
Bull. Aust. Math. Soc. 105 (2022), 75–86
doi:10.1017/S0004972721000277

GROUPS WITH MANY PRONORMAL SUBGROUPS

MARIA FERRARA and MARCO TROMBETTI �

(Received 21 February 2021; accepted 10 March 2021; first published online 11 May 2021)

Abstract

A subgroup H of a group G is pronormal in G if each of its conjugates Hg in G is conjugate to it in the
subgroup 〈H, Hg〉; a group is prohamiltonian if all of its nonabelian subgroups are pronormal. The aim of
the paper is to show that a locally soluble group of (regular) cardinality in which all proper uncountable
subgroups are prohamiltonian is prohamiltonian. In order to obtain this result, it is proved that the class of
prohamiltonian groups is detectable from the behaviour of countable subgroups. Examples are exhibited
to show that there are uncountable prohamiltonian groups that do not behave very well. Finally, it is shown
that prohamiltonicity can sometimes be detected through the analysis of the finite homomorphic images
of a group.

2020 Mathematics subject classification: primary 20E15; secondary 20E25, 20F16.
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1. Introduction

Let G be a group. A subgroup H of G is said to be pronormal in G if H and Hg are
conjugate in 〈H, Hg〉 for any g ∈ G. Pronormal subgroups were introduced by P. Hall
as a wide generalisation of many subgroup properties. It is in fact clear that any
normal subgroup and any maximal subgroup is pronormal; moreover, this is also the
case for Sylow p-subgroups of finite groups and Hall π-subgroups of finite soluble
groups. The first nontrivial results on pronormality were obtained by Rose in [29] and,
more recently, several authors have investigated the behaviour of groups with many
pronormal subgroups. Peng [24] showed that for finite groups, having only pronormal
subgroups is precisely the same as being soluble T-groups (that is, soluble groups
in which normality is a transitive relation) and this result was later extended from
finite groups to FC-groups, that is, groups in which every element has only finitely
many conjugates (see [11]). Since a soluble T-group is metabelian and transitivity
of normality is a local property (see [28]), the result of Peng shows also that a locally
finite group with only pronormal subgroups is a metabelian T-group. Actually, all these
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results are very special cases of a recent theorem showing that a locally graded group
with only pronormal subgroups is metabelian (see, for instance, [10, Lemma 2.8]);
a group G is said to be locally graded if every finitely generated nontrivial subgroup
of G contains a proper subgroup of finite index.

The study of groups whose nonabelian subgroups satisfy a strong subgroup
theoretical property, such as normality, has been a very flourishing subject in both
finite and infinite group theory. The description of such groups can sometimes be
very precise and may encompass many group classes such as minimal nonabelian
groups and Dedekind groups, providing a very useful tool in studying arbitrary groups.
The structure of metahamiltonian groups, that is, groups whose nonnormal subgroups
are abelian, is nowadays well understood, especially in the soluble case (see, for
instance, [5]). Recently, the study of (soluble) prohamiltonian groups, that is, groups
whose nonabelian subgroups are pronormal, has started and the first relevant structural
results may be found in [2, 3]; of course, all metahamiltonian groups and all groups
with only pronormal subgroups are prohamiltonian. The fact that such a class is much
bigger than that of metahamiltonian groups may be seen from the following facts:

(1) soluble prohamiltonian groups have derived length at most four and there are
plenty of examples with derived lengths three and four (these are essentially
completely characterised in [2]);

(2) there exist finite simple groups (and even sporadic groups) that are prohamiltonian
(see [3, 19]).

The aim of this paper is to give a further impulse to the newborn theory of
prohamiltonian groups showing that prohamiltonicity can be recognised through the
analysis of certain large classes of subgroups. Thus, in order to check if a ‘large’ group
is prohamiltonian or not, one just needs to focus on some smaller pieces of the group;
such results will be useful in the proof of sufficiency in certain characterisations of
prohamiltonian groups.

Our first main theorem shows that if all countable subgroups of a group are
prohamiltonian, then the group itself must be such.

THEOREM 1.1. The class of prohamiltonian groups is countably recognisable.

In order to prove this theorem, we do not take into account the structure of soluble
prohamiltonian groups described in [2]. On the other hand, we will use this description
in combination with Theorem 1.1 to obtain a much deeper result.

