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VALUATION RINGS AND RIGID ELEMENTS 
IN FIELDS 

ROGER WARE 

1. Introduction. In [20], T. A. Springer proved that if A is a complete 
discrete valuation ring with field of fractions F, residue class field of 
characteristic not 2, and uniformizing parameter -K then any anisotropic 
quadratic form q over F has a unique decomposition as q = qi ± (ir)q2, 
where qi and q2 represent only units of A, modulo squares in F (compare 
[14, Satz 12.2.2], [19, §4], [18, Theorem 8.9]). Consequently the binary 
quadratic form x2 + iry2 represents only elements in F2 VJ irF2, where 
F2 denotes the set of nonzero squares in F. Szymiczek [21] has called a 
nonzero element a in a field F rigid if the binary quadratic form x2 + ay2 

represents only elements in F2 \J aF2. It is fairly easy to show (see 
Example 2.2 (iii)) that if F is any field and A is a valuation ring of F 
with maximal ideal M such that 1 + M C F2 then any element in F 
whose value is not divisible by 2 must be rigid. One of the objects of this 
paper is to show that in "most" cases rigid elements in fields arise in 
this way; that is, if a and —a are both rigid (and there exists a non rigid 
element in F\ ±F2) then there is a "2-henselian" valuation v on F (see 
Section 4) such that v (a) is not divisible by 2. 

More generally, we will consider T-rigid elements where T is a multipli­
cative subgroup of F = F\{0} containing F2 (see Definition 2.1) and 
investigate the connection between such elements and the existence of 
valuation rings of F with 1 + M C T. The method used to construct 
such valuation rings is based on an idea of Bill Jacob, who was dealing 
with formally real fields. We have been able to extend and modify his 
construction to include non real fields, as well. As applications of these 
investigations we obtain new proofs of [6, Theorem 2.7] and of [4, 
Theorem 5] and [22, Theorem 2] (compare [3, Corollary 3.2]) as well as 
a valuation theoretic characterization (Theorem 4.4 (4)) of the "fields of 
class C" studied in [24], [25]. 

For the definition of the Witt ring, W(F), of symmetric bilinear forms 
over a field F (possibly of characteristic 2) the reader is referred to [14] 
or [16]. This will only be needed for the statements and proofs of 
Theorems 4.4 and 4.8 in Section 4. The term preordering will be used to 
describe a subgroup of F which contains F2, is closed under addition, and 
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does not contain — 1. In [18], preorderings are called pre-positive cones of 
Fand in [1] they are called pre-orderings of level one. 

I would like to thank Joe Yucas, Alex Rosenberg, and Teruo Kanzaki 
for patiently reading this paper and making numerous helpful suggestions. 

2. Rigid elements and valuation rings. Throughout this paper, F 
will be an arbitrary (commutative) field, F its multiplicative group, and 
T a subgroup of F containing F2. If A is a valuation ring of F then 
M, U, k, r will denote, respectively, its maximal ideal, group of units, 
residue class field, and value group. 

Definition 2.1. An element x in F is called T-rigid \ïT -\- xT C T\J xT. 

Note that, because T is a group, x is T-rigid if and only if 1 + xT C 
T VJ xT. The term "rigid" was introduced by K. Szymiczek in [21] and 
was subsequently used in [3], [4] (with T = F2). 

Examples 2.2. (i) ([2, Satz 20]). A preordering T is a fan if and only if 
every element x Ç F\(—T) is T-rigid. 

(ii) Let A be a valuation ring of F (with maximal ideal M and group of 
units U). If T is any subgroup of F containing 1 + M then any element 
in F\UT is T-rigid. 

Note. If T is a preordering then 1 + M C T means that the preordering 
T is "compatible" with the valuation ring A (see, for example, [1], [6], 
[18]). If T = F2 and A is nondyadic then 1 + M C T means that A is 
2-henselian in the sense of [1] or [6]. (See Section 4.) 

(iii) Let A be a valuation ring and let T = (1 + M)F2. Then T is the 
smallest subgroup of F containing F2 with which A is "compatible". 
Moreover, UT — UF2 whence any element in F whose value in T is not 
divisible by 2 is T-rigid. 

(iv) Let F be a formally real field, let T = 2F2 the set of nonzero 
sums of squares in F, let XF be the Boolean space of orderings on F (see 
[16, pp. 63-65], [18, §6], or [15, §3]), and for a in F let H (a) = 
{P £ XF\a G P) be the associated Harrison (subbasic) open set. Then 
an element x g T is T-rigid if and only if H(x) is a maximal element in 
the set [H(a)\a $ T}. Thus, if x (? ± T then x and — x are both 
T-rigid if and only if H(x) is both maximal and minimal in the set 
{H(a)\ai ± T). 

Proof of (ii). Let x G F\UT and let t G 7\ Then xt is not a unit in A 
so either art or (xt)-1 lies in if. If xt £ M then 1 + ^ G l + i k f C r 
while if (xt)"1 G Af then 1 + xt G #7". Example 2.2 (iii) follows from 
this. 

Proof of (iv). It follows from Artin's characterization of totally 
positive elements in a field (see [16, Exercise 2.3, p. 61] or [18, Corollary 
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1.9, p. 6]) that H(x) = H(y) if and only if xT = yT. Moreover, from 
Pfister's generalization of Artin's theorem, [17, Satz 21] (compare [15, 
Theorem 4.8]), it follows that H(x) C H(y) if and only if y Ç T + xT. 
Consequently, H(x) is a maximal element in the set {H(a)\a (? T) if and 
only if x g T and x is T-rigid. 

Definition 2.3. (cf. [3], [4]). An element b of F is called T-basic if either 
b Ç ± r or b and — b are not both T-rigid. The set of T-basic elements 
will be denoted by B(T). 

PROPOSITION 2.4. (cf. [4, Theorem 1]). Let T = r U { 0 ) . If for every x 
in F the set DT(x) = F C\ (T + xT) is a group, then B{T) is a group. 

