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Abstract

The structure of semigroups with atomistic congruence lattices (that is, each congruence is the
supremum of the atoms it contains) is studied. For the weakly reductive case the problem of
describing the structure of such semigroups is solved up to simple and congruence free semi-
groups, respectively. As applications, all commutative, finite, completely semisimple semigroups,
respectively, with atomistic congruence lattices are described.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 M 10, 08 A 30.

1. Introduction and Preliminaries

A lattice is atomistic if each element is the supremum of the atoms it con-
tains. Examples are the chain of two elements, the power set lattice of a set
or the partition lattice of some set. In [3] it is shown that a semilattice has
an atomistic congruence lattice if and only if it is a locally finite tree. In
this paper we study the structure of semigroups whose congruence lattices
are atomistic. Examples are congruence free semigroups (as a trivial case),
left (right) zero semigroups, null semigroups, rectangular bands and semi-
groups whose congruence lattice is Boolean. In the second section we obtain
necessary conditions on a semigroup in order that its congruence lattice be
atomistic. The main tool for investigating the structure of such semigroups
S is to consider the decomposition of S into its ./-classes. We introduce
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60 Karl Auinger [2]

the construction of trees of 0-simple semigroups and show that each globally
idempotent semigroup with an atomistic congruence lattice can be so con-
structed (Theorem 1). The structure of such a semigroup can be described
by a locally finite tree X, 0-simple semigroups 7Q indexed by the elements of
X and partial homomorphisms between the nonzero parts of the semigroups
Ia . Furthermore, if an arbitrary semigroup has an atomistic congruence lat-
tice then it is an inflation of such a semigroup.

In Section 3 we study the problem for weakly reductive semigroups and
obtain necessary and sufficient conditions in order that the congruence lattice
be atomistic (Theorem 2). Using this characterization we are able to char-
acterize all commutative, finite and completely semisimple semigroups with
atomistic congruence lattices (up to locally finite trees and simple groups).
This will be done in Section 4. Furthermore, we observe that the properties
"atomistic" and "Boolean", "complemented modular" and "relatively com-
plemented" for the congruence lattice of a weakly reductive semigroup are
strongly connected.

For the remainder of this part we collect some definitions and results which
are basic for our considerations (for further details see [4] or [6]).

A semilattice is a {locally finite) tree if each interval [x, y] = {z:x < z <
y} is a (finite) chain. For a semigroup 5 , S* = S if S has no zero and S* =
S\{0} if 0 is the zero of S; and Sl = S if S has an identity and S1 = Su{l}
such that 1 £ S and sl — Is — s for all s eS otherwise. Green's relation J
is defined by a J b if and only if J(a) = J(b), where J(x) is the principal
ideal generated by JC (that is, J(x) = SlxSl). The J-class containing a
is denoted by Ja. The set I{a) = J(a)\Ja = {x e J(a): J(x) / J(a)} is
an ideal in J(a) (or empty). The semigroup J(a)/I(a) is called a principal
factor. Each principal factor is either simple, 0-simple or null (see [4]). A
semigroup is (completely) semisimple if each principal factor is (completely)
(O)-simple. Let S be a subsemigroup of a semigroup T. Then T is an
inflation of 5 if there exists a function f:T -* S such that f\S = id5 and
ab = (af)(bf) for all a, b GT . In this case / is the inflation function. A
semigroup 5 is weakly reductive iffora,bGS, za = zb and az — bz for
all z € S imply a — b. A semigroup S1 is globally idempotent if S2 = S.
The lattice of all congruences on a semigroup S is denoted by Con 5 . The
identical and the universal relations are denoted by es = e and cos = co,
respectively. A congruence p on S is an atom if it covers e, to be denoted
by p> t, that is, e < p and [e, p] = {e, p} . The set of all atoms of ConS
is denoted by At S. For an arbitrary relation R on S, R* is the congruence
on S which is generated by R.

For 0-simple semigroups we have the following result.
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RESULT 1 [5]. A 0-simple semigroup is congruence free if and only if for
any two distinct elements x,y eS there exist u,v eS such that uxv - 0
and uyv ^ 0 or uxv ^ 0 and uyv = 0 .