THEOREM 1.2. Let ℵ be a cardinal with cofinality cf(ℵ) > ℵ0 and let G be a locally
soluble group of cardinality ℵ. If all proper subgroups of G of cardinality ℵ are
prohamiltonian, then G is prohamiltonian.

In fact, we prove a more general statement than Theorem 1.2 (see Theorem 2.3) that
allows us to replace local solubility by many other group classes. It also turns out that
if one assumes the generalised continuum hypothesis (GCH), then the assumption on
the cofinality can be dropped.
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THEOREM 1.3. Assume that the GCH holds and let ℵ be an uncountable cardinal. If
G is a locally soluble group of cardinality ℵ whose proper subgroups of cardinality ℵ
are prohamiltonian, then G is prohamiltonian.

In the last part of the paper we prove that, as for many other natural classes of
groups (such as nilpotency), the class of prohamiltonian groups can be recognised in
some circumstances through the analysis of the finite quotients.

THEOREM 1.4. Let G be a finitely generated hyper(abelian or finite) group whose
finite homomorphic images are prohamiltonian. Then G is prohamiltonian.

Most of our notation is standard and can be found in [26].

2. The countable character

A group class X is said to be countably recognisable if, whenever all countable
subgroups of a group G belong to X, then G itself is an X-group. Countably recog-
nisable classes of groups were introduced by Baer in [1] as a tool for studying ‘large’
(that is, uncountable) groups through their ‘small’ (that is, countable) subgroups. In
his wake, many other group classes were shown to be countably recognisable (see,
for instance, [13, 16, 8]), a fact leading to a better understanding of uncountable
groups with restrictions on large subgroups (see, for example, [18, Theorem 20] and
the papers [6, 7]). In particular, it has recently been proved in [10] that a subgroup is
pronormal in G if and only if all of its countable subgroups are pronormal; of course,
this fact immediately implies that the class of groups with only pronormal subgroups
is countably recognisable. One of the aims of this section is to extend these results
showing that pronormality of a nonabelian subgroup can be recognised only by the
behaviour of the nonabelian countable subgroups.

Before proving the first result of the section, we quote the following easy lemma
(we refer to [10] for a proof) showing that if X is a pronormal subgroup of a group G,
then Xg ≤ X is equivalent to X = Xg for all g ∈ G; using the terminology introduced
in [10], any pronormal subgroup is weakly pronormal.

LEMMA 2.1. Let G be a group and let X be a subgroup of G such that Xg is contained
in NG(X) for some element g of G. If X and Xg are conjugate in 〈X, Xg〉, then Xg = X.

THEOREM 2.2. Let G be a group and let X be a nonabelian subgroup of G. If all
countable nonabelian subgroups of X are pronormal in G, then X itself is pronormal
in G.

PROOF. Assume for a contradiction that X is not pronormal in G, so that there exists an
element g of G such that X and Xg are not conjugate in 〈X, Xg〉. Let a be any element of
〈X, Xg〉 such that Xa is (strictly) contained in Xg. Thus, Xh < X for h = ag−1. Moreover,
since X is a nonabelian subgroup generated by the set X \ Xh, it is possible to find
noncommuting elements x and y in X \ Xh. Now, the countable nonabelian subgroup

Z = 〈x, y, xh, yh, . . . , xhn
, yhn

, . . .〉
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is pronormal in G and, of course, Zh ≤ Z. It follows from Lemma 2.1 that Z = Zh ≤ Xh

and this contradicts the fact that both x and y do not belong to Xh. Consequently, for
all a ∈ 〈X, Xg〉, there is an element x(a) of X such that x(a)a does not belong to Xg.

Now, since X is nonabelian, it must contain two noncommuting elements x and y.
Let Z0 = 〈x, y〉 and suppose that we have already defined Zn for some nonnegative
integer n. Then we put

Zn+1 = 〈Zn, x(a) : a ∈ 〈Zn, Zg
n〉〉

and recursion proceeds. Thus, the subgroup Zm is defined for all nonnegative inte-
gers m. It is clear that all of these nonabelian subgroups are countable and that
their union Z is nonabelian and countable as well. Therefore, Z is pronormal in
G and so there exists an element b ∈ 〈Z, Zg〉 such that Zb = Zg. Hence, there is
a nonnegative integer m such that b belongs to 〈Zm, Zg

m〉, which means that x(b)
is an element of Zm+1 ≤ Z. However, this immediately gives rise to the contradic-
tion x(b)b ∈ Zb = Zg ≤ Xg. The theorem is proved. �

We are now in a position to prove our first main theorem.

