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THE PEXIDER FUNCTIONAL EQUATIONS 
IN DISTRIBUTIONS 

E. Y. DEEBA AND E. L. KOH 

1. Introduction. The Cauchy functional equations have been studied recently 
for Schwartz distributions by Koh in [3]. When the solutions are locally inte
grate functions, the equations reduce to the classical Cauchy equations (see 
[1]): 

(1) f{x+y)=f{x)+f(y) 

(2) f(x+y)=f(x)f(y) 

(3) f(xy)=f(x)+f(y) 

(4) f(xy)=f(x)f(y). 

Earlier efforts to study functional equations in distributions were given by Fenyo 
[2] for the Hosszu' equations 

f(x + y - xy) +f{xy) =f(x) + / ( j ) , 

by Neagu [4] for the Pompeiu equation 

f(x+y+xy)=f(x)+f(y)+f(x)f(y) 

and by Swiatak [6]. 
In this paper, we interpret and study the Pexider functional equations in dis

tributions. These are direct generalizations of Cauchy's equations and involve 
several unknown functions or distributions. The classical Pexider equations are 
given by 

(5) f(x+y) = g(x) + h(y) 

(6) f(x+y) = g(x)h(y) 

(7) f(xy) = g(x) + h(y) 

(8) f(xy) = g(xMy) 

where / , g and h are the unknown functions. A discussion of these equations 
and their solutions may be found in [1]. We now proceed to define the Pexider 
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equations in distributions. In the next section we summarize the background 
material needed for our work. 

2. Notation and preliminary results. Let / = (0, oo) C R and I2 — 
I x I C R2. We denote by £>(/) and DQ2) the spaces of infinitely differen-
tiable complex-valued functions with compact support on / and I2 respectively. 
Likewise, we denote by £ ( / ) and £( / 2 ) the spaces of infinitely differentiable 
complex-valued functions on / and I2 respectively. The dual of these spaces will 
be denoted by a prime and we note that £>(/) C £ ( / ) C £ ' ( / ) C D'il) (see 
[5]). The second inclusion will be interpreted by identifying the smooth function 
in *£(/) with the regular distribution it generates in £'(7). The topologies for 
these spaces will be the usual convergence concepts for DQ) and *£(/) as given 
by Schwartz [5] and weak topologies for their duals. LLOC(7) and LLOC(/2) de
note the spaces of equivalence classes of locally integrable functions on / and I2 

respectively. Two functions are equivalent if they are equal almost everywhere. 
In the sequel we shall denote by Ay the distribution corresponding to a locally 
integrable function/. For example, iff G LLOC(/X then 

(*f,<t>) = fi f(x)(j)(x)dx 

for </> e £>(/). 
Throughout, D denotes the differentiation operator in D'il) whereas D\ and 

£>2 are the partial differentiation operators in 'D'il2) with respect to the first 
and second variable from I2 respectively. Let E\ and E^ be integration operators 
from *D(I2) onto £>(/) given by 

/ • 
(9) £ i [ 0 ] « = / <l>(x,y)dy 

and 

(10) E2W(y)= [<Kx,y)dx 

for any <j> G (D(I2). These are continuous linear operators and we shall denote 
this by membership in L[D(/2); (D(I)]. Their adjoints are E\ and E\ from D'il) 
onto D'il2) and are defined by 

(11) {E*l[Tl<i>) = (T,El[<l>])= (T{X), J <l>(x,y)dy 

and 

(12) {E*2m,<t>) = (T,E2W) = (ny),J<Kx, y)dx 
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for any T G (D'il) and <j> G (D(I2). Again, we note that E\ and E\ both belong 
to the linear space L\fD\l)\ (D'il2)]. 

We shall now list several propositions concerning the properties of the above 
operators. We shall omit their proofs since they are analogous to proofs given 
in [31. 

PROPOSITION 2.1. a. Iff G LLOC(I), and (j)(x,y) = fix) for (x,y) G I2, then 
<t> G LLOC(/2) and E\(\f) = </>. 