Proof (following [4]). First observe that if a is T-rigid then so is ta 
for any t in T, whence =fc TB(T) C B(T). Suppose there exist x, y in B (T) 
with xy not in B(T). Then xy is T-rigid and we may assume that x and y 
are not T-rigid and do not lie in ± J \ If a G DT(x) P\ DT(y) and a £ T 
then —x, — y G DT( — a) whence (by assumption) x;y Ç DT( — a). Then 
a Ç DT(—xy) (because xy g T) and, since T C DT( — xy), it follows that 
DT(x) P\ DT(y) C DT( — xy). Moreover, — ;y $ T VJ x^T = DT(xy) so 
- r y G Z M 3 0 . T h u s - r y $ £>r(x) ^ £>r(:y) and so T = D r (x) C\DT{y). 
Now 

DT(x)DT(y) C [ ( f + *yf ) + * ( ? + xyf)] C\ F 

= [(f U x y f ) + * ( î U x y f ) ] H F 
= DT(x)(T\JyT) U DT{y){T\J xT). 

Since DT(x)DT(y) is a group and no group can be a union of 2 proper 
subgroups we may assume, by symmetry, that 

DT(x)DT(y) C DT(x){T\J yT). 

Then, for any a in DT(y) we have a £ DT(x) VJ yDT(x). If a Ç DT(x) 
then 

a e z>r(tf) n£>r(:y) = r 

and if a G 3>£>r(x) then 

a y 1 G £>r(*0 H Z>r(y) = T. 

Hence y is T-rigid, contrary to assumption. 

Examples 2.5. (i) (Cordes, Berman). If T = F2 then it is well known 
that the set DT(x) is a group for all x in F. Hence B(F2) is a group. In 
[3] and [4], B(F2) is denoted A(F). 

(ii) Let T be a preordering of F. Then DT(x) is clearly a group for any 
x in F and hence B(T) is a group. 
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LEMMA 2.6 (cf. [4, Proposition 1]). Let H be a subgroup of F containing 
B(T). If -y £ Tthen T + yT CHUyT. 

Proof. If there exist tu h G T with h + yt2 $ H then 

T+ ( - / ! -yh)T C TU (-h -yh)T 

and so 

-yh = h - h - yh e r u (-/! - y/2)r. 
Since — y $ T, it follows that —yh G ( — h — yh)T, i.e., î + yh Ç ;yr. 

Definition 2.7. (compare [12, § 1], [13, § 1]). For a subgroup H oî F 
we define 

0i = Oi(#, r ) = fx e F\x (2 # and 1 + x G 71}, 

02 = 0 2 (# , r ) = {x e #|*Oi C OI} , and 

0(H, T) = O i U 0 2 . 

PROPOSITION 2.8. Let H be a subgroup of F which contains B(T). If 
A = 0 (H, T) is a valuation of F then 

(1) UT C H 
(2) 01 C M 
(3) The following are equivalent: 

(a) A = F 
(b)H= F 
(c) The value group T is 2-divisible (i.e., T = T2). 

(4) 1 + M C T 
(5) If — 1 # T //£e?z 4̂ is nondyadic. 
(6) 7f /or eac/* t in T there exists x £ F with 1 — tx2 (£ H then 

T = (1 + -M)A 

Proof. (1). It suffices to show U Q H. lî x d H then x is T-rigid so 
either 1 + x £ T o r l + x Ç x7\ If 1 + x £ xT then x ? i so x ? U. 
If 1 + x <E r then 1 + x"1 G x ^ T = xT. But then x"1 Q A so x~l Q U 
and x $ U. 

(2). Assume x G M. If x G £/ then x G i ï so x g Oi and if x g C7 then 
x g 4̂ so x g Oi. 

(3). The implication (a) => (c) is obvious. 
(c) => (6) : if T is 2-divisible, then f/F2 = F. But £/F2 C UT C H 

so this forces F = H. 
(ft) => ( a) . IÎH = F then Ox = {0}, 02 = Z1, and 4 = F. 
(4). Let x G M. If x G 0i then 1 + x £ T so we may assume that 

x g Oi. Then x Ç 02 C H. Moreover, x - 1 (? A so there exists y in Oi 
such that 1 + x~ly (? T. Since x_ 1 6 i7 and 3/ is not in H, we have 
x~ly $ if. Then x~ly is T-rigid and hence 1 + x"1}' Ç x-1;y T. Also, T Q H 
implies that x~lyT C\ H is empty. Hence 1 + x~ly $ H. Since —1 £ H, 
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it follows that -y G H and so -y G Oi (because 4 is a ring). Thus 
1 — y G P and 

1 + s-Ly = 1 + X-l - x-l + X-ly G (1 + X"1) P + ( - X " 1 ) ^ 

Since x 6 M", 1 + x G Î7 C ff and 

1 + x-l = X-l(l + X) £ # . 

By Lemma 2.6, we must have 

- ( i + x-i)(-x-1) G r 
whence 1 + x G x2P C 2". 

(5). If 2 6 Jkf then - 1 = 1 - 2 ^ 1 + Jlf C T . 
(6). Let / G P. Then there exists an x in P with /x2 — 1 G if. Then 

tx2 - 1 G Oi C M whence /x2 G 1 + M and / G (1 + M)F2. The 
inclusion (1 + M)F2 C P follows from (4). 

The following two examples show that it can happen that T 9^ 
(1 + M)F2 and H 5* UF2 in this construction. 

Examples 2.9. (i) Let F = Q((x)), the field of formal Laurent series 
in one variable over the field of rational numbers, and let T = DP2 be the 
group of all non zero sums of squares in P. The ring Q[[x]] is easily seen 
to be the smallest valuation ring in F which is compatible with P; indeed 
in the notation of [1], Q[[x]] = A (Pi) = A(P2) = AT where P i and P 2 

are the two orderings on F. Since Q[[x]] is a rank one valuation ring, it is 
the only proper valuation ring of F which is compatible with T. More­
over, T is a fan and it is easy to check that for a G ± P , 1 + a G T 
implies 1 — a G T (compare Proposition 3.7, Section 3). Hence by 
Theorem 2.12 (to be proved), A = 0(d=P, T) is a proper valuation ring 
of F which is, by Proposition 2.8 (4), compatible with T. Hence 
0(±T, T) = Q[[x]]. But if M is the maximal ideal of Q[[x]] then 
1 + M C F2 whence (1 + M)F2 = P2 ^ T. 

