the
built-in timeit library. In particular, we measured the execution time of both the initialization
of the main computational object and the calculation of the aggregate loss distribution in order
to make the comparison consistent and adequate. In line with best practice (Martelli et al., 2005,

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 359

Table 1. Accuracy and speed of the approximation of the aggregate loss distribution
using fast Fourier transform (FFT), the recursive formula (recursion), and the Monte
Carlo (MC) simulation when varying the number of nodes (m), the discretization step
(h), and number of simulations. The upper table contains the reference values obtained
from the closed-form solutions. The lower table reports the execution times in second
and the relative errors with respect to the reference values

Mean CoV Skewness
Reference values 268837 1.35520 7.02399

Method Time (sec.) Mean CoV Skewness

FFT (h =50, m = 2**14) 0.002 —2.76451e-01 ~3.00646e-01 —8.06071e-01
e e
e T Bt e
FFT (h = 400, m=2"14) 0.003 —4.41036e-03 —5.88141e-02 ~3.47025e-01
FFT (h =50, m = 2"*16) 0010 —2.19153-02 _1.01317e-01 —5.69635e-01
S (h_ s e e
e T B e
FFT (h =400, m = 2"*16) 0.007 9.66263¢-05 ~3.49930e-03 —1.14264e-01
FFT (h = 50, m = 2**18) 0037 724464004 136142e-02 —2.37694e-01
FFT (h_lOO m=2"18) 0035 -9.34546e-05 —3.46164e-03 —1.13558e-01
e T B
FFT (h = 400, m = 2**18) 0.041 ~1.73491e-06 ~2.809366-05 ~6.37228¢-03
Recursion (h =50, m = 2**14) 1.397 —2.76451e-01 —3.00646e-01 —8.06071e-01
Recursion (h_lOO m=2*14) 1368 -8.96804e02 —1.98006e-01 —7.15193e-01
‘Recursion (h=200,m=2**14) 1398 —2.19140e02 -1.01312e01 —5.69628e-01
‘Recursion (h =400, m=2**14) 1390 —4.41046e03 —4.16016e.02 —4.00405e-01
Recursion (h =50, m = 2**16) 13.401 ~2.19154e-02 ~1.01317e-01 —5.69636e-01
Recursion (h_ 100,m=2*16) 12.606 —4.41006e-03 —416096e-02 —4.00430e-01
“Recursion (h = 200, mfz**le)' © 11815 72573804 —1.36242e02 —2.37782e-01
‘Recursion (h =400, m=2**16) 11771 —9.62811e05 -3.49125e.03 —1.14125e-01
Recursion (h =50, m = 2**18) 448.168 7.25465¢-04 ~1.36260e-02 ~2.37794e-01
‘Recursion (h=100,m=2**18) 464185 —9.47567e-05 —3.49381e-03 —1.14141e-01
"Recursion (h= 200'5{ 18) 460200 —100139¢-05 —6.92170e-04 —4.30010e-02
‘Recursion (h =400, m=2**18) 462.339 —2.41068e-06 —1.03582¢.04 —1.25319e-02
MC (2**14 sim.) 0.243 —1.37610e-02 —3.67078e-02 —3.77663e-01
MC (2**16 sim.) 0.985 —5.53096e-03 ~2.44089¢-02 ~3.49520e-01
T R R TRt e vy ERAE T e R e
e Ry e e o R

Chapter 18), the observed minimum execution time of independent repetitions of the function
call was adopted.

As reported by Table 2, the two implementations generate consistent results; their estimates for
mean, CoV, and skewness tend to coincide for all contracts and are close to the reference values
when these are available. When it comes to computing time, gemact takes a similar time, just
under one second, for all the examples considered. For the case without reinsurance and the XL,
aggregate performs slightly better. Conversely, for SL and XL w/agg., gemact is more than twice
as fast.

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

360 Gabriele Pittarello et al.

Table 2. Comparison for different contracts of aggregate and gemact implementation of the aggregate loss distri-
bution computation via FFT. When there are no aggregate coverage modifiers, reference values are given in addition
to estimated ones. For the XL and the XL w/agg. contracts, individual conditions are ¢ = 1000000 and d = 10000; for
the SL and the XL w/agg. contracts, aggregate coverage modifiers are u = 1000000 and v = 50000. Execution times are
expressed in seconds

Contract Library Time (sec.) Mean CoV Skewness
No reinsurance Reference value - 253625 1.34406 7.28410
gemact 0.9581 253625 1.34406 7.27745
aggregate e e s e
XL Reference value - 256355 1.10772 2.08525
e 'ée'm'a'ct' S L i
aggregate A

SL Reference value - - - -
gemact 0.9168 194143 1.24438 1.73658
aggregate R

XL w/agg. Reference value - - - -
.................. g'e'm'a'ct' P B
aggregate e

4. Loss aggregation

In insurance and finance, the study of the sum of dependent random variables is a central topic.
A notable example is risk management, where the distribution of the sum of certain risks needs
to be approximated and analyzed for solvency purposes (Wilhelmy, 2010). Another application is
the pricing of financial and (re)insurance contracts where the payout depends on the aggregation
of two or more dependent outcomes (see, e.g., Cummins et al., 1999; Wang, 2013). In this section,
in contrast with the collective risk theory in Section 3, we model the sum of a given number of
random variables d > 1 that are neither independent nor necessarily identically distributed.
More specifically, consider now the random vector:

X1,..,Xg) Q> RY
whose joint cdf
H(xp,...,x0) =P[X1 <x1,..., X3 <x4] (14)

is known analytically or can be numerically evaluated in an efficient way. For a real threshold s,
the gemact package implements the AEP algorithm and a MC simulation approach to model:

PXi+...+X;<5s], (15)

given a set of parametric assumptions on the one-dimensional marginals X3, . .., Xy and their
copula.

More specifically, the AEP algorithm is designed to approximate Equation (14) through a
geometric procedure, without relying on simulations or numerical integration of a density. In
Section B, a brief description of the algorithm is given. For a complete mathematical treatment of
the subject, the reader should refer to Arbenz et al. (2011).

4.1 lllustration lossaggregation

Below are some examples of how to use the LossAggregation class. This belongs to the
lossaggregation module, whose class diagram is depicted in Fig. 3. The main class is
LossAggregation, which is the computation object of the random variable sum. This depends

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 361

Margins Copula

I

LossAggregation

Figure 3. Class diagram of the lossaggregation module. A rectangle represents a class; an arrow connecting two classes
indicates that the target class employs the origin class as an attribute. In this case, a LossAggregation object entails
Margins and Copula class instances.

on the classes Margins and Copula. Evidently, the former represents the marginal distributions
and the latter describes the dependency structure, that is, the copula.

Consistent with the gemact framework, the specifications needed to instantiate Margins and
Copula are akin to those of the Frequency and Severity classes in lossmodel. Copula objects
are specified by:

e dist: the copula distribution name as a string (str),
e par: the parameters of the copula, as a dictionary.