PROOF OF THEOREM 1.1. Let G be a group and suppose that all of its countable
subgroups are prohamiltonian. Let X be any nonabelian subgroup of G and consider a
nonabelian countable subgroup H of X. It is easy to see that H is pronormal in G: if g
is any element of G, then H is a nonabelian subgroup of the countable prohamiltonian
subgroup 〈H, g〉 and hence there exists an x ∈ 〈H, Hg〉 such that Hx = Hg. We can now
apply Theorem 2.2 in order to obtain the pronormality of G. �

In contrast to Theorems 2.2 and 1.1, prohamiltonicity cannot be recognised from
the behaviour of finitely generated subgroups, as the following example shows. Let X0
be any nonabelian group of order 21 and let {pn : n ∈ N} be any sequence of prime
numbers all greater than seven. For n ≥ 1, put

Xn = 〈an bn : a2
n = bpn

n = 1, anbn = b−1
n an〉

and in the cartesian product of all of the groups Xn (with n ≥ 0) consider the subgroup

G = 〈a, Dr
n∈N0

Xn〉,

where a is such that a(0) = 1 and a(n) = an for all n ∈ N. Thus, G is a locally
finite T-group (see, for instance, [28, Theorem 6.1.1]), so that in particular all of its
finite subgroups are pronormal. On the other hand, conjugation by a shows that the
nonabelian subgroup

X0 × 〈anbn : n ∈ N〉

is not pronormal in G.
We notice that there exist large (in the sense of cardinality) prohamiltonian

groups. In fact, Ehrenfeucht and Faber [14] constructed uncountable extraspecial
p-groups in which all abelian subgroups are countable; on the other hand, using the
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Ol’shanskii machinery, it is possible to construct simple prohamiltonian groups of
uncountable cardinality satisfying the minimal condition on subgroups, as follows.
Let X be a group with no involutions and satisfying the minimal condition on
subgroups, so in particular without proper isomorphic subgroups, and, using Theorem
35.1 of [22], embed X in a countable simple group GX such that:

(i) every proper subgroup of GX is either cyclic of odd order or conjugate to a
subgroup of X;

(ii) GX = 〈x, y〉 for all x, y ∈ GX such that x ∈ X and y � X.

Start by taking X = Z3 and G0 = GX . Suppose that we have already defined Gλ for
all countable ordinals λ < α and put

Gα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

GGλ if α = λ + 1,
⋃

λ<α

Gλ otherwise.

Finally, let G = Gℵ1 be the union of the Gλ with λ < ℵ1. It is not difficult to see
that G has cardinality ℵ1 and that any proper subgroup of Gλ, for some nonzero limit
ordinal λ, is contained in a Gκ for some countable successor ordinal κ < λ (see the
proof of Theorem 35.2 of [22]); in particular, all proper subgroups of G are countable.
In fact, it is easy to see that for each ordinal α all nonabelian proper subgroups of Gα
are conjugate to a Gλ for some λ < α; moreover, Gλ1 is not isomorphic to Gλ2 whenever
λ1 � λ2. Therefore, if two nonabelian subgroups of Gα are isomorphic, then they must
also be conjugate.

Now, let H be any nonabelian proper subgroup of G and let g ∈ G \ H. From the
previous remarks, K = 〈H, Hg〉 is isomorphic to a Gκ for some ordinal κ, so that all
isomorphic nonabelian subgroups of K must be conjugate; in particular, H is conjugate
to Hg in K, which is what we wanted to prove. Therefore, G is prohamiltonian and
satisfies the required properties.

It was proved in [9] that the commutator subgroup of an arbitrary metahamiltonian
group is always 2-generated and in particular it is countable. The previous example
shows that this is very far from being true for arbitrary prohamiltonian groups.

It should also be pointed out that it is not clear if an approach similar to the
one above may be used to obtain uncountable simple groups with only pronormal
subgroups: indeed, at any step one could have isomorphic cyclic subgroups which are
not conjugate.