Note that for this field we have B(F2) = ± P ( = ± 2 P 2 ) and by 
Proposition 2.13 (i), 0(±T, F2) is a valuation ring so that we also have 
Q[[*]] = 0(±T,F*). 

(ii) Let P = Q((x))((y)) be the field of iterated formal Laurent series 
in two independent variables over the field of rational numbers and let 
T = P 2 .ThenP(P) = QF2. Let H be any subgroup of F with B(T) CH, 
y G PT, x G H, and (P : H) = 2. Since B(T) ^ ± P (i.e., QF2 ^ d=P2) 
it follows from Proposition 2.13 that A = 0(H, F2) is a valuation ring 
of P. Moreover, x G Oi, 1 + x + y G P2, and 1 + x~ly G P2, i.e., 
x + y G xP2. Hence x + 3/ G Oi, as well. Since Oi C M it follows that 
3/ G AT. We assert that y G £/P2 (and so H ^ UF2). 

If a2;y G £/ for some a in P then 

x + a2;y = a2;y(l + {a2y)~lx) G a2^(l + M) C a23/p2 = j p 2 . 
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Now x is a unit in the complete local ring Q((x)) [[y]], so if a G Q((#) )[[?]], 
then x + o}y G xF2. Hence we can write 

oo 

a = 2Z riyl w i t n rt £ Q((*0) and n > 0. 

Then a2 = r^n
2y~2n + terms of higher degree, whence 

î + a ^ x + y) = i + ^^y~2n+\ 

where Si = xrtn and s* G Q((x)), i > 1. Thus 

oo / oo \ 

y2n(l + a2y{x + y)) = y2n + £ V = yU + y2""1 + E s*?'-1 • 

Since b = y2"-1 + ]C?=2 s^* - 1 lies in the maximal ideal of Q ((#))[[?]] 
and si is a unit, Si + b G SiT"2, whence 

1 + a2y(x + y) G ysiF2 -^ F2. 

Because x + y G 0\, this means that a2y is not in 02- By Proposition 
2.8 (2), U C 02 so a2;y g Z7. Thus y G if\t/7^2 and 77 ^ UF2. 

LEMMA 2.10. Let T be a subgroup of F and let a, x be elements of F such 
that a G T and x, ax are T-rigid. 7/ 1 + a, 1 — x G T then 1 + ax G T. 

Proof. l + ax=l—x-\-x + ax£ (1 — x)T + x(l + a)T C. T -\-
xT c r U xT. But 1 + ax G 7" + axT C T U axT. Since a d T, 
xT C\ axT is empty, whence 1 + ax G 7". 

LEMMA 2.11. Le£ H be a subgroup of F containing B(T). Assume that 
for all x G H, 1 + x G T im£fe> 1 - x G T (i.e., -Oi(77, T) C 
0i(77, T)). Then, for any x G 77, 2 + x G 77 implies 1 + x G 7". 

Proo/. Let x G 77. If 1 + x G r then 1 + x G x7 . Hence 1 + x G 77 
and 1 — x G (—x) T. Then 1 — (1 + x) G (—x) T and so 2 + x = 1 + 
(1 + x) G 7\ Since 1 + x is T-rigid, 2 + x lies in (1 + x)T and because 
(1 + x)T C\ 77 is empty, 2 + x G 77. 

THEOREM 2.12 (cf. [12, Proposition 1]). Let H be a subgroup of F con­
taining B(T). Suppose that 

(1) -01(H, T) C Oi(77, T). 
(2) For each x in 0\ there exists a = a(x) in F\T such that l — a G 77, 

a~lx G #i, and if y G Oi, wi/A y $ aT then ay G Ci-
Tfeen 4̂ = 0(77, T) is a valuation ring of F. 

Note that if — 1 G T and (1) holds then we can take a = —1 in (2). 

Proof. We first show that 4̂ is closed under multiplication. To do 
this it suffices to show 

Ml . If x, y G Oi and xy G 77 then xy G Oi; 
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and 

M2. If x, y G 0\ and xy G 77 then xy G 02. 

Ml follows from assumption (1) and Lemma 2.10. 
M2: Let z G Oi. Now 

1 + xy = 1 - x + x(l + y) G (1 - x)T + x( l + y)T 

C r + x r c TVJ xT 

and similarly, 1 + xy G T^JyT. Thus, if xT 7e yT it follows that 
1 + xy G r and, in addition, 

1 + X3>z = 1 + xy — xy(l — z) G (1 + xy)T 

+ {-xy){l -z)TC T+ (-xy)TCH, 

by Lemma 2.6. Now xyz G 77 so, if xT ^ yT then 1 + xyz G 7\ by 
Lemma 2.10, and so xy G 02. y 7" 7e zT then 1 + xyz G 7". Thus we may 
assume that xT = yT = zT. In this case, use assumption (2) and 
multiply x by a~l = a{x)~l to obtain x' in Oi with x'T 9^ yT = zT. Thus 
x'yzT = x T so x'̂ yz G 77. Also, if x'y G 77 then the above argument 
shows that 1 + x'yz G T while if x'y G 77 we get 

1 +x ,3/z G {TKJ x'T) r\{T\J (-x'y)T). 

Since x'T C\ —x'yT is empty we have 1 + x'yz G T in either case. Hence 
x'yz G Oi. Since xyz G 2", x'yz G a l and xyz = a (x'yz) G 0\. Thus 
xy G 02. 