Likewise, Margins objects are defined by:

e dist: the 1ist of marginal distribution names as strings (str),
e par: the 1list of parameters of the marginal distributions, each 1ist item is a dictionary.

Please refer to Table A.1 and Table A.2 of Section A for the complete list of the supported
distributions and copulas.

>>> from gemact import LossAggregation, Copula, Margins
>>> lossaggregation = LossAggregation(

margins=Margins(

dist=['genpareto', 'lognormal'],

par=[{'loc': 0, 'scale': 1/.9, 'c': 1/.9}, {'loc': 0, 'scale': 10,

'shape': 1.5}],

),

copula=Copula(

dist="'frank',

par={'par': 1.2, 'dim': 2}

),

n_sim=500000,

random_state =10,

n_iter=8

)

Besides marginal and copula assumptions, the instantiation of LossAggregation accepts the
arguments n_sim and random_state to set the number of simulation and the (pseudo)random
number generator initializer of the MC simulation. If n_sim and the random_state are omit-
ted, the execution is bypassed. Nonetheless, the user can perform it at a later point through the
dist_calculate method. Also, n_iter controls the number of iterations of the AEP algorithm.
This parameter is optional (default value is 7) and can be specified either at the creation of class
or directly in methods that include the use of this approach.

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

362 Gabriele Pittarello et al.

In the following code block, we show how to calculate the cdf of the sum of a generalized
Pareto and a lognormal-dependent random variables, using the AEP algorithm ("aep") and the
MC simulation approach ("mc"). The underlying dependency structure is a Frank copula.

>>> =300 # arbitrary value

>>> p_aep = lossaggregation.cdf(x=s, method=aep)
>>> print('P(X1+X2 <= s) = ', p_aep)

P(X14+X2 <= s) =0.9811620158197308

>>> p_mc = lossaggregation.cdf(x=s, method='mc')
>>> print('P(X14X2 <= s) = ', p_mc)

P(X14X2 <= s) =0.98126

LossAggregation includes other functionalities like the survival function sf, the quantile
function ppf, and the generator of random variates rvs. Furthermore, for the MC simulation
approach, it is possible to derive empirical statistics and moments using methods such as for
example moment, mean, var, skewness, and censored_moment. To conclude, the last code block
illustrates the calculation of the quantile function via the ppf method.

>>> lossaggregation.ppf(q=p_aep, method=aep)
300.0000003207744

>>> lossaggregation.ppf(q=p_mc, method=mc)
299.9929982860278

4.2 Comparison of the methods for computing the cdf

In this section, we compared our implementation of the AEP algorithm with the alternative solu-
tion based on MC simulation in terms of speed and accuracy. Accuracy in the calculation of the
cdf has been assessed by means of the relative error with respect to the reference value for a cho-
sen set of quantiles (i.e., error = estimate/reference - 1). We replicate the experiment in Arbenz
et al. (2011) and take the reference values that the authors computed in the original manuscript.
The analysis considers four different Clayton-Pareto models, for d =2, 3, 4, 5, with the follow-
ing parametric assumptions. In the two-dimensional case (d = 2), the tail parameters y of the
marginal distributions are 0.9 and 1.8; the Clayton copula has parameter & = 1.2. In three dimen-
sions (d =3), the additional marginal has parameter y = 2.6, and the copula has 6 = 0.4. For
the four-dimensional (d = 4) and five-dimensional (d = 5) cases, the extra-marginal component
has parameter equal to 3.3 and 4, and the Clayton copula has parameter 0.2 and 0.3, respec-
tively. The cdf has been evaluated at the quantiles s = {10, 10%, 104, 10°)} for d =2 and d = 3, and
s=1{10', 102,103, 10}, when d =4 and d =5.

The test of the speed of our implementation has been carried out by measuring the execution
time of the cdf function for a single quantile with the built-in timeit library. In line with best
practice (Martelli et al., 2005, Chapter 18), the observed minimum execution time of independent
repetitions of the function call was adopted.

Table 3 shows the results of our comparison of the two methodologies for the calculation of the
cdf.

It can be noted that our implementation of the AEP algorithm shows a high accuracy in the
calculation of the cdf, for all quantiles and dimensions. Its precision also remains valid for the five-
dimensional case. The figures are in line with the results of the original study. In general, in cases
considered, the AEP algorithm is closer to the reference values than the MC simulation approach.
Nevertheless, the latter shows contained errors whose order of magnitude is 1072 at most, when
the number of simulation is set to the lowest value. On the other hand, the AEP algorithm is
outperformed by the MC simulation approach in terms of execution speed. The largest gaps have
been observed, especially when the number of iterations of the AEP is higher and the dimension is

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Table 3.

Annals of Actuarial Science

363

Accuracy and speed of the cdf calculation using the AEP algorithm and the Monte Carlo (MC) simulation

approach for the sum of Pareto random variables coupled with a Clayton copula for different dimensions and quantiles.
The upper table contains the reference values from Arbenz et al. (2011). The lower table reports the execution times in
seconds and the relative errors with respect to the reference values. The time column on the left is about the execution
times of gemact, while the time column on the right (labeled with a *) lists those of the original manuscript

Reference values:
Quantile d=2 d=3 Quantile d=4 d=5

s=10° 0.315835041363441 0.190859309689430 s=10! 0.983690398913354 0.983659549676444
5 =102 0.983690398913354 0.983659549676444 s =102 0.983690398913354 0.983659549676444
s=10* 0.999748719229367 0.999748708770280 s=10° 0.983690398913354 0.983659549676444
5s=10° 0.999996018908404 0.999996018515584 s=10* 0.983690398913354 0.983659549676444

Dim. Method Time (sec.) Time* (sec.) s=10° 5=102 s=10% s=106
d=2 AEP (7 iter.) 0.02 0.01 4.62e-11 —1.86e-09 4.13e-08 1.22e-09
AEP (10 iter.) 0.06 0.06 9.03e-14 5.56e-13 —6.38e-11 3.88e-11

AEP (13 iter.) 0.95 1.61 6.91e-14 5.04e-13 1.10e-12 4.47e-13
B R BT
T i T

MC (10**5 sim.) 0.03 - —8.07e-04 —1.01e-04 1.87e-05 1.60e-05

" MC (10%%6 sim.) 028 - _790e-05 —3.82e-05 —228e-06 1.02¢-06
T e . aar aae es

d=3 AEP (7 iter.) 0.04 0.02 —4.61e-06 —1.15e-06 1.12e-06 1.83e-08
T R e
AEP (11 iter.) 4.0 6.65 —6.89e-09 —1.13e-08 2.95e-08 7.66e-10
~ AEP (13iter) 684 11850 -9.2e-10 —129e-09 —6.19e-09 —1.09e-10
e R
o
MC (10**6 sim.) 0.36 - —3.87e-03 1.07e-05 —2.29e-06 —1.98e-06
e oH T <im) o o or asleos I