Finally, using Theorem 1.1 and the structure of soluble prohamiltonian groups
described in [2], we prove that generalised soluble uncountable groups whose proper
large subgroups are prohamiltonian must often be themselves prohamiltonian.

THEOREM 2.3. Let ℵ be a cardinal with cofinality cf(ℵ) > ℵ0 and let G be a locally
graded group of cardinality ℵ with no simple homomorphic image of cardinality ℵ.
If all proper subgroups of G of cardinality ℵ are soluble-by-finite and prohamiltonian,
then G is soluble-by-finite and prohamiltonian.
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PROOF. Suppose first that G is not soluble-by-finite; in particular, G has no proper sub-
group of finite index. Let N be a proper normal subgroup of G of cardinality ℵ. Then
N is a soluble-by-finite prohamiltonian group and it follows from [21] that G/N is still
locally graded, so it cannot be finitely generated. If X/N is a proper subgroup of G/N,
then X is a proper subgroup of G and hence it is soluble-by-finite. Thus, G/N is a
locally (soluble-by-finite) group with all proper subgroups soluble-by-finite. It follows
from [12] that if G/N is not locally soluble, then it is either soluble-by-PSL(2, F) or
soluble-by-Sz(F) for some infinite locally finite field F. However, those simple groups
contain arbitrarily large, nested finite simple groups of the same types, contradicting
the main result of [3]. Thus, G/N is locally soluble (of derived length at most four) and
hence it is even soluble, which is a contradiction. Thus, all proper normal subgroups
of G have cardinality < ℵ. In this case, if N is any proper normal subgroup of G, then
G/N contains a proper subgroup X/N of cardinality ℵ (see, for instance, Corollary 2.6
of [6]) and hence N < X is a soluble-by-finite prohamiltonian group. Let M be the
product of all soluble normal subgroups of G, which is easily seen to be soluble
of derived length at most four, implying that |G/M| = ℵ. Of course, all proper
normal subgroups of G/M are finite and so even central in G/M. Since G has no
simple homomorphic image of cardinality ℵ and all proper normal subgroups are
of cardinality < ℵ, it follows that G/M is the product of all of its proper normal
subgroups and hence it must be abelian. This last contradiction shows that G is actually
soluble-by-finite.

Let E be any countable subgroup of G. We now prove that if G contains a normal
abelian subgroup A of cardinality ℵ, then E is contained in a proper subgroup of
cardinality ℵ. Of course, we may assume that G = EA, so that A ∩ E is a countable
normal subgroup of G and hence we may even assume that A ∩ E = 1; for similar
reasons, it is also possible to assume that CE(A) = 1. This shows that all proper
subgroups of G/A 	 E have only pronormal subgroups and so E is either finite or
has only pronormal subgroups itself by Theorem 2.11 of [10].

Assume first that G is metabelian. Then either G/G′ or G′ have cardinality ℵ. In the
former case, we may easily find a normal subgroup N such that both N and G/N have
cardinality ℵ (see [6, Lemma 2.4]); thus, E < EN < G, proving the claim. In the latter
case (assuming that |G/G′| < ℵ), we can use Proposition 3 of [23] to find a proper
G-invariant subgroup A1 of A of cardinality ℵ; again E < EA1 < G, proving the claim.
Therefore, G can be assumed nonmetabelian; in particular, E is nonabelian.

If E is finite, using Lemma 2.3 of [6], we can find a proper E-invariant subgroup
in A of cardinality ℵ, again proving the claim. Thus, E has only pronormal subgroups
and so it is metabelian and periodic (see [20]); in particular, E is not finitely generated
and G has derived length three.

If G′′ < A, then G′′ has cardinality < ℵ and |G/G′′| = ℵ. Thus, the claim holds
for G/G′′ and EG′′ is contained in a proper subgroup of G of cardinality ℵ. So,
it is possible to assume that G′′ = A. Now, any finitely generated subgroup of G is
contained in a finitely generated prohamiltonian subgroup of derived length three and
so is periodic (see Theorem 2.5 of [2]). It follows that G is periodic, so, if we assume by
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contradiction that A contains no proper G-invariant subgroup of cardinality ℵ, then A
must be an abelian p-group for some prime p. Moreover, from the assumptions on E
we may easily see that no p′-element centralises A.