To see that A is closed under addition we must prove 
Al. If x, y G Oi and x + y G 77 then x + y G Oi. 
A2. If x, y G 02 and x + y G 77 then x + ^ 0 2 . 
A3. If x, y G 02 and x + y G 77 then x + y G Oi. 
A4. If x, y G Oi and x + y G 77 then x + y ^ 02. 
A5. If x G Ou y G 02> and x + y G 77 then x + y ^ 02. 
A6. If x G Oi, y G 02, and x + y G 77 then x + y G Oi. 
Al : First assume —1 G T. In this case, 

2 + x + y G (1 + x)T + (1 + y)T C T + T C 77. 

Since x + y G 77 and - O i C Oi it follows from Lemma 2.11 that 
x + y G Oi. 

Now suppose — 1 G 7". Since 

1 + x + y G (1 + x)T + yT = r + y r C T\J yT 

and (similarly) 1 + x + yG 2" U xT it follows that, if xT ^ yT then 
1 + x + y G T. Thus we assume that xT = yT. Choose a = a(x) G F 
as in assumption (2). Then arlx, ax G Oi and axT = a~lxT ^ yT so 
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1 + a~lx + y and 1 + ax + y lie in T. Thus 

1 + # + 3> = 1 + arlx + y + (1 — a - 1)x = 1 + ax 

+ y + (1 - a)x 

lies in ( r \J xT) C\ (T + (1 - a"1)*^) H ( r + (1 - a)xT). Since 
1 — a G 77, (1 — a)x is T-rigid. Also, (1 — a~l)x = (1 — a)( — a_1x) 
and — a~lx G 77 so (1 — a_1)x is T-rigid. Hence 

T + (1 - 6 )x r = T U ( 1 - ô )x r for 6 = a or a"1. 

If xT = (1 — a ) x l = (1 — a~l)xT then T = (1 — a) J1 and aT = 
(a — 1)T. But - 1 G T, forcing T = aT, i.e., a G 7\ a contradiction. 
Hence 

(ru*r) n (rw (i - a-
i)xT) n ( r u ( i - a)xr) = r 

and 1 + x + y lies in 7\ 
A2: Let z G Oi. Then xz, 3>z G 0i. Also, xz + 3>z = (x + y)z G if. By 

Al, (x + y)z G Oi, i.e., x + y G 02. 
A3: Since x, 3> G 77 and x + 3> G 77, Lemma 2.6 implies that — X3> G 7". 

Moreover, x_ 1 G 77 so 1 + x - 1^ = x - 1(x + y) G 77. Since 1 — (1 + 
x~ly) = — x - 1^ G —xyT= T, it follows from assumption (1) that 
1 + x~ly G Oi. Hence x + ^ = x(l + x_13>) G Oi. 

A4: If xy G 77 then x;y is T-rigid which implies that 

x + y G #(7" + x^T) C xT U yT. 

Since x (I H and 3; G 77, 77 Pi (x7 U 3;7") is empty. Hence x + 3/ G 77 
implies X3> G 77. Moreover, 

x = (x + ̂ )(^--j +^(* + y)(^p^j G(x + ̂ )r 
+ (xy)(x + y)T, 

so since x G 77, Lemma 2.6 forces — X3> G 7". Now let z G Oi. If xz G 77 
then 3>z G 77 in which case, by M2, xz and 3>z lie in 02. Then, because 
(x + y)z G 77, A3 implies that (x + y)z G Oi. If xz G 77 then yz £ H 
and by Ml , xz and 3>z lie in Oi. By Al, (x + y)z G Oi and x + 3/ G 02-

A5: Let z G Oi. Then (x + y)z £ H and 3/2 G 0i. If xz G - T then 

1 + xz + yz G xzT + T C 77 U xz7\ 

But 1 + xz + 3>z G TU (xz + 3>z)rand, because x G 77 and x + y G 77, 
(xz + yz) T C\ (H\J xzT) is empty. Hence, in this case, 1 + xz + yz G 7". 

Now suppose xz G —7". Multiply z by a - 1 = a(z)~1
1 as in assumption 

(2), to obtain z' in Oi with xz' G - 7 \ Then (x + y)z' G 77 and 
1 + (* + 3>K e r , i.e., (x + y)zf G Oi. Since (x + 3>)z G T, (x + y)s' G 
aT and (x + y)z = a(x + y)z' G Oi. Thus x + 3/ G Oi. 
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A6: liy Î -Tthen 

1 + x + y G (1 + x)T + yT C H\J yT. 

Since x -{- y ([ H this implies 1 + x + y G T. If 3/ G — 7\ choose 
a = a(x) (as in (2)) and let x' = a_1x G O i a n d y = a~ly. Then y (£ —T 
and 

1 + x' + y G (i + x;)r + yr = r + y r c Huyr. 
Now (x' + y)r ^ yr so if xf + y e H then l + x' + y G r. if 
x' + y Ç if then a"1 g i7, whence y' G if. But x 'y = a~2xy G JÏ, 
whence 

x' + y G x'(r + xyr) c *'(r u x'y'T) = x'r u yr. 
Thus x' + y' £ H and therefore l + x ' + / a , i.e., x' + y G Oi. 
Nowx + y g r implies that x' + y S a^. Hence X + y = &(#' + y ) G 
Oi, as desired. 

Thus A is a subring of F. To show 4̂ is a valuation ring of F we must 
prove 

VI. If x G H then x G Oi if and only if x"1 G Oi. 
V2. If x G if and x g 0 2 then x"1 G 02. 
Since x Q H implies 1 + x G T U xi" and 1 + x - 1 = x - 1 ( l + x), VI 

is clear. 
To prove V2, let x G H\02. Then there exists y in Oi with 1 + xy G 

x^r . Then 1 + x-1^-1 G T and by (1), 1 - x"1^"1 G 7\ Let z G Ox. We 
must show x-12; G d . 

First assume that —IQT. Since 1 + x-1^""1^ lies in 

((i - x-1^-1)^ + x-iy-i(i + z)T) r\ ((i + x-^-^r 
+ (-X-^-KI - z))T) c (r + x-ly-iT) 

n (r+ (-x-^r))-
and x - 1 ^ - 1 G if we have 1 + x"1^-1^ f T. If x - 1^ - 1^ $ T then by 
Lemma 2.10, 1 + x~xz G T. If x^" 1 *; 6 7\ let z' = - z . Then z' G 0 l f 

1 + x~ly~lzf G r , and x - y - V G T. Hence 1 + x~V G 7\ i.e., — x~lz G 
Oi. But then x~lz G Oi, as well. 