Dim. Method Time (sec.) Time* (sec.) s=10! 5=102 s=103 s=10*
d=4 AEP (4 iter.) 0.05 0.03 —1.13e-04 5.03e-04 7.39e-05 9.30e-06
R R e e T
T R e e e
'AEP(7iter) 8355 10770 —4.55e-04 —156e-04 —2.26e-05 —2.85e-06

MC (10**4 sim.) 0.01 - 3.18e-03 —1.92e-03 3.51e-04 4.42e-04
B T e e
T e T W e e
MC (10**7 sim.) Tass - " 223e-04 —124e-04 —329e-05 —5.04e-06

d=5 AEP (3iter.) 0.03 0.01 —4.72e-03 —5.16e-05 5.24e-06 7.22e-07
AEP (4 iter.) 0.15 0.20 —6.87e-04 3.63e-04 5.30e-05 6.68e-06
T
T R e

MC (104 sim.) 001 - 53803 —167e03 —3.70e-04 1.40e-04
MC (10**5 sim.) 0.06 - —7.25e-04 2.58e-04 —9.29e-06 —9.02e-05
T e o aaaT e
T

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

364 Gabriele Pittarello et al.

Gaussian Copula Clayton Copula
0.0005 0.0005
1.00 s=195 1.00
0951 0.0004 : 0.0004
0.901
0.851 0.0003 0.0003 g
S ;
© 0.80 o
0.0002 0.0002 <
0.751
0.701 0.0001 0.0001
0.65
- 0.0000 0.0000
-1.0 -05 0.0 0.5 1.0
o

Figure 4. Sensitivity analysis of the cdf at four quantiles s calculated using the AEP algorithm (n_iter =7) for different
copula models, dimensionality, and underlying degree of dependency. The values of s are 1.25, 1.5, 1.75, and 1.95 for the
bivariate Gaussian copula (left plot) and 2, 2.3, 2.65, and 2.85 for the three-dimensional Clayton (right plot). Each solid black
line indicates the values of the cdf for a given s, as the respective parameters p and 6 change. The results of the AEP algorithm
correspond to those of the Monte Carlo (MC) simulation approach, using 10" number of simulations. The dashed red line
represents the average absolute difference between the two method cdf values, calculated across the four quantiles.

4 and 5. However, it should be noted that the computational times for the AEP algorithm remains
acceptable, in most cases below one second even in high dimensions. For the sake of completeness
and as a reference, the computational time figures of the first implementation, reported in the
study of the original manuscript, are also given.

To conclude, we perform a sensitivity study of the two above-mentioned approaches for differ-
ent dependency structures and number of dimensions. Fig. 4 shows how the cdf value calculated
with the AEP algorithm changes as the underlying degree of dependency varies, in the cases of
a bivariate Gaussian copula and a three-dimensional Clayton copula. The solid black lines of the
graphs represent the cdf evaluated at four quantiles s for increasing values of p (the non-diagonal
entry of the correlation matrix) and 8 parameters, for the Gaussian copula and the Clayton cop-
ula, respectively. The cdf values were also compared with those obtained by the MC simulation
approach. The average absolute difference between the results of the two methods, across the four
quantiles, is highlighted by the dotted red line. It can be seen that this remains stable at low values,
regardless of the underlying dependency structure. In all cases, the results produced by the two
methods almost coincide.

5. Lossreserve

In non-life insurance, contracts do not settle when insured events occur. At the accident date,
the insured event triggers a claim that will generate payments in the future. The task of predict-
ing these liabilities is called claims reserving and it assesses claim outstanding loss liabilities (see,
e.g., Wiithrich & Merz, 2015, p. 11). In the present work, we refer to the total outstanding loss
liabilities of past claims as the loss reserve or claims reserve. Fig. 5 sketches an example of the time-
line evolution of an individual claim. The insured event occurs within the insured period, but the
claim settles after several years. In particular, after the claim is reported, the insurance company
makes an initial quantification of the claim payment size, the so-called case estimate. Two pay-
ments occur thereafter. These payments are not known at the evaluation date, and they require
to be estimated. In between the payments, the case estimate is updated. Until a claim settle, the
insurance company refers to it as an open claim. In certain circumstances, settled claims can be
reopened (Friedland, 2010, p. 431).

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 365

Cash flows

S

Settlement

Insured period

Accident Date

Reporting Date

Figure 5. Example of events of a non-life insurance claim.

In this section, we first define the development triangles, the data structure commonly used by
actuarial departments for claims reserving (Friedland, 2010, p. 51). These are aggregate represen-
tations of the individual claim data. Then, we present the collective risk model for claims reserving
in Ricotta & Clemente (2016) and Clemente et al. (2019), which allows to estimate the variability
of the reserve. This model requires extra-inputs from a deterministic model to be implemented.
In this manuscript, we rely on the Fisher-Lange model (Fisher & Lange, 1973) as proposed in
Savelli & Clemente (2014). Further details can be found in Section C.

5.1 Problem framework

Let the index i=0, ..., J denotes the claim accident period, and let the index j =0, ..., J rep-
resents the claim development period, over the time horizon J > 0. The so-called development
triangle is the set:

Below is the list of the development triangles used in this section.
e The triangle of incremental paid claims:
XD =lx;:G,))eT},
with x; ; being the total payments from the insurance company for claims occurred at accident
period i and paid in period i + j.
e The triangle of the number of paid claims:

with 7; ; being the number of claim payments occurred in accident period i and paid in period
i+ j. The triangle of average claim cost can be derived from the incremental paid claims
triangle and the number of paid claims. Indeed, we define

xi,j

mijj=—,

Tli,j

where m;j is the average claim cost for accident period i and development period j.
e The triangle of incremental amounts at reserve:

R = {ri,j :(4,f) € T} ,

with 7;; being the amount booked in period i + j for claims occurred in accident period i.
e The triangle of the number of open claims:

0D ={o;: () €T},

with o;; being the number of claims that are open in period i+ j for claims occurred in
accident period i.

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

366 Gabriele Pittarello et al.

Table 4. Parametric assumptions of the CRMR. In the upper table, we show the parameters for Zy,;;;, ¥, and g that are
gamma-distributed. The parameters of the structure variables are specified from the user starting from the variance
of ¥ and g, indeed Ricotta and Clemente (2016) assume E[y/] = E[q] = 1. The estimator for the average cost of the
individual payments is derived with the Fisher-Lange. The variability of the individual payments is instead obtained
from the company database. In the lower table, we show the parameter for the claim payment number, that is, a mixed
Poisson-gamma distribution with A;; derived from the Fisher-Lange

Distribution Quantity a scale
Zp,ij Gamma Individual payment cost ?:Z’uz &ZZI_J_rﬁ,-J-
v Structure variable (individual payment cost) &1;2 Aé
» q o " Structurevariable (payheht ﬁuhbér) o &;2 - Ag
Distribution Quantity mu
Nij Mixed Poisson Payment number fijq

e The triangle of the number of reported claims:
DD ={di;:(i,j)eT},

with d;; being the claims reported in period j and belonging to accident period i. Often, the
number of reported claims is aggregated by accident period i.