Thus,

G =
⋃

i∈N
Xi

is the countable union of a chain of prohamiltonian subgroups Xi containing A and such
that X′′i has order greater than i. Using Theorem 3.8 of [2], we may assume that the
order of X′′i is finite and that Op(Xi) is abelian for all i, so it must coincide with A. More-
over, it follows from Theorem 3.8(cii)2 of [2] that A is a Sylow p-subgroup of each Xi.
For each i, one can therefore write A = X′′i × Z(X′i ) × Z(Xi) by Theorem 3.8(bii)1 of [2];
but this yields a contradiction in Xi+1 by (aii), (bii)2 and (bii)3 of Theorem 3.8 of [2].
This contradiction proves the claim and shows that E is contained in a proper subgroup
of cardinality ℵ whenever G contains an abelian normal subgroup of cardinality ℵ.

Let S be the soluble radical of G and let H be the first term of the derived series of S
with cardinality < ℵ. Then G/H contains a normal abelian subgroup of cardinality ℵ.
Using what we have just proved, HE is contained in a proper subgroup of cardinality
ℵ. Therefore, all countable subgroups of G are prohamiltonian and Theorem 1.1
completes the proof. �

Theorem 1.2 follows from the previous result using Corollary 2.6 of [6] and the fact
that soluble prohamiltonian groups have derived length less than or equal to four.

Assuming the GCH, the condition on the cofinality of the cardinal number ℵ can
be dropped. Indeed, the fact that cf(ℵ) > ℵ0 is used in the proof of Theorem 2.3 only
through an application of Proposition 3 of [23]. If we use Corollary 4 of [23] instead of
Proposition 3, we obtain a proof of Theorem 2.3 (and so of Theorem 1.3) not requiring
the condition on the cofinality.

We conclude this section with some remarks. First of all, we notice that the proof
of Theorem 2.3 yields something more if one assumes the existence of large abelian
normal subgroups.

THEOREM 2.4. Let ℵ be a cardinal with cofinality cf(ℵ) > ℵ0 and let G be a group
of cardinality ℵ whose proper subgroups of cardinality ℵ are soluble-by-finite and
prohamiltonian. If G contains a proper abelian normal subgroup of cardinality ℵ,
then every proper countable subgroup of G is contained in a proper subgroup of
cardinality ℵ.

Here pronormality seems to be essential, but the hypothesis on the cofinality may
be removed as before.

Secondly, in the next section we prove that prohamiltonian groups are often
soluble-by-finite. This is the case, for instance, when they are hyper(abelian or
finite), FC-groups or locally finite. It easily follows from Corollary 2.6 of [6] that a
group of uncountable cardinality ℵ that is either hyper(abelian or finite), or an
FC-group, contains a proper subgroup of cardinality ℵ. Thus, we get a result analogous
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to Theorem 1.2 (and Theorem 1.3) if we replace in it ‘locally soluble’ by ‘hyper(abelian
or finite)’ or ‘FC’.

For locally finite groups we cannot use Corollary 2.6 of [6], but it is known that
an uncountable locally finite group of regular cardinality has a proper subgroup of
the same cardinality (see, for instance, [6, page 387]). Since this condition is stronger
than that on the cofinality, it turns out that for locally finite groups we get a ‘weaker’
version of Theorem 1.2 if we replace ‘a cardinal with cofinality cf(ℵ) > ℵ0’ by ‘an
uncountable regular cardinal’.

Furthermore, as we will shortly see in the next section, Corollary 3.3 shows that any
locally (soluble-by-finite) prohamiltonian group is actually soluble-by-finite. Thus, one
could restate Theorem 1.2 (and Theorem 1.3) for a locally (soluble-by-finite) group and
remove the local graduation and the solubility assumptions on the large subgroups.

Thirdly, the argument in the first part of the proof of Theorem 2.3 shows that a
locally graded group whose proper subgroups are soluble-by-finite prohamiltonian
must itself be soluble-by-finite and hence either abelian-by-finite or soluble.

3. Prohamiltonian finite homomorphic images

Within the universe of finitely generated soluble groups, certain group-theoretical
properties can be detected from the behaviour of finite homomorphic images. Nilpo-
tency is probably the most remarkable of these properties (see [25]), but many other
group classes behave similarly (see, for instance, [4, 15, 17]). The aim of this section
is to show that prohamiltonicity has the same good behaviour.