2. Trees of 0-simple semigroups

In this section we obtain necessary conditions on an arbitrary semigroup
5 in order that its congruence lattice be atomistic. For this purpose we study
the decomposition of S into its J-classes and the ordered set S/J. We
introduce the construction of trees of 0-simple semigroups and show that
each globally idempotent semigroup S whose congruence lattice is atomistic
can be so constructed.

LEMMA 1. Let p e At 5 and apb for Ja> Jb. Then Jx < Ja implies
that Jx<Jb- In this case J{a) = Ja U J(b).

PROOF. Let x = sat for s, t e S1. Then x = satpsbt. Since Jx and Jb

are contained in I(a) we obtain that sat — sbt. Otherwise {sat, sbt)* is a
proper congruence which is strictly contained in p.

Conversely, if Con5 is atomistic any two of such neighbours in S/J are
"linked" by an atom.

LEMMA 2. Let Jb < Ja and assume that Jx < Ja implies that Jx< Jb. If
ConS is atomistic then there exists v e Jb and an atom p such that a pv .

PROOF. We consider the congruence (a, b)*. Since ConS is atomistic
there exist / > , , . . . , pn e AtS such that a = aopial • • • pnan — b for certain
a, G S and pt c {a, b)*. Since {a, b} c J(a), all ai are contained in J(a),
that is, Ja < Ja . Let i be the smallest index such that Ja < Ja = Ja .
The assumption on Jb then implies that Ja < Jb. Since Ja = Ja and
ai-\ piai' b v Lemma 1, we get that Ja > Jb and thus Ja = Jb . Also aJai_l

implies that a = sat_, t for some s, t € Sl and thus a = sat_11 p( sa^t. Now
Jsa t < Jb and Lemma 1 imply that Jsa t = Jb .

LEMMA 3. If Con S is atomistic then S/J is a locally finite tree.

PROOF. S/J is directed so it suffices to show that each interval in S/J
is a finite chain. Let Ja > Jb; there exist atoms px,... , pn such that
a = bQpxbx--pnbn = b and bt e J{a) for all i. Let g(a, b) = n be
the shortest possible length of all such sequences and
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h(Ja, Jb) = min{g(x,y):xJa,yJb}.

By induction on h(Ja, Jb) we show that each interval in S/J is a finite
chain. If h(Ja, Jb) = 1 then an immediate consequence of Lemma 1 is
t h a t [Jb, JJ = {Jb, Ja} . L e t Jb < Ja , h(Ja , J b ) = n > \ a n d s u p p o s e t h a t
[Jx, Jy] i s a finite c h a i n w h e n e v e r h{Jy, Jx) < n . L e t u = a o p l a l - - - p n a n =
v for certain p{ e At5 such that u Ja, v Jb and a, e J(a) for all / .
In particular, / a < Ja. If 7a = Ja then h(Ja, Jb) = /z(/a., Jb) < n, a
contradiction. Therefore Ja < Ja. Also, since J(a) = JaliJ(al) then
a, e J(a{). Therefore, Ja < Ja and ak e / ( a j for all k > 1. In particular
/i(/a , Jb) < n and our assumption applies: [Jb, Ja] is a finite chain. If
Jx € [Jb, Ja] then / x - Ja or 7X < 7a_ . Therefore' [Jb,Ja] = [Jb, Ja] U
{Ja} is a finite chain.

In the next statements let us assume that Con S is atomistic.

LEMMA 4. Let Ja> Jb. Then there exists a partial homomorphism f: Ja —*
Jb so that xy = (xf)y and yx = y(xf) for all x e Ja and y€S such that
xy, yx e J{b), respectively. In particular, if xy e J{b) for x, y e Ja then
xy = (xf)(yf) •

PROOF. By Lemma 2, there exists an atom p such that apu for some
M e Jb. Let x e Ja; x - sat for some s, t € Sx. Then x = sat psut.
By Lemma 1, sut € Jb. If xpv for some v e Jb then v = 5M< since
p\J(b) — e. Thus for each x e Ja there exists a unique element in Jb to be
denoted by xf such that x pxf. Let y e S such that xy e /(fe). Then
xy p (xf)y. Then p\J(b) = e implies that xy = (xf)y. Now let x, y e Ja

such that xy e Ja . Then x pxf, y pyf and the definition of / imply that
(xy)fpxy and xy p(xf){yf). Since p|/(&) =e we get that / is a partial
homomorphism.

This result can be extended to any comparable J-classes.