Now suppose — 1 G T. If x - 1^ - 1^ G H then 

i + x~iy~iz G rux~ly~izr. 
On the other hand, we saw above that 

1 + x~ly~lz Ç T U x~ly-lT. 

Since z (£ T this means that if x~ly~lz G H then 1 + x"1^-1^ G 7\ If 
x - 1^ - 1^ G H and x~lylz Q —T = T then 1 + x-1^"1^ G if. Since 
x~ly~l G if this implies 1 + x~ly~lz G T. Thus if x_1^_1z G T then 
1 + x - 1^ - 1^ G i" and by Lemma 2.10, x~lz G d . Thus we assume that 
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x~ly~lz G T. Choose a = a(z) as in assumption (2) and let z' = arlz. 
Then z' G Oi and x_1;y~V G T so by the above argument, x~lzr G 0i. 
Since y G 7\ x^s g T whence x~V G aT. Hence x~lz = a{x~lzr) G 0\. 

PROPOSITION 2.13. Let H be a subgroup of F containing B(T). Suppose 
H contains an element a with a, —a, 1 + a, and 1 — a~l lying in F\T. Then 
the pair (77, T) satisfies assumptions (1) and (2) {of Theorem 2.12) and 
hence A = 0(77, T) is a valuation ring of F. 

If either (i) H contains a non T-rigid element x with ± x d T or (ii) 77 
contains an element x with ± x , 1 — x G T and 1 + x G T, then H contains 
such an element a. 

Proof. First suppose 77 contains an element a with ± a , 1 + a, 
1 — a - 1 g 2". By Lemma 2.6, 1 — a G 77. Thus it suffices to show that 
for any x in 0i, ax, — x, and a -1x are all in 0\. Note that a ± 1, a - 1 ± 1 
are also in 77 so that ax, a -1x, (a ± l)x, and (a - 1 =b l)x do not lie in 77 
and therefore are T-rigid. 

ax G Oi : 1 + ax = 1 + x + (a — l)x G 7" 

+ (a - i)*rc r u (a - i)*r 
and 

1 + ax G 7" VJ ax T. 

Since 1 — a - 1 G T, (a — l )xT P\ axT is empty and hence 1 + ax G T. 

—x Ç Oi : 1 — x = l + a x — ax — xG 7̂  

+ - x ( l + a )T C r U - x ( l + a)T 
and 

1 - x G r U -xT. 

Since 1 + a G 7", —x(l + a)T C\ —xT is empty, whence 1 — x G T. 

a~lx G 0i : 1 + a~lx = 1 - x + *(1 + a~l) G T 

+ x(i + a- l)rc rux(i + a-!)r 
and 

1 + a~lx G T\J a~lxT. 

Since a + 1 G 7\ x(l + a~l)T C\ arlxT is empty and 1 + a~lx G 7\ 
To prove the second part of the proposition, suppose 77 contains a non 

T-rigid element x with ± x G T. Then there must exist y in F with 
y Q TKJ xT and y = 1 + tx, t G J1. Let a,\ = tx. Then ± a i G J" and 
1 + ai G 7\ Thus, if 1 — af~l G 7" then we can take a = a,\. If 
1 — a f 1 G 7" take a = a i - 1 . Then 

1 - a"1 = 1 - ai G -a{T ^ 7\ 

Also, 1 + a = 1 + r 1 *- 1 lies in (/ + x - 1 ) ^ = (tx + l ) * - ^ = yx~lT ^ T. 
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Finally, suppose H contains an element x with x (I ±T, 1 -f x £ T, 
1 — x G T. Let a = —x. Then ± a $ T, 1 + a G T, and 1 — a~l = 
x~l(x + 1) lies in x~lT 9^ T. 

Definition 2.14. We say that a valuation ring A of F is T-compatible 
iîl + M C T. 

LEMMA 2.15. Let A be a T-compatible valuation ring of F, let -K : A —> k 
be the natural map, and let T = ir(U C\ T). Then 

(1) 7r_1(7r(s)r) = z(T C\ U) for any unit z in A. 
(2) A unit z is T-rigid if and only if TT(Z) is T-rigid. 
(3) ir{UC\B(T)) = B{>w(Ur\ T)). 
(4) k/T^ UT/T. 

Proof. (1). Let x G TT~1 (TT (z) T). Then there exists t'm U C\ T and b in 
the maximal ideal M of A such that x = zt + b. But 

2* + & = 2/(1 + {zt)-ib) G z ( r n t/)(i + M) = z ( r n c/). 
(2). If z is T-rigid then w(z) is certainly T-rigid. Now assume ir(z) is 

T-rigid and let y = 1 + As with / in T. If / is not a unit in A then either 
1 + tz or 1 + (te) -1 lies in 1 + M C T whence y G T VJ sT. Thus we 
can assume / is a unit. Then y £ A and 

irOy) G f + 7r(s)f C T ^ TT{Z)T, 

and by (l), y G T\J zT. 
(3) follows from (1) (with z = ± 1 ) and (2). 
(4). The natural map IT induces a surjection U/U C\ T —> k/T which 

has trivial kernel by (1). Hence 

UT/T ^ U/U C\T^ k/T. 

THEOREM 2.16. Assume that B(T) is a group {e.g. DT(x) is a group for 
all x in F : see Proposition 2.4). / / B(T) 9e ± T then 

(1) There is a T-compatible valuation ring A on F with B(T) = UT. 
(2) For x G F, x and —x are both T-rigid if and only if there is a 

T-compatible valuation ring A on F with x $ UT. 
(3) IfB(T) 9^ F there is a T-compatible valuation ring on F whose value 

group is not 2-divisible. 
(4) If x G F\B(T) then 1 + x G T if and only if 1 — x G T. 