Likewise, ifi^ix^y) =f(y)for (x,y) G I2, then \j) G L^odl2) and E^iXj) = '0-
b. If a G £( / ) , fAéM £*[or] W £*[a] both belong to <E(I2). 
c.Ifae <E(I)andT G £>'(/), then, for i = 1,2, 

(13) £ * [ a r ] = £ * [ a ] £ ; m . 

d.IfTe # ' ( / ) , then 

(14) £>i£* m = E, [D7] and Di£2*m = 0 

(15) D2E2*[r] = E^[DT] and D2E*l[T] = 0. 

We now define the operator P : (D'il) x (D'il) —* 2>'(/2) for any 5, 7 G £>'(/) 
and any 0 G £>(/2) by 

= (r(y),(sw,^j))>. 

It is known [5] that P is a continuous linear operator in both variables and that 

(16) DXP[S;T]=P[DS;T] and D2P[S;T] = P[S;DT]. 

The following proposition will be heavily utilized. Since the proof of parts 
(a) and (b) is immediate, we shall only give the proof for part (c). 

PROPOSITION 2.2. a. IfT G <D'(I), then 

(17) E*[T] = P[T;l] and E%[T] = P[1;T]. 

b.Ifa,pe *E(I)andS,T,U G £>'(/), then 

(18) E*x[a]P[S; U) + E*{\fi]P[T; U] = P[aS + (3T; U] 

(19) E$[a]P[S; T] + E$[0]P[S; £/] = />[S; aT + /?£/]. 

c. Suppose S,T,U and V are non-zero distributions in (D'il). Then P[S; T] — 
P[U;V] if and only if there exist non-zero real numbers c\ and c2 such that 
S = c\U and T = c2V. 
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Proof. We shall include a proof of (c) above. For any </>i, 02 G (0(1) define 

((/>! 0 02)(*,}O = h{x)(j>2(y) for all (*,;y) G /2 . 

Clearly 

0 1 0 02 G 2>(/2) and (P[5; r ] ,0 ,e^2> = (5,^)(r ,02> 

whenever 5, T G £>'(/) and 0i, 02 G £> (/). Since 7 ^ 0), there exists ^ ^ (/) 
such that 7(0) ± 0. Then, for every 0 G (0(1), 

(S^)(T^0) = (P[S;Tl$®<t>0) 

= {U,<j>){V,<fo). 

Thus (5,0) - ci^7(0) for all 0 G £>(/) with cx = (V, 0o)/(7, 0O). That is 
S = ci£/. By the same token there is a c2 = (£/, 0o)/(S, 0o) such that 7 = c^V'. 

To come up with the generalization of Pexider equations to distributions, we 
need to define the following operators Q and R from (0(I2) into (0(1) by 

/

oo /»oo 

-OO J —OO 

and 

(2D W ] W = [«*/y>yVy= (UMIA^ 
J i y J i y 

and their respective adjoints Q* and R* from £>'(/) into (0'(l2) by 

(22) (G*m, 0) = (7, G[0]) = ( r u ) , 6 M W ) 

and 

(23) (R*[T],<I>) = (?\/?[0]) = (T(x\RW(x)) 

for any 0 G £>(/2) and 7 G £>'(/). 
Some of the properties of these operators are given in the following proposi

tions: 

PROPOSITION 2.3. Suppose f G LLOC(^)-

a. 7/we /ef g(x,)0 = /0r +y)far (x,y) G 72, f/zew 

geLL0C(I2) and Q*[Xf] = Xg. 
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b. If we let h(x,y) = f(xy) for (x,y) G I2, then 

heLLOc(I2) and R*[Xf] = \ h . 

PROPOSITION 2.4. If a e £ ( / ) , then Q*[a] and R*[a] G £ ( / 2 ) . 

PROPOSITION 2.5. Ifae<E(I) and T e<D'(I) then 

(24) Q*[aT] = Q*[<x]Q*[T] 

(25) R*[aT] = R*[a]R*[T]. 

PROPOSITION 2.6. IfT€<D'(I),then 

(26) D i ( G * m ) = D2(Q*[T]) = Q*[DT] 

(27) DX(R*[T]) = E*2(Q)R\DT) 

(28) D2(R*[T]) = E;(Q)R*(DT) 

where Q = x G *£(/) . 