We implemented the model of Ricotta & Clemente (2016) and Clemente et al. (2019), hereafter
referred to as CRMR, which connects claims reserving with aggregate distributions. Indeed, the
claims reserve is the sum of the (future) payments:

R= Z Xij (16)
i+j>T
The authors represent the incremental payments in each cell of the triangle of incremental pay-
ments as a compound mixed Poisson-gamma distribution under the assumptions in Ricotta &
Clemente (2016). For i,j=0,...,J,

N,'J

Xij= Z th;i,j’ (17)

h=1

where the index h is referred to the individual claim severity. The random variable v follows
a gamma distribution, see Table 4, and introduces dependence between claim-sizes of different
cells.

5.1.1 Predicting the claims reserve

In order to estimate the value for the claims reserve R, this approach requires additional para-
metric assumptions on Nj; and Z,;; when i+ j > 7. In this section, we illustrate how to use the
results from the Fisher-Lange to determine the parameters of Nj; and Zj,; ;. The Fisher-Lange is
a deterministic average cost method for claims reserving (Institute and Faculty of Actuaries, 1997,
Section H). The interested reader can refer to Section C for a discussion on the Fisher-Lange and
an implementation of the model using gemact.

For any cell (4, j), with i + j > T, the Fisher-Lange can be used to determine the expected num-
ber of future payments 7;; and the future average claim cost ;. The original concept behind
the CRMR is found in Savelli & Clemente (2009), where the authors assumed that N;; is Poisson
distributed with mean #;; and Z;; ;j is gamma distributed with mean m;j. The CoV of Zy; j 1s

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 367

¢z, the relative variation of the individual payments in development period j, independent from
the accident period. The values for ¢;; are estimated using the individual claims data available to
the insurer at the evaluation date. The CRMR is extended in Ricotta & Clemente (2016) to take
into account of the variability of the severity parameter estimation (Estimation Variance), in addi-
tion to the random fluctuations of the underlying process (Process Variance) (Wiithrich & Merz,
2015, p. 28). This is achieved by considering two structure variables (g and), on claim count
and average cost, to describe parameter uncertainty on N;j and Zj; ;. The parametric assumptions
of the model are summarized in Table 4. For i,j=0,...,J, f;;j and 7;; are obtained from the
computation of the Fisher-Lange.

5.2 Hllustration lossreserve

In this section, we show an example of the CRMR using the lossreserve module. In this respect,
we simulated the claims reserving datasets using the individual claim simulator in Avanzi et al.
(2021) to generate the upper triangles X(7), N7, O7) and D). The R(7) upper triangle has
been simulated using the simulator of Avanzi et al. (2023). The data are simulated using the same
assumptions (on an yearly basis) of the Simple, short tail claims environment shown in Al-Mudafer
et al. (2022).

No inflation is assumed to simplify the forecast of the future average costs. Estimating and
extrapolating a calendar period effect in claims reserving is a delicate and complex subject, and
a more detailed discussions can be found in Kuang et al. (2008a, b), Pittarello et al. (2023).
Furthermore, in practice, insurers might require a specific knowledge of the environment in which
the agents operate to set a value for the inflation (Avanzi et al., 2023). Here, we want to limit the
assumptions for this synthetic scenario.

Since the entire claim history is available from the simulation and we know the (true) value
for the future payments, we can use this information to back-test the performance of our model
(Gabrielli & Wiithrich, 2019). In particular, we refer to the actual amount that the insurer will pay
in future calendar years as the actual reserve, that is, the amount that the insurer should set aside
to cover exactly the future obligations. The CRMR is compared with the chain-ladder method
of Mack (1993), hereafter indicated as CHL, from the R package ChainLadder (Gesmann et al.,
2022). These data, together with the datasets from Savelli & Clemente (2014), have been saved in
the gemdata module for reproducibility.

>>> from gemact import gemdata

>>> ip = gemdata.incremental_payments_sim
>>> pnb = gemdata.payments_number_sim

>>> cp = gemdata.cased_payments_sim

>>> opn = gemdata.open_number_sim

>>> reported = gemdata.reported_claims_sim
>>> czj = gemdata.czj_sim

The lossreserve class diagram is illustrated in Fig. 6: the triangular datasets are stored in the
AggregateData class, and the model parameters are contained in the ReservingModel class.
The actual computation of the loss reserve is performed with the LossReserve class that takes as
inputs an AggregateData object, a ReservingModel object, and the parameters of the claims
reserving model computation.

>>> from gemact import AggregateData

>>> from gemact import ReservingModel

>>> import numpy as np

>>> ad = AggregateDatal(
incremental_payments=ip,

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

368 Gabriele Pittarello et al.

ReserveModel AggregateData

LossReserve

Figure 6. Class diagram of the lossreserve module. A rectangle represents a class; an arrow connecting two classes indi-
cates that the target class employs the origin class as an attribute. In this case, a LossReserve object entails ReserveModel
and AggregateData class instances.

cased_payments=cp,
open_claims_number=opn,
reported_claims=reported,
payments_number=pnb
)

>>> resmodel_crm = ReservingModel(
tail=False,
reserving_method='crm',
claims_inflation=np.array([1]),
mixing_fq_par= .01,
mixing_sev_par= .01,
czj=cz]

)

In more detail, the ReservingModel class arguments are as follows:

e The tail parameter (boolean) specifying whether the triangle tail is to be modeled.

e The reserving_method parameter, "crm" in this case.

e The claims_inflation parameter indicating the vector of claims inflation. In this case, as
no claims inflation is present, we simply set it to one in all periods.

e The mixing frequency and severity parameters mixing_fq_par and mixing_sev_par. In
Ricotta & Clemente (2016), the authors discuss the calibration of the structure variable.
Without having a context of a real-world example, we simply set the structure variables to
gamma random variables with mean 1 and standard deviation 0.01, as it is a medium-low
risk value in the authors’ examples.

e The coefficients of variation of the individual claim severity computed for each development
period. In particular, for each development period, the insurer can compute the CoV from the
individual observations and save them in the vector czj.

e The vector czj of the coefficients of variation of the individual claim severity, for each devel-
opment period. The insurer can compute the CoV from the individual observations, for each
development period.

The computation of the loss reserve occurs within the LossReserve class:

>>> from gemact import LossReserve
>>> 1lr = LossReserve(
data=ad,
reservingmodel=resmodel_crm,
ntr_sim=1000,

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 369

Table 5. Reserve and mean squared error of prediction (MSEP) by accident period for the CRMR and the CHL. The
actual reserve and its process error (PE) by accident period are also indicated. Amounts are shown in millions

Accident CRMR CHL Actual

Period Reserve MSEP Reserve MSEP Reserve PE

0 0.00 0.00 0.00 0.00 0.00 0.00
4 795.79 20.34 785.44 27.40 754.93 20.56
8 1963.40 39.51 2214.72 176.97 2382.24 32.70
Tota[e 824600 B 13009 B 842431 R 15979 R 859904 R 5432

Table 6. Total reserve estimates, their relative value, as a fraction
of the actual value (8599.04), and their coefficients of variation (CoV),
for the CRMR and the CHL. Absolute amounts are reported in millions

Reserve Reserve/actual CoV
CRMR 8246.00 0.96 1.58%
CHL 8424.31 0.98 2.02%

random_state =42

)

To instantiate the LossReserve class, AggregateData and ReservingModel objects need to
be passed as arguments. The additional arguments required for the computation are as follows:

e the number of simulated triangles ntr_sim,
e the (pseudo)random number generator initializer random_state.