LEMMA 5. Let Ja> Jb. Then there exists a partial homomorphism f:Ja —*
Jb such that xz — (xf)z or zx = z{xf) for all x e Ja, z € S such that
xz or zx e J(b), respectively.

PROOF. The interval [Jb, Ja] is a finite chain so there exist unique Ja

such that Ja = Jao x Jttt > •• • > Ja<i > Jb. Let fr.J^ - / a be the
mapping considered in Lemma 4. Let / = fxf2 • • • fn . Then / is a partial
homomorphism and for x e Ja , z € S such that xz e J{b), by Lemma 4
w e o b t a i n t h a t xz = (xfx)z = (xfxf2)z = ••• = (xfj2 • • • fn)z = (xf)z. T h e
analogous argument for zx completes the proof.

PROPOSITION 1. Each non-maximal J-class of S is the non-zero part of a
0-simple semigroup. In particular, S2 is semisimple.
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PROOF. Let Jb < Ja; b — sat for some s, t e Sl. Since Jb < Js, Ja, Jt

we obtain that b - (sf)(ag)(th) where f,g,h denote the mappings con-
structed in Lemma 5 so that sf,ag,th€Jb.

LEMMA 6. The semigroup S is an inflation of S2 .

PROOF. The case where S = S2 is trivial. Let a € S\S2 and let Jb denote
the unique ./-class which is covered by Ja . Let fa'-Ja-*Jb be the partial
homomorphism constructed in Lemma 4. Let z e S; a cannot be written
as a product so Jaz < Ja and thus Jaz <Jb.By Lemma 4, az = (afa)z and
by analogy, za = z(afa). Now define f:S^S2 by xf = xfx if JC e S\S2

and xf = x otherwise. Then / is an inflation function.
Since inflations are trivial from an algebraic point of view we consider the

semisimple semigroup S2 rather than 5 itself. The results so far motivate
the following construction.

CONSTRUCTION. Let A" be a locally finite tree, to each a e X associate a
0-simple semigroup Ia (^ {0}) so that Ia n Ip = 0 if a / fi . For a e X*
let fa:I* -* /*+ be a partial homomorphism where a+ denotes the unique
element of X such that a >- a+ . Let faa = i d r and fap be defined by
fa B = fa fa ••• fa where the a( 's are defined by a = a, >- a2 • • • an >• ft .
We suppose that for arbitrary a e /* and b G 1^ the set

D(a, b) = {yG X:{afay)(bfpy) is defined in fy

is not empty. Let d(a, b) denote the greatest element of D(a, b). Let
5 = U ( O a e X) and define a multiplication * on S by the rule

* * b = (afa,S(a,b))(bf(>,6(a,b)) (a€l*a,fiG /J)

where the right hand side product is defined in /J(a fc).

DEFINITION. The groupoid S is a tree of 0-simple semigroups, to be de-
noted by S = (X; Ia, f a J j ) . If each Ia, a € l , i s congruence free (with
zero and not the null semigroup of order two) then S is a tree of congruence
free semigroups.

If X has a least element n then by definition /* is closed under mul-
tiplication and thus is a simple semigroup. If, in addition, S is a tree of
congruence free semigroups then the congruence freeness of /* U {0} implies
that /* consists of exactly one element. A straightforward verification shows
that S is a semigroup. Similar constructions appear in [1], [2], [7], [9], [12].

We now are able to formulate

THEOREM 1. If S is globally idempotent and Con 5 is atomistic then S
is a tree of 0-simple semigroups.
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PROOF. By Proposition 1 we observe that S is semisimple and hence each
principal factor is (O-)simple. Let X — S/J. X is a locally finite tree. For
a = Ja let Ia = J(a)/I(a). Then /* = Ja and S = \J{I*: a e X). For a >
a+ let fa be equal to the mapping / : Ja —> Ja+ such that apaf for some
atom p which was obtained in Lemma 4. Let a, b e S, a € /* = Ja and
b E It = Jb and let y = Jab. Let fa and L be defined according to the
rules of the construction. Then by Lemma 5 we have that (afa y){bffi y) =
ab € /* . Therefore D(a, b) is not empty. Also, y — Jab is the greatest
element of D(a, b). To see this suppose that d = (afa s){bfp s) e Ig for
some S > y. Then ab e J{d) and so again by Lemma 5 we obtain that
ab = (afa 3)(bfp s) which implies that y = 8.