3. The Pexider equations in distributions. In this section we shall make 
use of the operators Q* and R* to write the Pexider equations in distributions 
and utilize the propositions stated in Section 2 to exhibit the solutions of these 
equations. We shall indicate that for regular distributions, that is, locally inte
g r a t e functions, the results reduce to the "classical" solutions of the Pexider 
equations (5)-(8). 

Let 7 , U and V be in (D'il). The equations 

(29) Q*[T]=EÏ[U]+EÎ[V] 

(30) Q*[T]=P[U;V] 

(31) R*[T]=E![U]+E}[V] 

(32) R*[T] =P[U;V] 

will be referred to as the Pexider equations in distributions. 
Although the proof of the next proposition can be deduced from the Propo

sition 2.1 - Proposition 2.6, we give the proof for the sake of clarity and com
pleteness. 

PROPOSITION 3.1. IfT,U and V are regular distributions, that is, locally 
integrable function f ', g, and h respectively, then equations (29)-(32) reduce to 
the Pexider functional equations (5)-(8) respectively. 
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Proof, (i) We shall first show that equation (29) reduces to equation (5) for 
regular distributions. We perform the following computations for / G LLoc(^) 
and<£ G <D(I2): 

<G*[A/] ,^) = (A / ,G[0 ] ( J : ) ) 

= (A/> / <t>(x-y,y)dy) 

= / /(•*) / <j)(x-y,y)dydx 

= lf(x+y)<Kx,y)dydx = (f(x+y),<Kx,y)) 

and for g and /z G LL0C(I) and any </> G £>(/2) 

(£*[A,],0) = ( A ^ t y K * ) ) = j g(x)<f>{x,y)dydx 

(£2*[A/J,</>) = (\h,E2W(y)} = j h(y)<j>{x,y)dxdy 

= (Ky),<Kx,y)). 

The above calculation shows that if/,g,/z G LL0C(I) and if Q*[A/] = £*[Ag] + 
^[A/i] then 

J{f(x+y) - 80c) - h(y)}$(x,y)dxdy = 0 

for all (j> G (D(I2). Hence we conclude that/(x + y) = g(x) + h(y) for almost 
every (x,y) G /2 . 

(ii) We shall show that equation (30) reduces to equation (6) for regular 
distributions. 

(P[\8;\h],<l>) = (\g,(\h,<Kx,y))) 

= I g(x)h(y)<j>(x,y)dydx 

= (g(x)h(y),<Kx,y)). 

Again, this shows that i f / ,g , / i G LLOC(I) and if Q*[A/-] = P[Xg;Xh] then 

/" {/(* + y) ~ g(x)h(y)}<t>(xiy)dydx = 0 
Ji2 

for all </> G £>(/2). Hence we conclude that/(jc+y) = g(x)h(y) for almost every 
(x,y)£l2. 
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(iii) We now show that equation (31) reduces to equation (2) for regular 
distributions. 

(R*[Xfl </>} = (XfiRWW) = l\fJ^(x/^y)dy\ 

f f(x)<l>(x/y,y) f 
— \ ay ax — / j(xy)(j>{x^y)dyax 

Jn y Jr-
= (f(xy)^(x,y)}. 

Thus if / ,g , / i G LuocU) and if R*[Xf] = E*{[\g] + E$[\h] then 

I {f(xy) - g(x) - h(y)}<j>{x,y)dydx = 0 

for all (j) G £>(/2). Hence/(xy) = g(x) + h(y) for almost every (x,_y) G I2. 
(iv) From (ii) and (iii) we conclude that i f / ,g , / i G LLoC(I) and if/T[A/] 

P[A^;AA], then 

JC {/(^)-^WA(^)}^^W^ = 0 

for every </> G (D(I2). Thus f(xy) — g(x)h(y) for almost every (x,y) G 72. 

We have thus shown that for regular distributions the Pexider equations in 
distributions as defined in (29)-(32) reduce to the 'classical' Pexider equations 
given in (5)-(8). We shall now present the solutions of equations (29)-(32). 