Proof. (1). Since B(T) 5* ±T,A = 0(B(T), T) is a valuation ring by 
Proposition 2.13 (i). By Proposition 2.8 (4) and (1), A is T-compatible 
with UT C B(T) and by Example 2.2 (ii), B(T) C UT. 

(2). Assume x, —x are both T-rigid and let A = 0(B(T), T). Then 
x G B{T) = UT. The converse is Example 2.2 (ii). 

(3). Assume B(T) 5* F and let A = 0(B(T), T). By Proposition 2.8 
(4), (3), A is T-compatible with non 2-divisible value group. 

(4). Since 0(B(T), T) is a ring we must have Oi = — 0\. 
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COROLLARY 2.17. / / B(T) 5e ±T then B(T) is a group if and only if 
there is a T-compatible valuation on F with group of units U such that 
B(T) = UT. 

Remark 2.18. If F = Q5, the field of 5-adic numbers and T = F2 then 
2 G F\B(T), 1 - 2 £ T, and 1 + 2 g T. There is no T-compatible 
valuation ring A on F with 2 g £/7\ Of course, .5(7") = 7\ 

Definition 2.19. The field T7 is called T-basic if -£>(T) = 7\ 

PROPOSITION 2.20. Assume that B(T) 9^ ±T is a group. Let A = 
0(B(T), T), let 7r : A —> k be the natural map, and let T = ir(U C\ T). 
Then k is T-basic. Moreover, if Fis not T-basic (i.e., A ^ F) then the value 
group A is not 2-divisible. 

Proof. Apply Proposition 2.8 (1), (3) and Lemma 2.15 (3). 

3. T-rigid fields. 

Definition 3.1. We say that F is T-rigid (where T is a subgroup of F 
containing F2) if B (T) = db T; that is, if all elements of F not in dzT are 
T-rigid. Following [21], we call F rigid if F is T^-rigid. 

Remarks 3.2. (i) Rigid fields of characteristic not 2 are the "fields of 
class C" studied in [24], [25]. They have also been studied in [21]. They 
were characterized in [24] as those fields whose Witt rings are group 
rings over Z, Z/4Z, or F2 ; in [25] it was shown that a field (of 
characteristic ^ 2 ) is rigid if and only if the 2-part of its absolute Galois 
group is metabelian (as a topological group). Non formally real rigid 
fields having a finite number of square classes were first studied by 
C. Cordes [8] who called them C-fields. These include nondyadic local 
fields. Formally real rigid fields were first studied in [9] and since then 
in [1], [5], [6], [7], [11], [12], [21], [23], [24]. Brôcker [5] called such fields 
strictly pythagorean while Elman and Lam [11] named them super-
pythagorean. 

(ii) Let T be a preordering of F. Then F is T-rigid if and only if T is 
a fan. Fans were introduced in [2] and have since been studied in several 
papers, including [1], [6], [12], [13]. If F is formally real and T = 2F2, 
the set of all nonzero sums of squares in F, then F is T-rigid (i.e., T is a 
fan) if and only if F is superordered in the sense of [7]. 

THEOREM 3.3. (cf. [1, Theorem 14], [6, Theorem 2.7], [7, Theorem 1], 
[12, Proposition 1]). Let F be a T-rigid field. Then there is a T-compatible 
valuation ring A on F with residue field k such that k is T-rigid and 
(k : T) ^ 4. Here T is the subgroup of k induced by T. Moreover, 

(1) If for all x g ±T, 1 + x Ç T implies 1 - x 6 T then (k : f ) ^ 2. 
(2) Suppose F contains an element x (? ±T with 1 + x £ T and 

1 - x $ T. 
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(a) J / - 1 e Tthen(k: T) = 2. 
(b) 7 / - 1 ? T then (k : T) = 4 and for any T-compatible valuation on 

F with residue class L we have (L : T) ^ 4 , where T is the subgroup induced 
by T in L. 

Proof. If F carries a T-compatible valuation with residue field k then 
by Lemma 2.15, F is T-rigid if and only if k is T-rigid. Thus it remains 
to show that F has a T-compatible valuation whose residue field k 
satisfies statements (1) and (2). 

(1). Assume that for all x d ± T , 1 + x G T implies 1 — x 6 T. If 
- H T then for any subgroup H containing B(T) = ± T , the hypo­
theses of Theorem 2.12 are satisfied and so A = 0 ( ± T , T) is a T-com­
patible valuation ring with UT — ± T . Then (k : T) = {UT : T) = 
( ± T : T) = 2. 

Now suppose — 1 Ç T. If assumption (2) of Theorem 2.12 is satisfied 
for the pair (T, T), then as above we obtain a T-compatible valuation 
with residue field k such that (k : T) = 1. If assumption (2) (Theorem 
2.12) is not satisfied then there exists an element x0 ? T with 1 + x0 € T 
such that for all a g T \J x0T with 1 — a £ T we have 1 + a_1x0 G 
a_1XoT. Note that if y g T^J aT and 1 + y £ T then ay is T-rigid and 
1 + ay G T by Lemma 2.10, so the last part of assumption (2) is auto­
matically satisfied. Let H = T VJ XQT and let Oi = Oi(H, T). Then 
1 — x0 G T C # . If a G Oi then a Q T\J x0T and 1 — a £ T so 
1 + a_1x0 G a-1XoT. Hence 1 + XçTla £ T and Xo -^ G Oi- If y € Oi 
then x0;y $ # , whence x0:y is T-rigid and by Lemma 2.10 (together with 
the assumption 1 + x Ç T => 1 — x G T, for x g T) it follows that 
Xô  G Oi. Hence assumptions (1) and (2) of Theorem 2.12 are fulfilled 
by the pair {H, T) and A = 0{H, T) is a T-compatible valuation ring 
of F whose residue field k satisfies (k : T) = (H : T) = 2. 