The mean reserve estimate for the CRMR can be extracted from the reserve attribute. In
a similarly way to LossModel and LossAggregation, the distribution of the reserve can be
accessed from the dist property. The reserve quantiles can be obtained with the ppf method.
Output figures are expressed in millions to simplify reading.

>>> 1r.reserve

8245996481.515498

>>> 1r.ppf(q=np.array([.25, .5, .75, .995, .9995]))/10%x6
array([8156.79994049, 8244.66099324, 8335.94438221, 8600.42263791,
8676.84206101])

5.2.1 Comparison with the chain-ladder

This section compares the CRMR and the CHL with the actual reserve we know from the simula-
tion. For clarity, the reserve of accident period i is defined as R; = Z];T_i 11 Xij- Table 5 reports
the main results. We can see that the CHL reserve estimate is closer than the CRMR reserve
estimate to the actual reserve (the “Reserve” column of each block). In addition to the reserve esti-
mate, we provide the mean squared error of prediction (MSEP) (Wiithrich & Merz, 2015, p. 268)

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

370 Gabriele Pittarello et al.

of the reserve estimator for each accident period and for the total reserve. In the aforementioned
manuscript, the author introduces the MSEP as a measure of risk under the notion in Wiithrich &
Merz (2015, p. 169) conditional on the information available in the upper triangle. The MSEP can
be decomposed into two components, the irreducible risk arising from the data generation pro-
cess (process error, PE) and a risk component arising from the model used to calculate the reserve
(model error, ME). We can provide a reference value for the true PE by running multiple sim-
ulations from the simulator described in the previous section and calculating the standard error
of the reserves by accident period. To obtain the PE, we simulated 100 triangles. Net of the ME
component, the results in Table 5 appear to show that the CHL underestimates the forecast error
in the early accident periods and overestimates the forecast error in the later accident periods.

To conclude, Table 6 shows the total reserves of the CRMR and the CHL. In particular, it high-
lights the reserve amount as a percentage of the actual reserve (8599.04) and the CoV, that is, the
MSEP divided by the reserve. The total relative variability referred to the PE component gives a
CoV of 0.76 %.

6. Conclusions

This paper introduces gemact, a Python package for non-life actuarial modeling based on the
collective risk theory.

Our library expands the reach of actuarial sciences within the growing community of Python
programming language. It provides new functionalities and tools for loss modeling, loss aggrega-
tion, and loss reserving, such as the (g, b, 0) and (a, b, 1) classes of distributions, the AEP algorithm
and the collective risk model for claims reserving. Hence, it can be applied in different areas
of actuarial sciences, including pricing, reserving, and risk management. The package has been
designed primarily for the academic environment. Nevertheless, its use as support for insurance
business specialists in prototypes modeling, business studies, and analyses is not to be excluded.

The structure of our package aims to ensure modifiability, maintainability, and scalability,
as we thought of gemact as an evolving and growing project in terms of introducing fea-
tures, integrating functionalities, enhancing methodologies, and expanding its scopes. Possible
future enhancements could involve the introduction of new probability distribution families,
the implementation of supplementary methodologies for the approximation of quantiles of the
sum of random variables, and the addition of costing procedures for exotic and nontraditional
reinsurance solutions.

Device specifications

All experiments and analyses were run on a computer with an Intel” Core™ i7-1065G7 CPU
processor with 16 GB RAM, running at 1.30 GHz, on Windows 11 Home edition.

Acknowledgments. Previous versions of gemact were presented at the Mathematical and Statistical Methods for Actuarial
Sciences and Finance 2022, and at the Actuarial Colloquia 2022, in the ASTIN section. We would like to thank all the people
who gave us feedback and suggestions about the project.

Data availability statement. The data and code supporting the findings of this study are openly available in GitHub at
gpitt71/gemact-code. Supplementary material not included as code blocks in the manuscript can be found in the subfolder
vignette. The results contained in the manuscript are reproducible, excluding environment-specific numerical errors. These
discrepancies do not affect the overall validity of the results. The gpitt71/gemact-code folder is registered with the unique
Zenodo DOI reference number 10.5281/zenodo.10117505.

Funding statement. This work received no specific grant from any funding agency, commercial, or not-for-profit sectors.

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://github.com/gpitt71/gemact-code
https://github.com/gpitt71/gemact-code/tree/main/gemact/vignette
https://github.com/gpitt71/gemact-code
https://doi.org/10.5281/zenodo.10117505
https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 371

Competing interests. The author(s) declare none.

References

Avanzi, B., Taylor, G. & Wang, M. (2023). Splice: a synthetic paid loss and incurred cost experience simulator. Annals of
Actuarial Science, 17 (1), 7-35.

Al-Mudafer, M. T., Avanzi, B., Taylor, G., & Wong, B. (2022). Stochastic loss reserving with mixture density neural
networks. Insurance: Mathematics and Economics, 105, 144-174.

Albrecher, H., Beirlant, J., & Teugels, J. L. (2017). Reinsurance: Actuarial and statistical aspects. John Wiley & Sons.

Antal, P. (2009). Mathematical methods in reinsurance. Swiss Re.

Arbenz, P., Embrechts, P., & Puccetti, G. (2011). The aep algorithm for the fast computation of the distribution of the sum
of dependent random variables. Bernoulli, 17(2), 562-591.

Avanzi, B., Taylor, G., Wang, M., & Wong, B. (2021). Synthetic: An individual insurance claim simulator with feature
control. Insurance: Mathematics and Economics, 100, 296-308.

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice. Addison-Wesley Professional.

Bean, M. A. (2000). Probability: the science of uncertainty with applications to investments, insurance, and engineering.
Available online at the address https://api.semanticscholar.org/CorpusID:106862438.

Bogaardt, J. (2022). chainladder package, version 0.8.13 [Computer software manual]. Available online at the address
https://chainladder-python.readthedocs.io/en/latest/intro.html.

Bok, D. (2022). copulae package, version 0.7.7 [Computer software manual]. Available online at the address
https://copulae.readthedocs.io/en/latest/.

Bondi, A. B. (2000). Characteristics of scalability and their impact on performance. In Proceedings of the 2nd international
workshop on Software and performance (pp. 195-203).

Biihlmann, H. (1984). Numerical evaluation of the compound poisson distribution: recursion or fast fourier transform?
Scandinavian Actuarial Journal, 1984(2), 116-126.