THEOREM 3.1. IfT,U,V G # ' ( / ) satisfy equation (29) Q*[T] = E\[U] + 
^[V^], then there exists a,b,c G R such that T = A/, U = Xg and V — Xh 
where f(x) = cx+a + b, g(x) = ex + a, and h{x) = ex + b for all x G /. 

Proof. Proposition 2.6, Proposition 2.1(d), Proposition 2.2(a) and (c) imply 
that 

Q*[DT] = DXQ*[T] = DX{E\[U]+Elm) = DXE\[U] = P[DU\ 1] 

while 

Q*[DT] = D2Q*[T] = D2(E\*[U]+E*2[V]) = D2E*[V] = P[\;DV]. 

Hence P[DU;\] = P[l;DV] which yields the system DU = c and DV = c for 
some c G R. Thus U = ex + a and V — ex + b with a,b G R. Further, for any 
ct>e <D(i2) 
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(T,QW) = (Q*[n<l>) 
= (^[ f / ]+E 2 *[V] ,0) 

= (U,El[</>]) + (V,E2[<l>]) 

= (U(x),E{[<l>](x)) + (V(y),E2[(t>](y)) 

= ( ex +a, I (j)(x,y)dy \ + lcy + b, \ <Kx,y)dx 

— I (ex + cy + a + b)(j)(x1 y)dydx 

/*oo 

<j>(x -y, y)dydx / (ex + a + b) I 

(cx + a + b,Q[(j)]). 

It follows that T = Xf where f(x) = ex + a + b G £ (/). 

COROLLARY 3.1. / /"/ ,£ ««d h G LLC)c(I) satisfy equation (29), then f(x),g(x) 
and h(x) G £ ( / ) w//7z / ( A ) = ex + a + b,g(x) = ex + # a/id /z(x) = ex + /? /o r 
some a, b, c G R. 

Proof. Theorem 3.1 implies that there exists a, b, e G R such that f(x) — 
ex + a + b,g(x) = ex + a and /z(x) = ex + b hold for almost all x G / . Let 
/(•*) — /(•*) — c-*' — a — b, g(x) = g(x) — ex — a and h(x) = h(x) — ex — b for 
all x £ / . Clearly f(x + y) = g(x) + h(y) for all I J G / a n d / , g and h vanish 
almost everywhere on / . Let 

A = {x el\g(x) = 0} and B = {x G / | h(x) = 0} . 

Since A and B have full measure, it follows that A + B = / ; that is, 

/ = {X + V|A- £A,y £ £ } . 

Thus / (z ) = 0 for all z £ I. Given x G / . Choose _y G / such that h(y) — 0. 
This will then imply that g(x) = 0. Thus g = 0. Similarly one can show that 
h = 0. Therefore the conclusion of Corollary 3.1 holds for all x G / . 

This is the classical solution of the Pexider equation (5). 

THEOREM 3.2. IfT,U,V G £>'(/) ^ / s / y equation (30) Q*[7] = />[£/; V], 
then there exist real numbers a, /?, c G R swe/î r/W T = \f,U = Xg and V = A/? 

where f(x) — abecx,g(x) — aecx and h(x) = becx for all x G / . 

Proof. From Proposition (2.6) and equations (16) we have 

Q*[DT] = D{Q*[T] = D{P[U; V] = P[DU\ V] 

Q*[DT] =D2Q*[T] =D2P[U;V] = P[U;DV] 
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and thus P[DU;V] = P[U;DV]. This implies that DU = cU and DV = cV 
for some c G R. The solution of this system is U — aecx and V = becx with 
a,b G /?. Now, for any (/> G £>(/2), 

{Q*ind>) = (T(x),Q[<l>](x)) 

while 

(P[U;V],4>) = (ae",(be'y^(x,y))) 

= f abecU+y)<j>(x,y)dydx 

= / abecx<j>(x — y,y)dydx 

= (abecx,QM(x)). 

Hence T = Ay where/(x) = abecx. 