(2). Assume T contains an element x $ ± T with 1 + x Ç T and 
1 - x g T. Let H = ( ± T ) U ( ± x T ) . By Proposition 2.13, 4 = 
0(if, T) is a (T-compatible) valuation ring of F (with UT C -H"). 
Moreover neither x (because 1 — x $ T) nor x_ 1 (because 1 + x - 1 g T) 
can be in the maximal ideal of A so x is a unit. Thus £/T = ( ± T ) U 
( ± x T ) and (jfe : f ) = (£/T : T) ^ 4. If - 1 G T then £/T = r U x r 
and {k : T) — 2. Finally, if —1 £ T, let ^4' be any T-compatible valua­
tion ring on F with residue class field L and group of units U'. As above, 
x (i U' whence 

{L: T) = {U'T : T) ^ ( ± T U ± x T : T) - 4. 

Remark 3.4. If T is a preordering then F is T-rigid if and only if T is 
a fan and a fan T is trivial if and only if {F : T) ^ 4. Thus we obtain 
the theorem of L. Brôcker [6, 2.7] which states that if T is a fan then 
there exists a compatible valuation ring such that the induced fan T is 
trivial. 
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COROLLARY 3.5. Suppose —IdT. Then the following statements are 
equivalent: 

(1) F is T-rigid and for all x Q ± r , l + x Ç T implies 1 — x G T. 
(2) There is a T-compatible valuation ring A on F such that UT = zLT 

(and so (k : f ) = 2). 

Proof. The implication (1) =» (2) follows from Theorem 3.3. 
(2) =» (1). By Example 2.2 (ii), 7? is T-rigid and by Theorem 3.3 

(2) (b), 1 + x G r implies 1 — x G 2", whenever x (I ±T. 

PROPOSITION 3.6. (compare [13, Theorem 1]). For a subgroup T of F 
with F2 C T the following statements are equivalent: 

(1) T is a fan and for all x (? ± 7 \ 1 + x G 7" implies 1 — x G 2". 
(2) TTzere is a T-compatible valuation ring A of F with residue class k 

such that T is an ordering on k. 
(3) T is a preordering and every element of F, not in ± 7 \ is either 

infinitely large over Q with respect to all orderings containing T or infinitely 
small over Q with respect to all orderings containing T. 

Proof. The implication (1) =» (2) follows from Corollary 3.5. 
(2) => (3). In order to show that T is a preordering, it suffices to prove 

that 1 + t G T for all £ G T. If t G U then, because T is an order on k, 
1 + ? G f. Hence 1 + / = h + b for some h G r H J/and 6 G M. Then 
1 + * = *i(l + btr1) G r , since A is T-compatible. If * G M then 
1 + ^ r . Finally, if t £ A then r 1 G M whence r ^ l + 0 = 1 + 
r 1 G 7\ forcing 1 + * G 7\ 

Now let x be an element of F not contained in ± 7 \ Since 7* is an 
order on k and 4̂ is ^-compatible, x cannot be a unit in A. Hence either 
x or x_ 1 lies in M. If x G M then for any integer n > 0, wx G AT, whence 
1 ± wx G 7". Since T is a preordering, w G 7\ and because 7" is a group 
it follows that w~~l db x G 7". Hence x is infinitely small over 0 with 
respect to all orderings containing T. If x_ 1 lies in M then x_ 1 is infinitely 
small and therefore x is infinitely large over 0 with respect to all orderings 
containing T. 

(3) => (1). Let x G F\±T. If x is infinitely small over 0 with respect 
to all orderings P containing T then 1 ± x G P ^ r ^ = 2" (by [18, 
Corollary 1.6]), while if x is infinitely large over 0 with respect to all 
such P then x"1 is infinitely small and 1 + x = x(l + x - 1) G xT. 

COROLLARY 3.7. Assume T satisfies the equivalent conditions of Proposi­
tion 3.6. Then every x in F\±T is transcendental over Q. 

THEOREM 3.8. If (F : T) = 8 and B(T) is a group then the following 
statements are equivalent: 

(1) There exists x in F with x and —x both T-rigid. 
(2) There exists a T-compatible valuation ring A on F with UT ^ F. 
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Proof. (1) => (2): We take A = 0 ( 5 ( 1 ) , T) if B(T) * ±T, while if 
B(T) = ± r we let A be the appropriate valuation ring constructed in 
the proof of Theorem 3.3. Then A is T-compatible and if B(T) ^ doT 
then B(T) = UT so by (1), UT ^ F.HB(T) = ±T then, by Theorem 
3.3, (UT : T) g 4 and the assumption (F : T) ^ 8 forces £/r ^ F. 

The implication (2) =» (1) is example 2.2 (ii). 

4. 2-henselian valuations. 

Definition 4.1. A valuation ring of F will be called square compatible 
if it is F2-compatible. Following [1] or [6], a valuation ring of F will be 
called 2-henselian if it has a unique extension to the quadratic closure 
of F. 

Remark 4.2. By [10, § 1], a valuation ring is 2-henselian if and only if 
Hensel's lemma holds for quadratic polynomials. If A is a nondyadic 
valuation ring then the concepts of 2-henselian and square compatible 
are equivalent for A. The ring of 2-adic integers provides an example 
of a 2-henselian valuation ring which is not square compatible. However, 
when char F ^ 2, square compatible valuations are always 2-henselian: 

LEMMA 4.3. Let A be a valuation ring whose field of fractions F is not of 
characteristic 2. If A is square compatible then A is 2-henselian. 

Proof. Let K = F(\/~c) be a quadratic extension of F and let 
y = a + b\/c, a, b (z F, be an element in K\F. Then the minimal 
polynomial of y is x2 — 2ax + a2 — b2c. By [10, § 1], it suffices to show 
that if a2 — b2c lies in A then a lies in A. If a (£ A then a~2 lies in the 
maximal ideal M of A, whence 1 — a~2b2c = a~2(a2 — b2c) lies in M. But 
then 

a-*b2c = 1 - (1 - a~2b2c) G 1 + M C F2, 

whence c G F2
} contrary to assumption. Thus a Ç A> as required. 