3. Weakly reductive semigroups

We now restrict our investigations to the case when 5 is weakly reductive.
A weakly reductive semigroup S cannot be an inflation of a semigroup T /
S. Therefore, if Con S is atomistic then weak reductivity of S implies
global idempotency and thus we may assume that S = {X; Ia, fa »), a tree
of 0-simple semigroups. In the next statements we assume that Con S is
atomistic and S is weakly reductive. Lemma 7 is straightforward to prove.

LEMMA 7. Let S = (X; Ia, fa fi). Then S is weakly reductive if and only
if each principal ideal of S is weakly reductive.

DEFINITION. Let a e X and x, y e /* . We define a relation xa by

xxay*> {uxv e /* «*• uyv e /* VM, v e /*).

Then xa U {(0Q, 0Q)} is the greatest congruence on Ia which saturates /*,
that is, in particular, the greatest nonuniversal congruence on Ia .

LEMMA 8. Let a e X*. Then the restriction of fa to an arbitrary TQ-class
is injective.

PROOF. Let pa denote the greatest congruence on S which saturates /*,
in particular,

xpay •&• (uxv €/*<;=> uyv e /* VM, v e S ).

We will prove that />J/* = ia • Obviously we have that />J/* Q ta . Suppose
that xxay but (x, y) £ pa. We may assume there exist u, v € S1 such
that uxv e I* and uyv <£ I* and {u, v} nS ^ 0 . Then Ju, Jv> Jx and
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so uxv = (uf)x(vg) and uyv = (uf)y(vg) such that uf, vg € (/*)' and
{uf, ug}n/* ^ 0 . If {uf, vg} C /* then the proof is finished. If not then
we may suppose that uf G /* and v & S. Since Ia is 0-simple there exists
w G /* such that (uf)xw G /*. Then (uf)yw g I* since {uf)y £ I*. This
again is a contradiction to xxay.

Now suppose that xfa = y ^ for x, y such that xxay. Then x/>xfa =
yfapy f°r some p G At5. /> does not saturate /* thus pn pa^ p which
implies that p n pa — e. Therefore x — y.

LEMMA 9. Let a e X*. Then the restriction of fa to an arbitrary xa-class
is constant.

PROOF. Let x, y e /* with x ra y. The congruence pa as defined in
Lemma 8, is a supremum of atoms. So x = a0 p{ a, • • • pn an = y for certain
elements at and atoms pi C pa. Since pa saturates /*, we observe that
at e /* for all i. Let z e /* for some y < a. We have that pt\I*s — e
for all 8 < a since pt is an atom. Hence atz = aj+lz and zat = zaj+l

for all /. Multiplying the sequence x = aoplal- • • pnan = y by z on the
left and right, respectively, we obtain that (xfa)z = xz = yz - (yfjz and
z(xfa) — zx = zy = z(yfa), respectively. Weak reductivity of the semigroup
/ = U(^: y < a) then implies that xfa = yfa .

PROPOSITION 2. If a is not minimal in X then Ia is congruence free.

PROOF. xa is the identical relation. Therefore, by Result 1, la is congru-
ence free.

LEMMA 10. Let S = (X; Ia, fa ») be a tree of 0-simple semigroups. Let
a > P > y > 8 e X and x py for some x G /*, y e Ig and p G Con^.
Then zL ypz for all z G /».

PROOF. See [1, Lemma 9].
Using the following definition, the mapping fa may be regarded as a bi-

nary relation on S:

xfay<*xel*a and xfa=y.

LEMMA 11. Let S - (X; Ia, fa p) be a tree of congruence free semigroups.
Then p G Con S is an atom if and only if p = (fa U es) o (f~l u es) for some
aeX*.
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PROOF. Let ̂  = (fa U es) o (f~* u es) for some a e X. Then for u ̂  v
we have u £, v if and only if « = v ^ , v = M ^ or ufa = vfa . It can be seen
easily that £ is a congruence. Let t], where e ^ n c £, be a congruence.
Then M ^ v for some u ^ v. If M = u./^ then z»/ z ^ for all z e T by
Lemma 10 and so n = £,. If ufa = vfa and u^v then there exist x, y e /*
such that jcwy e /* and xvy <£ I*, or conversely. Again by Lemma 10, we
obtain that i] = £ . Conversely, let /> be an arbitrary congruence and xpy
for x ^ y where x € /*, y € Ip . If a ^ /? then we assume that a/? < a . It
is easy to see that zfa afi p z for all z e / o * and thus (^Ue5)o(^>~1 ue5) C p.
If a~ p and x ^ y then by the same argument as in the first half of the
proof we obtain that ( / a u % ) o (f~{ u es) C p,

LEMMA 12. Let S — (X; Ia, fa „) be a tree of congruence free semigroups
where X has no least element. If Con S is atomistic then for x, y e /* there
exists y < a such that xfa y=yfa y.