Before proving the main result of this section, we need to show that in many
circumstances generalised soluble prohamiltonian groups are soluble-by-finite. Unfor-
tunately, it seems to be a much more difficult task to understand if a locally graded
prohamiltonian group should be soluble-by-finite or not; in large measure, this is
because we do not know if there exist locally graded simple groups which are
prohamiltonian.

THEOREM 3.1. Let G be a group admitting a normal series of subgroups with
either locally soluble or locally finite factors. If G is prohamiltonian, then G is
soluble-by-finite.

PROOF. Suppose first that G is hyper(abelian or finite), that is, G admits an ascending
normal series

{1} = G0 ≤ G1 ≤ · · · ≤ Gγ ≤ Gγ+1 ≤ · · · ≤ Gα = G

whose factors are either normal or finite. We begin by proving that every infinite
homomorphic image of G contains a nontrivial abelian normal subgroup: it is easy
to see that it suffices to prove such a claim on G with α = ω and all factors Gi+1/Gi
finite and nonabelian. Since G1 is nonabelian, G/G1 has only pronormal subgroups.
Thus, by the consequence of Peng’s theorem mentioned in Section 1, it follows that
G/G1 is metabelian. Since G1 is finite, G is soluble-by-finite and hence contains a
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nontrivial abelian normal subgroup, proving the claim. What we have just proved
implies that G contains a subgroup of finite index that is hyperabelian, so we may
assume that G itself is hyperabelian; in particular, all factors Gγ+1/Gγ are abelian. If
any, let λ be the smallest ordinal such that X = Gλ is not soluble. It was proved in [2]
that soluble prohamiltonian groups have derived length at most four and this clearly
means that λ cannot be a limit ordinal. For, otherwise, Gλ is locally soluble of derived
length at most four and so soluble of derived length at most four. However, λ cannot
be a successor ordinal either, since otherwise Gλ−1 would be soluble together with Gλ.
Therefore, G = Gα is soluble and the statement is proved in the hyper(abelian or finite)
case.

Suppose now that G is locally finite and not soluble-by-finite. Since any locally
nilpotent prohamiltonian group is metahamiltonian and hence soluble-by-finite, the
previous case allows us to assume that G has a trivial Hirsch–Plotkin radical. However,
it has been proved in [3] that an infinite locally finite prohamiltonian group cannot
be simple; thus, the infinite subgroup G(iv) contains a proper nontrivial normal
subgroup N that cannot be abelian. Now, G(iv)/N is metabelian since all of its
subgroups are pronormal and hence G/G(v) has derived length five, contradicting
Lemma 2.1 of [2].

We turn now to the general case and using what has been proved so far we may
assume that G admits a normal series of subgroups N with either abelian or finite
factors. Let M1 be the union of all terms of the normal seriesN that are abelian and let
M2 be the intersection of all terms that are not abelian. SinceN is complete as a series,
the subgroups M1 and M2 belong to it; moreover, M1 is abelian, G/M2 is metabelian
(as each nonabelian subgroup N of N is such that G/N is locally graded with only
pronormal subgroups) and M2/M1 is a (possibly trivial) factor of the normal seriesN .
Therefore, G is soluble-by-finite and the theorem is proved. �

COROLLARY 3.2. Let G be a prohamiltonian group belonging to one of the following
classes of groups: FC-groups, hyper(abelian or finite) groups and locally finite groups.
Then G is soluble-by-finite.

It is proved in [2, Corollary 2.4] that every finitely generated soluble prohamiltonian
group has a finite commutator subgroup. The proof of the following corollary shows
in particular that all finitely generated soluble-by-finite prohamiltonian groups have
a finite commutator subgroup and generalises Theorem 3.1 to a wide range of group
classes.

COROLLARY 3.3. Let G be a locally (soluble-by-finite) prohamiltonian group. Then
G is soluble-by-finite.

PROOF. Let F be a finitely generated subgroup of G. Then there is a normal soluble
subgroup S of F such that |F : S| < ∞; moreover, our previous remark shows that S′

is finite. Suppose that S is not periodic. Then the periodic part T of S is finite and in
order to prove that F′ is finite we can get rid of S′T; in particular, we can assume that S
is torsion-free. Let f be any element of F. Now X = 〈 f 〉S is soluble finitely generated,
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so X′ is finite and hence X′ = 1. The arbitrariness of f in F shows that S ≤ Z(F) and,
by the celebrated theorem of Schur, F′ is finite, completing the proof of the claim.