THEOREM 4.4. If B = B(F2) then there is a square compatible valuation 
ring A of F, which is 2-henselian if char F 9e 2, with residue class field k 
and value group Y such that 

(1) B is a subgroup of UF2 with (UF2 : B) g 2. 
(2) W(F) is isomorphic to the group algebra W(k)[T/T2]. 
(3) (Compare [3, Theorem 3.1], [4, Theorem 2]) If B ^ ±F2 (i.e., Fis 

not a rigid field) then B = UF2, W(F) ^ W(k)[F/B], and k is basic 
(i.e.,B(k2) = k). 

(4) (Compare [6, Proposition 3.5], [7, Corollary 8], [12, § 2]). / / F is 
a rigid field then (k : k2) ^ 4 and W(k) is isomorphic to one of the following 
rings: Z[G], Z/4Z[G], F2[G] with \G\ S 2 or F2[H] with H the Klein 
4- group. 

https://doi.org/10.4153/CJM-1981-103-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-103-0


VALUATION RINGS 1353 

(5) / / (F : F2) ^ 8 then the following statements are equivalent: 
(a) T is not 2-divisible. 
(b) There exists a square compatible valuation ring on F whose value 

group is not 2-divisible. 
(c) B * F. 

Proof. By [4, Theorem 1] (or Example 2.5 (i)), B is a group. We take 
A = 0(B, F2)\IB ^ ±F\ while if 5 = ±F2 we let A be the appropriate 
valuation ring constructed in the proof of Theorem 3.3. Then A is square 
compatible so if char F 9^ 2, A is 2-henselian. By example 2.2 (ii), B is a 
subgroup of UF2 and by Theorem 2.16, B = UF2, if B ^ ± F 2 . If 
3 = ± P then by Theorem 3.3, {UF2 : F2) g 4 and (£/ /2 : F2) ^ 2, if 
— 1 G .F2, whence (fAF2 : -B) g 2. Since A is square compatible, [13, 
§ 12.2] yields the isomorphism W(F) ^ W(k)[T/T2] and if F is not rigid 
then T/T2^ F/UF2 = F/B. Proposition 2.20 shows that k is basic 
when B 9e dtF2 and we have thus proved statements (1), (2), and (3). 

(4). The inequality (k : k2) ^ 4 is a consequence of Theorem 3.3. By 
Lemma 2.15, k is also rigid so if char k 9e 2 then by [24, Theorem 1.9] (or 
direct calculation), we see that W(k) is isomorphic to one of the specified 
rings. If char k = 2 then by Proposition 2.8, — 1 6 F2 and so, by Theorem 
3.3, (k : k2) ^ 2. In this case it is obvious that either W(k) ^ F2 or 
F2[G] with |G| g 2. 

(5). This follows from Theorem 3.8 and its proof. 

Example 4.5. The assumption (F : F2) ^ 8 is necessary for (5). Let 
< i , <2 be the two orderings on 0 ( \ / / 2 ) , let Fui = 1, 2, be a real closure 
of Q(\/Î2) with respect to the ordering < u and let F = Fi C\ F2. Then 
F is pythagorean with exactly two orderings. Hence (F : F2) = 4 and F 
is superpythagorean (see, for example, [11, §4, 5]). Therefore, B(F) = 
±F2 ?é F. However, because F is algebraic over 0 , there is no nontrivial 
square compatible valuation on F. Related to this we have 

PROPOSITION 4.6. For a field F the following statements are equivalent: 
(1) F is superpythagorean and for x Ç F\F2, \/l + x G F implies 

\/\ — x G F. 
(2) F carries a 2-henselian valuation with euclidean residue class field. 
(3) F is formally real Pythagorean, and for all x in F\±F2, x is either 

infinitely large or infinitely small over Q with respect to all orderings on F. 

Proof. Apply Proposition 3.6 and Remark 4.2. 

Remark 4.7. Further conditions equivalent to those in Proposition 4.6 
may be found in [1, Corollary 2, p. 68]. Among them: F is super­
pythagorean and FA + i74 = FA. 

In conclusion, we use Theorem 4.4 and results from [24] to obtain 

https://doi.org/10.4153/CJM-1981-103-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-103-0


1354 ROGER WARE 

another proof of Theorem 5 in [4] (compare the remarks following 
Theorem 5) and Theorem 2 in [22]. 

Let k be a field and / a totally ordered index set. We will denote by 
fe((/)) the direct limit of all iterated formal Laurent series fields 
* ( ( * < i ) ) • • • ((*<»•))» w i t n *i < ^ < • . . < ir in I. 

THEOREM 4.8. (cf. [22, Theorem 2], [4, Theorem 5]), [3, Corollary 3.2]). 
If B{F2) 7* F then there is a basic field k and a nonempty (totally ordered) 
index set I, with cardinality equal to the F^-dimension of F/B(F2), such 
that W(F) ^ W(k((I))). 

Proof. If B (F2) ^ ± F2, this follows from Theorem 4.4 and [24, Lemma 
1.6]; in case char k = 2, we can use [14, § 12] in the proof of [24, Lemma 
1.6]. 

If B(F2) = ±F2 then F is rigid and if char F ^ 2, [24, Theorem 
1.9(2)] implies that W(F) is isomorphic to a group ring Z/nZ[G] with 
n = 0, 2, or 4 and G isomorphic to the group F/±.F2 = F/B(F2). If 
char F — 2, then by Theorems 3.3 and 4.4, there is a valuation on F 
with residue field ko and group of units U such that 

W(F) ^ W^feoMF/tfF2], |£0/£o2| = (£/F2 : £ (F 2 ) ) S 2, and 

^ ( * o ) ^ F 2 [ f f ] f 

with \H\ g 2. Thus if we let H e a field with W(k) 9Ë Z/wZ, when 
char F ^ 2 and TT̂ fe) = F2, when char F = 2, then & will be a basic 
field and in all cases W(F) will be isomorphic to ^(&)[G] with 
G^F/B(F2). Applying [24, Lemma 1.6] (plus [14, §12], when 
char F = 2) completes the proof. 
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