PROOF. Let x, y e /* and x = xoplxl-- pnxn = y for some atoms pt

such that all xt e J{x). For x ^ y let £(JC , y) = n denote the smallest
length of such a sequence. We prove the assertion by induction on g(x, y).
If g(x, y) = 1 then by Lemma 11, xfa = yfa . Let g(x, y) = n > 1 and
suppose that the assertion is true whenever g(u, v) < n . Let a( be defined
by x( e /* . Then a. < a for all i since xt e J{x). If at - a for all / then
xofa = xx fa = • • • = xnfa = y ^ which is a contradiction to #(*, y) > 1. Let
j be the first index such that a.j < a. Then xofa = xxfa = • • • = xj_lfa = Xj .
Therefore j = l:x{ = xQfa — xfa. By the same argument we obtain that
xn_l = xnfa = yfa . Now there are two alternatives: (i) x( G J{xx) = J(^cn_])
for all 1 < i < n - 1 and (ii) there exists i, 1 < 11 < n - 1, such that xt 6
I* = J = J . Since all x, e J(x) only these two cases are possible. For the

0 n

first case we have that g{xi, x/I_1) < n and so jc,/a+ 7 = xn_lfa+ y for some
y < a+ . Then xfay = *, / a + y = xn_Ja+ >y = yfay. In the second case we
have g(x, x,) < n 'and g(y,'xt) < n and'therefore xfay = xjay =yfa,Y
for some y < a.

Of course the condition of Lemma 12 is equivalent to the condition: for
any n e f and b € 1*& there exists y < a , ft such that afa y = bffi y.

Using the following known lemmas, we thus have obtained a characteriza-
tion of weakly reductive semigroups with atomistic congruence lattices.

NOTATION. For an arbitrary set X, let P(X) be the lattice of all subsets
of X.

LEMMA 13. Let X be a locally finite tree. Then ConA's P{X*).
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PROOF. See [3, Lemma 3].

LEMMA 14. Let S = {X; Ia, fa p) be a tree of congruence free semigroups
Ia such that for all a e /* and b e II there exists y satisfying afa —
bffi y. Then ConS = Con^T.

PROOF. The lemma is a consequence of the proof of [2, Theorem 8].

LEMMA 15. Let S = (X; Ia, fa p) be a tree of 0-simple semigroups where
Ia is congruence free for all a e X* and X has a least element fi. Then
ConS = Con^T x Con/*.

PROOF. The lemma is a consequence of the proof of [2, Theorem 8].
Using this and the fact that a product of two lattices is atomistic if and

only if each factor is atomistic, we can formulate

THEOREM 2. Let S be a weakly reductive semigroup. Then Con S is atom-
istic if and only if S is isomorphic to one of the following:

(i) a simple semigroup I such that Con/ is atomistic,
(ii) a tree of congruence free semigroups (X; Ia, fa p) such that for each

xel*. yel*p there exists y<a,$ satisfying xfay=yfpy;
(iii) a tree of 0-simple semigroups (X; Ia, fa p) where X has a least

element n such that I* is a semigroup of type (i) and S/I* is a semigroup
of type (ii).

4. Applications

In order to study special classes of semigroups we first need a result for
groups.

PROPOSITION 3. A group has an atomistic congruence lattice if and only if
it is a direct sum of simple groups.

PROOF. For a group we may identify congruences and normal subgroups.
NECESSITY. Suppose that the group G has an atomistic congruence lattice.