The commutator subgroup G′ of G is now locally finite and Theorem 3.1 implies
that G′ is soluble-by-finite. Therefore, G is soluble-by-finite and the statement is
proved. �

The following lemma will be very useful in the proof of Theorem 1.4.

LEMMA 3.4. Let G be a residually finite group whose finite homomorphic images
are prohamiltonian. Then every subgroup of finite index of G is either abelian or
pronormal. In particular, G is either metabelian or abelian-by-finite.

PROOF. Let X be a subgroup of G of finite index that is not pronormal in G. Since X
has finite index in G and G is residually finite, there exists a family of G-invariant
subgroupsN = {Ni}i∈I which are contained in X and have trivial intersection. Let N be
any element of N and notice that X/N cannot be pronormal in the finite factor group
G/N. Thus, X/N is abelian and the arbitrariness of N in N shows that X′ = {1}.

Suppose now that G is not abelian-by-finite. Thus, all subgroups of finite index are
pronormal and in particular all finite homomorphic images are metabelian by Peng’s
theorem. Since this obviously implies that G is metabelian, the statement is proved. �

We are now in a position to prove our last main theorem.

PROOF OF THEOREM 1.4. Assume for a contradiction that G is not prohamiltonian.
The remark before Corollary 3.3 shows that the class of all finitely generated,
soluble-by-finite prohamiltonian groups consists of finitely presented groups. By Lem-
ma 6.17 of [26], G has an (infinite) homomorphic image which is not prohamiltonian
but all of whose proper homomorphic images are prohamiltonian. By hypothesis, there
exists a nontrivial normal subgroup L which is either finite or abelian; as G/L is
prohamiltonian, it follows that G is soluble-by-finite by Theorem 3.1. On the other
hand, if N is the smallest nontrivial term of the derived series of the soluble radical
of G, then G/N is abelian-by-finite by (the remark after) Corollary 2.4 of [2] and
so G is metabelian-by-finite; in particular, G is residually finite by Theorem 9.51
of [26].

Now, by an application of Lemma 3.4, either G contains an abelian subgroup of
finite index or all subgroups of finite index of G are pronormal; in the latter case, G
is even soluble by Peng’s theorem and cannot be a T-group by Theorem 3.3.1 of [28].
Therefore, by Theorem 2 of [27], G has a finite homomorphic image which is not a
T-group, contradicting Peng’s theorem. It follows that G is abelian-by-finite and so
polycyclic-by-finite.

Let X be any nonabelian, nonpronormal subgroup of G; in particular, there are
elements x1 and x2 of X such that [x1, x2] � 1. Since G is residually finite, we may find
a normal subgroup N of finite index not containing [x1, x2]. Now, let M be any normal
subgroup of G of finite index. Then X(M ∩ N)/(M ∩ N) is a nonabelian subgroup of
the prohamiltonian group G/(M ∩ N) and so it is pronormal. It clearly follows that
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XM/M is a pronormal subgroup of G/M. Thus, Xσ is pronormal in Gσ for every finite
homomorphic image Gσ of G and hence X is pronormal in G (see Theorem 2.8 of [11]),
which is a contradiction. The theorem is proved. �

Notice that the previous theorem cannot be much improved. In fact, the consider-
ation of any perfect locally nilpotent group (for instance McLain’s characteristically
simple groups described at page 14 of Part 2 of [26]) shows that a locally nilpotent
group whose finite homomorphic images are prohamiltonian need not be prohamil-
tonian (and not even soluble-by-finite). Moreover, the Ol’shanskii machinery (see
Section 2) can be easily employed to construct examples of infinite finitely generated
simple groups which are not prohamiltonian.

Finally, we observe that the arguments in the proof of Theorem 1.4 can be used to
prove a similar result concerning finitely generated groups whose finite homomorphic
images have only pronormal subgroups.

THEOREM 3.5. Let G be a finitely generated hyper(abelian or finite) group whose
(nonabelian) subgroups of finite index are pronormal. Then all (nonabelian) sub-
groups of G are pronormal.
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