Clemente, G. P., Savelli, N., & Zappa, D. (2019). Modelling outstanding claims with mixed compound processes in
insurance. International Business Research, 12(3), 123-138.

Cummins, D., Lewis, C. & Phillips, R. (1999) Pricing excess-of-loss reinsurance contracts against catastrophic loss. In: K. A.
Froot (Ed.), The financing of catastrophe risk (pp.93-148). University of Chicago Press.

Dutang, C., Goulet, V., & Langevin, N. (2022). Feller-pareto and related distributions: Numerical implementation and
actuarial applications. Journal of Statistical Software, 103(6), 1-22.

Dutang, C., Goulet, V., & Pigeon, M. (2008). actuar: An r package for actuarial science. Journal of Statistical software, 25,
1-37.

Embrechts, P., & Frei, M. (2009). Panjer recursion versus fft for compound distributions. Mathematical Methods of
Operations Research, 69(3), 497-508.

Fisher, W. H., & Lange, J. T. (1973). Loss reserve testing: a report year approach. Proceedings of the Casualty Actuarial Society,
60, 189-207.

Friedland, J. (2010) Estimating unpaid claims using basic techniques. In Casualty actuarial society, vol. 201.

Gabrielli, A., & Wiithrich, M. V. (2019). Back-testing the chain-ladder method. Annals of Actuarial Science, 13(2), 334-359.
Genz, A., & Bretz, F. (1999). Numerical computation of multivariate t-probabilities with application to power calculation of
multiple contrasts. Journal of Statistical Computation and Simulation, 63(4), 103-117. doi: 10.1080/00949659908811962.
Genz, A., & Bretz, F. (2002). Comparison of methods for the computation of multivariate t probabilities.
Journal of Computational and Graphical Statistics, 11(4), 950-971. doi: 10.1198/106186002394. Retrieved from

https://doi.org/10.1198/106186002394.

Gerber, H. U. (1982). On the numerical evaluation of the distribution of aggregate claims and its stop-loss premiums.
Insurance: Mathematics and Economics, 1(1), 13-18.

Gesmann, M., Murphy, D., Zhang, Y. W., Carrato, A., Wiithrich, M., Concina, F., & Dal Moro, E. (2022). Chainladder:
Statistical methods and models for claims reserving in general insurance [Computer software manual]. Received from
https://CRAN.R-project.org/package=ChainLadder (R package version 0.2.15).

Griibel, R., & Hermesmeier, R. (1999). Computation of compound distributions i: Aliasing errors and exponential tilting.
ASTIN BULLETIN: The Journal of the IAA, 29(2), 197-214.

Hofert, M., & Michler, M. (2011). Nested archimedean copulas meet R: The nacopula package. Journal of Statistical Software,
39(9), 1-20. Retrieved from https://www.jstatsoft.org/v39/i09/.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science ¢ Engineering, 9(3), 90-95. doi:
10.1109/MCSE.2007.55.

Institute and Faculty of Actuaries (1997). Claims reserving manual (2nd ed.).

Johansson, N., & Lofgren, A. (2009). Designing for extensibility: An action research study of maximizing extensibility by
means of design principles. (B.S. thesis). Univeristy of Gothenburg.

Klugman, S. A., Panjer, H. H., & Willmot, G. E. (2012). Loss models: From data to decisions, vol. 715. John Wiley & Sons.

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://api.semanticscholar.org/CorpusID:106862438
https://chainladder-python.readthedocs.io/en/latest/intro.html
https://copulae.readthedocs.io/en/latest/
https://doi.org/10.1080/00949659908811962
https://doi.org/10.1198/106186002394
https://doi.org/10.1198/106186002394
https://www.jstatsoft.org/v39/i09/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1017/S1748499524000022

372 Gabriele Pittarello et al.

Kojadinovic, I., & Yan, J. (2010). Modeling multivariate distributions with continuous margins using the copula R package.
Journal of Statistical Software, 34(9), 1-20. Retrieved from https://www.jstatsoft.org/v34/i09/.

Kuang, D., Nielsen, B., & Nielsen, J. P. (2008a). Forecasting with the age-period-cohort model and the extended chain-ladder
model. Biometrika, 95(4), 987-991.

Kuang, D., Nielsen, B., & Nielsen, J. P. (2008b). Identification of the age-period-cohort model and the extended chain-ladder
model. Biometrika, 95(4), 979-986.

Lab, M. D. T. A. (2022). Copulas package, version 0.7.0 [Computer software manual]. Retrieved from
https://github.com/sdv-dev/Copulas.

Ladoucette, S. A., & Teugels, J. L. (2006). Analysis of risk measures for reinsurance layers. Insurance: Mathematics and
Economics, 38(3), 630-639.

Mack, T. (1993). Distribution-free calculation of the standard error of chain ladder reserve estimates. ASTIN Bulletin: The
Journal of the IAA, 23(2), 213-225.

Martelli, A., Ravenscroft, A., & Ascher, D. (2005). Python cookbook. O’Reilly Media, Inc.

Mildenhall, S. (2022). Aggregate package. [Computer software manual]. Retrieved from https://aggregate.readthedocs.io/
en/latest/.

Nelsen, R. B. (2007). An introduction to copulas (2nd ed.). Springer Science & Business Media. doi: 10.1007/0-387-28678-0.

Nielsen, B. (2015). apc: An r package for age-period-cohort analysis. The R Journal, 7(2), 52.

Ozgur, C., Colliau, T., Rogers, G., & Hughes, Z. (2022). Matlab vs. python vs. r. Journal of Data Science, 15(3), 355-372. doi:
10.6339/JDS.201707_15(3).0001.

Panjer, H. H. (1981). Recursive evaluation of a family of compound distributions. ASTIN Bulletin: The Journal of the IAA,
12(1), 22-26.

Parodi, P. (2014). Pricing in general insurance (1st ed.). CRC Press. d0i:10.1201/b17525.

Pittarello, G., Hiabu, M., & Villegas, A. M. (2023). Replicating and extending chain-ladder via an age-period-cohort
structure on the claim development in a run-off triangle. arXiv preprint arXiv:2301.03858.

R Core Team. (2017). R: A language and environment for statistical computing [Computer software manual]. Vienna,
Austria. Retrieved from https://www.R-project.org/.

Ricotta, A., & Clemente, G. P. (2016). An extension of collective risk model for stochastic claim reserving. Journal of Applied
Finance and Banking, 6(5), 45.

Savelli, N., & Clemente, G. P. (2014). Lezioni di matematica attuariale delle assicurazioni danni. EDUCatt-Ente per il diritto
allo studio universitario dell'Universita Cattolica. Retrieved from http://hdlLhandle.net/10807/67154.

Savelli, N., & Clemente, G. P. (2009). A collective risk model for claims reserve distribution. In Proceedings of “Convegno di
Teoria del Rischio”, Campobasso (pp. 59-88).

Shevchenko, P. V. (2010). Calculation of aggregate loss distributions. Journal of Operational Risk, 5(2), 3-40.