Let {Nr. i e /} be the set of all atoms of the lattice of normal subgroups of
G. Then G = \J(Nt: i e / ) . Let A be defined by

A = {K C /:VI € K:N,n\J(Nj:j € K\{i}) - {1}} .
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Then A is not empty. Let C Q A be a chain and J — \JC. If J & A
then there exists j G J such that Nj C V(N,: ' € J, i ^ j). Let n e Nj,
n / 1. Then there exist ix,... , ik e J\{j} such that « € A7,, v • • • V AT .
Then Njn(Ni V • • • V iV. ) ^ {1} and so Nj C N( V • • • V TV,. ' because AT
is an atom. This is a contradiction to the definition of A because there
exists C e C which contains the indices ih as well as j . Therefore / e A .
Now by Zorn's Lemma there exists a maximal element in A , to be denoted
by K. If K = I then we obviously have that G = £(/V,: i € I). Now
suppose that K ^ I. Let j e 7\A". If Nj is not contained in \J(Nk:k e
tf) then there exists / G A" such that TV, C \J(Nk:k e K, k ^ /) V AT
because AT U 0'} £ ^ . Let A7 = V ( ^ : k e K, k ^ i). Then we obtain that
{{1}, A^ , N, NvNj, NvNj} forms a non-modular sublattice of the lattice of
all normal subgroups of G, a contradiction. Therefore, Nj C \/(Nk:k e A")
which implies that G = ^(A^: k G K). Then each normal subgroup of some
Ar

l is a normal subgroup of G and therefore all A7, are simple groups.
SUFFICIENCY. Let G = J2 G, be a direct sum of simple groups G{. Let

N be a normal subgroup of G and n G N. Then n = al---akb where the
element a, belongs to some non-commutative group Gt and 6 belongs to
the centre of G. To each ai there exists c( € Gt such that aici ^ ^ a , .
Then nctn~xc~x = a .c .a 'V" 1 e NnGi and a.c.a"1^"1 ^ 1. Since G,
is simple G( Q N. In particular, a( e Â  for all i and therefore b € N.
The order of i is square free: o(b) — pl-ps for some distinct primes
Pj. Let gj = Pi--ps/Pj. Then (bq>) = Zp and <M>) C N. The groups

Gt and (b9j) are atoms in the lattice of all normal subgroups of G. Then
n € G , - • • Gk{b9i) • • • (b9s) C Â  implies that A7^ is the supremum of the atoms
it contains.

4.1. Commutative semigroups.
We first treat the globally idempotent case. A commutative semigroup is

0-simple if and only if it is a commutative group with a zero adjoined. Such a
semigroup is congruence free if and only if its non-zero part consists of only
one (idempotent) element. So S = (X; Ia, fa „), the tree of congruence
free semigroups, degenerates to the locally finite tree X. Furthermore, a
commutative group has an atomistic lattice of subgroups if and only if it is a
direct sum of cyclic groups Zp of prime order. So for the globally idempotent
case we have exactly the three cases: (i) a direct sum of cyclic groups Zp of
prime order, (ii) a locally finite tree, (iii) an ideal extension of a semigroup
G as (i) by a semigroup X as (ii) with zero.

For the general case we need the following proposition.
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PROPOSITION 4. Let T be an inflation of a semigroup S such that all
homomorphic images of S are weakly reductive. The Con T is atomistic if
and only if Con S is atomistic and the inflation function f is trivial, that is
\(T\S)f\ = 1.

PROOF. Suppose that Con T is atomistic. For each congruence p on S,
p U eT is a congruence on T. Therefore, if Con T is atomistic the same
holds for Con S. Let p be denned by x py if and only if x, y e S or
x, y e T\S. Let x, y e T\S and x — x0 px xx • • • pn xn = y for some
atoms pi c p. Since the pt 's are atoms we have that p(\S = e. Therefore,
{xf)z = xz = yz = (yf)z and z{xf) — zx = zy = z(yf) for all z € S.
Weak reductivity of S then implies that xf = yf. Conversely, let T be
an inflation of a semigroup S such that all homomorphic images of 5 are
weakly reductive, suppose that Con S is atomistic and | ( r \ 5 ) / | = 1 where
/ stands for the inflation function. Let a e S denote the element of S which
defines the multiplication of the inflation, that is xf = a for all x e T\S.
Let x e T\S, b e S and suppose that x p b for some p e Con T. We
obtain that xz = azpbz and zx = zapzb for all z e S. Since S/(p\S) is
weakly reductive we have a p b. Now we may apply Lemma 11 in [2] which
proves that under this condition the mapping p —> (p\S, p\T\Su {a}) is an
isomorphism between Con T and Con S x Eq T\S U {a} .