COROLLARY 3.2. lff,g and h belonging to LLOC(/) satisfy equation (30), 
then f(x),g(x), and h(x) belong to £ ( / ) with f(x) — abecx,g(x) = aecx and 
h(x) = becx,a,b,c G R 

This is the classical solution of the Pexider equation (6). The proof of this 
corollary is similar to that of Corollary 3.1. 

THEOREM 3.3. IfT,U,V G 'D'il) satisfy equation (31) R*[T] = E\[U] + 
Zs^iyL then there exist ct,fi,c G R such that T = \f,U = \g and V = A/, 
where f(x) — cln(a/3x),g(x) = cln(ax) and h{x) — clnifix) for all x G /. 

Proof. Proposition (2.6) and equations (14) and (15) imply that 

E$(Cl)R*[DT] = Di(R*[T]) = Di£*[^l = ^ î [^^1 = P[DU; 1] 

£*(^)/?*[Dr] = D2(R*[T]) = D2E$[V] = E^DV] = P[l;DV]. 

This will in turn imply that 

E\{£l)P[DU\ 11 = £2*(Q)/>[1;DV]. 

Hence, P[QD£/; 11 = P[\;QDV]. From this we obtain the system Ç1DU = c 
and £2DV = c, for come c G R. The solution of this system is 

U = cln(aQ) and V = cln(pQ), a,/3eR. 

Now, for any </> G £>(/2), we have 

(/?*m,0) = (£r[c//i(aQ)] + E2*[c//i08n)],^) 

= {cln(ax),E{[<l>]W) + (c/«(/^),£2 [</>!( j)) 

= / cln(ax)(j)(x,y)dydx + / cin(J3y)(j)(x1y)dxdy 

— \ cln(a(3xy)<j>(x,y)dxdy = (cln(a(3xy),<l)(x,y)) 
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while 

(R*[T],<l>) = (nx),R[<l>]ix)} 

TMj+^dy 

f T(x)^x/y'y)dydx = [ T{xy)4>{xiy)dydx 
Jr- y J12 
(nxy),<Kx,y)). 

Hence T(xy) = cln(a/3xy). Equivalently, T — cln(oc/3Q). 

COROLLARY 3.3. Iff,g, and h belonging to LLOC(J) satisfy equation (31), then 
f(x)1g(x) and h(x) belong to *£(/) with 

f(x) = cln(a/3x) g(x) = clnax and h(x) — cin/3x. 

These are the solutions of the Pexider equation (7). 

Finally, we have 

THEOREM 3.4. IfT,U,V G £>'(/) satisfy equation (32) R*[T] = P[U\V], 
then there exist a,b,c G R such that T = \f,U = A#, V = Xh where f(x) = 
abxc, g(x) — axc and h(x) = bxc for all x G /. 

Proof From Proposition (2.6) and equations (16) we obtain 

El{Q)R*[DT] = Di(R*[T]) = DX(P[U; V]) = P[DU\ V] 

E*X(Q)R*[DT] =D2(R*[T]) = D2P[U;V] =P[U;DV] 

and this implies that 

E\(Q)P[DU\ V] = E$(Q)P[U;DV]. 

Thus P[QDU\V] = P[U;£IDV] which yields the system QDU = cU and 
QDV = cV, c G R. The solution of this system is U = aQc and V = b£lc, a,b G 
R. Now, for any <f> G £>(/2), 

(m^(w,i^^ 
• • / : 

in y 

I 
<K*/y,y) t 

T(xy)(f)(x,y)dydx 
i2 

(nxy),<j>(x,y)), 
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and on the other hand, 

(P[U; V], <t>) = (U(x\(V(y),t(xiy)}} 

= (axc,(byc,<Kx,y))) 

abxcyc 4>(x,y )dydx 

= {ab(xy)cA(xiy)). 

Hence T(xy) — ab(xy)c. Equivalently T — abQl'•'. 

COROLLARY 3.4. Iff, g and h are locally integrable functions satisfying equa
tion (32), then f(x),g(x) and h{x) belong to £ ( / ) with 

f(x) = abxc,g(x) = axc and h(x) = bxc\ a, /?, c G R. 

This is the classical solution of the Pexider equation (8). 
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