Sommerville, I. (2011). Software engineering. Pearson Education Inc.

Sundt, B. (1990). On excess of loss reinsurance with reinstatements. Transactions of the ASTIN Colloquium, 12, 73.

Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. CreateSpace.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D. ... van Mulbregt, P.
(2020). SciPy 1.0: fundamental algorithms for scientific computing in python. Nature Methods, 17(3), 261-272. doi:
10.1038/541592-019-0686-2.

Wang, P. (2013). Risk modeling of multi-year, multi-line reinsurance using copulas. Journal of Insurance Issues, 36(1), 58-81,
Retrieved from https://ideas.repec.org/a/wri/journl/v36y2013i1p58-81.html.

Wang, S. (1998). Aggregation of correlated risk portfolios: models and algorithms. In Proceedings of the casualty actuarial
society, vol. 85 (pp. 848-939).

Wilhelmy, L. (2010). Economic capital: Applying theory to practice. In: Presentation at the Canadian Institute of Actuaries
(CIA) Annual Meeting June 29-30, Vancouver.

Wiithrich, M. V. (2023). Non life insurance: Mathematics & statistics. SSRN Electronic Journal. doi:10.2139/ssrn.2319328.

Wiithrich, M. V., & Merz, M. (2015). Stochastic Claims Reserving Manual: Advances in Dynamic Modeling. Swiss Finance
Institute Research Paper No. 15-34. doi:10.2139/ssrn.2649057.

Yan, J. (2007). Enjoy the joy of copulas: with a package copula. Journal of Statistical Software, 21(4), 1-21. Retrieved from
https://www.jstatsoft.org/v21/i04/.

A. List of the supported distributions

Table A.1 gives an overview of the distributions available in gemact. In particular, the table
presents the distribution name (column one) and its name within gemact apparatus (column
two). Moreover, it shows the distribution support (column three) and whether the distribution
is supported in scipy (column four).

Lastly, the list of available copulas is provided in Table A.2.

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://www.jstatsoft.org/v34/i09/
https://github.com/sdv-dev/Copulas
https://aggregate.readthedocs.io/en/latest/
https://aggregate.readthedocs.io/en/latest/
https://doi.org/10.1007/0-387-28678-0
https://doi.org/10.6339/JDS.201707_15(3).0001
https://doi.org/10.1201/b17525
https://arxiv.org/abs/2301.03858
https://www.R-project.org/
http://hdl.handle.net/10807/67154
https://doi.org/10.1038/s41592-019-0686-2
https://ideas.repec.org/a/wri/journl/v36y2013i1p58-81.html
https://doi.org/10.2139/ssrn.2319328
https://www.jstatsoft.org/v21/i04/
https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 373

Table A.1. List of distributions supported by gemact

Distribution gemact name Support scipy

<

Binomial binom discrete

Geometnc e e v.gvé(;n,l. [N d.screte e
,Lo,g_sver,i.esv e ,.,iogéér, [vdisvcrve.te, s
Negative Binomial nbinom discrete

Poisson poisson discrete

PWC pwc discrete
Zero-Modified Poisson zmpoisson discrete

Zero-Modified Binomial zmbinom discrete

Zero-Modified Geometric zmgeom discrete
Zero-Modified Log-Series zmlogser discrete
Zero-Modified Negative Binomial zmnbinom discrete

Zero-Truncated Binomial ztbinom discrete

MWOXIWIXIX I X IR I X I

Zero-Truncated Geometric ztgeom

Zero-Truncated Negative Binomial ztnbinom discrete
Zero-Truncated Poisson ztpoisson discrete
Beta beta continuous

Burr burri2 continuous

Exponential h exponential continuous
Fisk fisk continuous
Gamma et ..g.aﬁ.n.l.a.. e contmuous .

Generalized Beta genbeta continuous

Generalized Pareto genpareto continuous

Inverse Gamma invgamma continuous

Inverse Gaussian invgauss continuous

Inverse Paralogistic invparalogistic continuous
|nversewe|bull 1nvwe1bu11 S Contmuous

Log Gamma loggamma continuous

Lognormal lognormal continuous

Paralogistic paralogistic continuous

Pareto (One-Parameter) paretol continuous

Pareto (Two-Parameter) pareto2 continuous

PWL pwl continuous

Uniform uniform continuous

NENE SN R SR IENEN EN A S RN AN

Weibull weibull continuous

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

374

Gabriele Pittarello et al.

Table A.2. List of copulas supported by gemact

Copula gemact name Family

Ali-Mikhail-Haq ali-mikhail-haq Archimedean
clayton ST (v;'l'ai,;c'é'n” peosiienene Arch|medean
Frank Cframk Archimedean
Gumbel gumbel Archimedean
.‘.J.(;e.. OSSO j.o.é.. e e e Arcmmedean
Gauss|an I . gaussmn e e El[.pt|ca| b
Student t tstudent CElliptical
Fréchet-Hoeffding lower bound (W) frechet-hoeffding-upper Fundamental
| Frechet_Hoeffdmgupperbound(|v|) S frecnet—hoeffdmg_lower S Fundamental
Independent e i imtmteut e A, mdependem oo, Moniostedvond Fundamental

B. The AEP algorithm

The AEP algorithm is a numerical procedure, based on a geometric approach, to calculate the joint
cdf of the sum of dependent random variables. The graphical interpretation of the basic idea of
this algorithm is straightforward, especially in the two-dimensional case. Therefore, to facilitate
the reader’s understanding, in this section we limit ourselves to the case where d =2 and focus
only on its first two iterations. The underlying logic can then be extended to d > 2 and to any
number of iterations.

Let us first define, for by, b, € R, a simplex as:

{xl,xz eR:x1—b; >0,x, —by >0, and Zi:l (xk— bk) §h} if h >0,
S((hl) bZ)a h) = P
{xl,xz ER:x; — b1 <0,x,— b, <0, and Y j_; (% — bx) > h} ifh <0,

and a square as:
(b1, b1 +h] x (by, by +h] ifh>0,

Q((by, by), h) = {
(b1 +h,b1] x(by+hby] ifh<O.

The H-measure of the square Vy (Q(bl, b,, h)) is computed as follows (Nelsen, 2007, p. 8):
Vy (Q((bl, by),]’l)) =H (bl +h, by +]’l) —H (bl, by + h) —H (bl +h, bz) +H (bl, bz) s

where H the joint cdf in Equation (15). In general, the algorithm is based on the observation that a
simplex approximated by a square generates three smaller simplexes, each of which can in turn be
approximated by a square that generates three new, even smaller simplexes, and so on. By repeat-
ing this iterative scheme with an increasing number of iterations, the quality of the approximation
improves and the error tends to 0. It can be noted that some simplexes generated by the process
lies outside the original simplex. The measure of those needs to be subtracted instead of being
added.