Summarizing these observations we may formulate

THEOREM 3. A commutative semigroup S has an atomistic congruence
lattice if and only if S is isomorphic to one of the following:

(i) a direct sum of cyclic groups Zp of prime order;
(ii) a locally finite tree;
(iii) an ideal extension of a semigroup of type (i) by a semigroup of type

(ii) with zero;
(iv) an inflation of a semigroup of type (i), (ii) or (iii) with a trivial

inflation function.

We observe that for commutative semigroups S the conditions " Con S is
atomistic" and "ConS is relatively complemented" are equivalent (see [2,
Corollary 14]).
4.2. Finite semigroups.

Again we first treat the globally idempotent case. Put S = (X; Ia, fa „),
a tree of 0-simple semigroups. Finiteness implies that all Ia are completely
0-simple. If a is not minimal in X then Ia is congruence free and therefore
Ia s M°(Ia, AQ, Pa) where Pa is a Aa x 7a-matrix of zeros and ones such
that each row and each column contain a one and no two rows and no two
columns are identical (see [11] or [6]). X has a least element ft and /* is
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a completely simple semigroup. Therefore, /* = M(I, G, A, P). Suppose
that Con /* is atomistic. Con /* is isomorphic to Ad = Ad(/, G, A, P),
a sublattice of Eq/ x NorG x EqA, the lattice of admissible triples (see
[6]) (NorG denotes the lattice of all normal subgroups of G). An element
(^, N, n) e Eq / x Nor G x Eq A is admissible if

and

A n f t =>PkiP~JPnjP~x! &N Vi,jeI.

All elements of the form (e, N, e) are admissible. Furthermore if (£, N, q)
is admissible and C ^ i J then (£, N, e) is also admissible, (co, G, co) is
admissible and hence the supremum of admissible atoms. If (£, N, e) is an
atom in Ad(7, G, A , P) and £ ^ e then N = {1} and £ is an atom in
Eq 7 . Let i , j e / and A e A . There exist atoms px, ... , pn in Ad such
that

(1) {i,l,Qpr--pnU,U*).

Each /?fc whose first entry is a proper equivalence commutes with each pk

whose first entry is the identity. Therefore in (1) we may omit the latter ones.
Thus for each /, j e / there exists f e Eq/ such that i£j and (£, {1}, e)
is admissible and therefore (co, {1}, e) is admissible. The same holds for
(e, {1}, &>) and thus (co, {1}, co) is also admissible. We have thus obtained
that all triples are admissible and then 7 * = / x G x A , a rectangular group
(see [8]). Since each partition lattice is atomistic Con I* is atomistic if and
only if Nor G is atomistic, that is if and only if G is a direct sum of simple
groups. If S is a tree of congruence free semigroups then finiteness implies
that X has a least element \i. Then |/*| = 1 and therefore xfaft = yfp<li

for arbitrary x € /* and yelp. Since Proposition 4 here also applies, we
can formulate

THEOREM 4. Let S be a finite semigroup. Then Con 5 is atomistic if and
only if S is isomorphic to one of the following:

(i) a rectangular group I x G x A such that G is a direct sum of simple
groups;

(ii) a tree of congruence free semigroups;
(iii) a tree of 0-simple semigroups (X; Ia, fa „) such that I* is a semi-

group of type (i) (where fx denotes the least element of X) and S/I* is a
semigroup of type (ii);

(iv) an inflation of a semigroup of type (i), (ii) or (iii) with a trivial
inflation function.
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In [4, Theorems 3.11 and 3.14] the partial homomorphisms between non-
zero parts of completely 0-simple semigroups are described.

Completely semisimple semigroups can be treated in the same way as the
globally idempotent case of finite semigroups, omitting the finiteness condi-
tions. Here it may happen that the locally finite tree X of S = {X; Ia, fa „)
has no least element and so in (ii) the condition "for x e /* and y e I*p there
exists y <a, fi such that xfa = yfp " must be added. An example in [1]
shows that this is really necessary. In [2, Section 5] a necessary and sufficient
condition for this property is given. The present section is closely related
to [2, Section 5]. Again for finite and completely semisimple semigroups the
properties " Con S is atomistic" and " Con S is relatively complemented" are
equivalent.
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