Fig. C.1a shows the simplex S} = &((0,0),s), where s € RT is the value at which the joint
cdf is calculated in Equation (15). For the first iteration (Fig. C.1b), we adopt the square Q; =
Q((0,0), %s). Arbenz et al. (2011) explains that the choice of the 2/3 factor provides fastest con-
vergence when d = 2. This factor is set automatically in our implementation. Hence, at the end of
the first iteration, we have

PXi+ Xy <s]~Pi(s),

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 375

where P; (s) = Vi (Q1). For example, if we consider uniform marginals and a Gaussian copula
with correlation 0.7, we would obtain the following.

>>> from gemact import Margins, Copula
>>> margins = Margins(
dist=['uniform', 'uniform'],
par=[{'a': 0, 'b': 1}, {'a': 0, 'b': 13}]
)
>>> copula = Copula(
dist='gaussian',
par={'corr': [[1, 0.7]1, [0.7, 111}
)
>>> la = LossAggregation(
copula=copula,
margins=margins
)
>>> la.cdf(x=1, n_iter=1, method='aep')
0.55188934403716

In the second iteration of the algorithm, shown in Fig. 7c, we use again the same logic and
approximate the simplexes in Fig. 7b:

2 1
S=8 ((—s, 0) , —s>
3 3

with the squares:

Note that this time the H-measure of Q3 is subtracted. Similarly to the first iterations, the % fac-
tors are chosen accordingly to the guidelines of the original manuscript to guarantee the fastest
convergence. We obtain, at the second iteration:

PXi+X, <s]=P;(s),

with P (s) =P1 (s) + Vi (Q2) — VH (Q3) + Vi (Q4) .
To conclude, continuing with the previous example, the results for the first two iterations is
given in the code block below.

>>> la.cdf (x=1, n_iter=2, method='aep')
0.4934418427652146

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

376 Gabriele Pittarello et al.

(a) (b) ()

Io ZTo ZTo
S S S
54 QAL
S Q3
Si 9
S Qo
T € L1
S S S
We are interested in Tteration 1, the sim- Iteration 2, the smaller

P[Xi+ X2 <s]. X1+ plex & in the first itera- simplexes Sz, Sz, and Sy

Xo < s with s € R is tion is approximated with are approximated with the

the simplex S;. the square Q;. squares Qs, 93, Q4 and
their area is added (or sub-
tracted) to obtain Si.

Figure C.1. Sketch of the first two iterations of the AEP algorithm in the two-dimensional case.

C. Claims reserving with the Fisher-Lange

This section briefly introduces the Fisher-Lange approach. The claims reserve is the sum of the
(future) payments, forecast as the product between the predicted future average cost and the
predicted number of future payments, for each cell. In formula:

R= Z i ji; . (C1)
i+j>T
The average claim cost in the lower triangle is forecast as the projection of the inflated average
claim cost:
i+j
ai,j=MJ_jJ l_[(1+5h), (CZ)
h=J+1

where &, represents the claims inflation for calendar period h.

As far the number of claims are concerned, this method assumes that the future number of
paid claims is related to the percentage of open claims at the evaluation date and to the claims
settlement speed. Indeed, at the evaluation date, the lower triangle is estimated as:

Rij = 0i7—i 0F—i V;’), (C3)
where [aj],j =0,...,J — 1, is the vector of open claims given by o= E [r,-,j], and
J—i
D e Mih T 07—
Tij = / , (C4)
Oi,j

fori=0,...,J —land j=0,...,J —i— 1. It is assumed that « 7 = 1. The claim settlement
speed is then computed for each accident year. The settlement speed for accident period 7 is

dg
Ng_ii- ——
A T g

: : (C5)

J .47
Zj:l NT—ji* d;

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

Annals of Actuarial Science 377

Table C.1. Reserves by accident period for the CRMR and the Fisher-Lange. We also report
the actual reserve. Amounts are shown in millions

CRMR

Accident Period Reserve MSEP Fisher-Lange Reserve Actual Reserve

0 0.00 0.00 0.00 0.00

F s

i =

e e e g

4 795.79 20.34 795.43 754.93

O o e

o B

o Cimaema T pepees

8 1963.40 39.51 1962.83 2382.24

e e e e
where d; represents the number of reported claims for accident period i, with i=0, ..., 7. The
formula is corrected for other accident years following the approach in Savelli & Clemente (2014,

p. 141).

Similarly to the CRMR described in Section 5, the results for the Fisher-Lange can be com-
puted with the gemact package. Below, we show an example using the simulated datasets from
Section 5.

>>> from gemact import gemdata

>>> ip = gemdata.incremental_payments_sim
>>> pnb = gemdata.payments_number_sim

>>> cp = gemdata.cased_payments_sim

>>> opn = gemdata.open_number_sim

>>> reported = gemdata.reported_claims_sim
>>> czj = gemdata.czj_sim

>>> claims_inflation = np.array([1])

The data are represented in the AggregateData class.

>>> from gemact.lossreserve import AggregateData
>>> ad = AggregateData(
incremental_payments=ip,
cased_payments=cp,
open_claims_number=opn,
reported_claims=reported,
payments_number=pnb)

Afterward, we specify the ReservingModel. In this example, we fix the parameter tail to
True to obtain an estimate of the tail.

>>> resmodel = ReservingModel(
tail=False,
reserving_method='fisher_lange',
claims_inflation=claims_inflation)

Thereafter, the actual computation of the loss reserve is performed within the LossReserve
class:

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022

378 Gabriele Pittarello et al.

>>> from gemact.lossreserve import LossReserve
>>> lossreserve = LossReserve(data=ad, reservingmodel=resmodel)

The LossReserve class comes with a summary view of the estimated reserve per each accident
period, in a similar way to the LossModel class, the print_loss_reserve method. In Table C.1,
we report the CRMR results from Table 5 and we add the results for the Fisher-Lange.

As expected, being the Fisher-Lange the underlying methodology to the CRMR, the results for

the claims reserve provided from the two approaches are consistent.
On top of this, insights on the behavior of Fisher-Lange [e;] and settlement speed [V;l)], for
j=0,...,J — 1, can be inspected with the plot_alpha_£f1 and plot_ss_f1 methods.

Cite this article: Pittarello G, Luini E and Marchione MM (2024). GEMAct: a Python package for non-life (re)insurance
modeling, Annals of Actuarial Science, 18, 342-378. https://doi.org/10.1017/S1748499524000022

https://doi.org/10.1017/51748499524000022 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499524000022
https://doi.org/10.1017/S1748499524000022

	
	Introduction
	Context, scope, and contributions
	Installation
	Loss model
	Risk costing
	Computational methods for the aggregate loss distribution
	Discrete fourier transform
	Recursive formula
	Severity discretization
	Supported distributions
	Illustration lossmodel

	Comparison of the methods for computing the aggregate loss distribution
	Comparison with aggregate FFT implementation
	Loss aggregation
	Illustration lossaggregation

	Comparison of the methods for computing the cdf
	Loss reserve
	Problem framework
	Predicting the claims reserve
	Illustration lossreserve

	Comparison with the chain-ladder
	Conclusions
	Device specifications

	References

